
Firebird 3.0 Language Reference
Dmitry Filippov, Alexander Karpeykin, Alexey Kovyazin, Dmitry Kuzmenko,

Denis Simonov, Paul Vinkenoog, Dmitry Yemanov, Mark Rotteveel

Version 1.19, 17 January 2024

The source of much copied reference material: Paul Vinkenoog
Copyright © 2017-2024 Firebird Project and all contributing authors, under the
Public Documentation License Version 1.0. Please refer to the License Notice in
the Appendix

Preface

1

https://www.firebirdsql.org/manual/pdl.html

Table of Contents
1. About the Firebird 3.0 Language Reference . 15

1.1. Subject . 15

1.2. Authorship . 15

1.2.1. Contributors . 15

1.3. Acknowledgments . 16

1.4. Contributing. 16

2. SQL Language Structure. 17

2.1. Background to Firebird’s SQL Language . 17

2.1.1. SQL Flavours . 17

2.1.2. SQL Dialects . 17

2.1.3. Error Conditions . 19

2.2. Basic Elements: Statements, Clauses, Keywords . 19

2.3. Identifiers . 20

2.3.1. Rules for Regular Object Identifiers . 20

2.3.2. Rules for Delimited Object Identifiers . 20

2.4. Literals . 21

2.5. Operators and Special Characters . 21

2.6. Comments. 22

3. Data Types and Subtypes . 24

3.1. Integer Data Types . 26

3.1.1. SMALLINT . 26

3.1.2. INTEGER . 26

3.1.3. BIGINT . 27

3.1.4. Hexadecimal Format for Integer Numbers . 27

3.2. Floating-Point Data Types. 28

3.2.1. FLOAT . 28

3.2.2. DOUBLE PRECISION . 28

3.3. Fixed-Point Data Types . 28

3.3.1. NUMERIC . 29

3.3.2. DECIMAL . 30

3.4. Data Types for Dates and Times . 30

3.4.1. DATE . 31

3.4.2. TIME . 31

3.4.3. TIMESTAMP . 32

3.4.4. Operations Using Date and Time Values . 32

3.5. Character Data Types. 33

3.5.1. Unicode . 33

3.5.2. Client Character Set . 34

Table of Contents

2

3.5.3. Special Character Sets . 34

3.5.4. Collation Sequence . 34

3.5.5. Character Indexes . 35

3.5.6. Character Types in Detail . 36

3.6. Boolean Data Type . 38

3.6.1. BOOLEAN . 38

3.7. Binary Data Types . 40

3.7.1. BLOB Subtypes . 40

3.7.2. BLOB Specifics . 41

3.7.3. ARRAY Type . 42

3.8. Special Data Types . 44

3.8.1. SQL_NULL Data Type . 44

3.9. Conversion of Data Types . 45

3.9.1. Explicit Data Type Conversion. 45

3.9.2. Implicit Data Type Conversion . 49

3.10. Custom Data Types — Domains. 51

3.10.1. Domain Attributes . 51

3.10.2. Domain Override . 51

3.10.3. Creating and Administering Domains . 52

3.11. Data Type Declaration Syntax . 53

3.11.1. Scalar Data Types Syntax . 53

3.11.2. BLOB Data Types Syntax . 55

3.11.3. Array Data Types Syntax. 55

4. Common Language Elements . 57

4.1. Expressions . 57

4.1.1. Literals (Constants). 59

4.1.2. SQL Operators . 62

4.1.3. Conditional Expressions . 65

4.1.4. NULL in Expressions. 67

4.1.5. Subqueries . 68

4.2. Predicates . 69

4.2.1. Conditions. 70

4.2.2. Comparison Predicates . 70

4.2.3. Existential Predicates. 83

4.2.4. Quantified Subquery Predicates . 86

5. Data Definition (DDL) Statements . 89

5.1. DATABASE . 89

5.1.1. CREATE DATABASE . 89

5.1.2. ALTER DATABASE . 95

5.1.3. DROP DATABASE . 100

5.2. SHADOW. 101

Table of Contents

3

5.2.1. CREATE SHADOW . 101
5.2.2. DROP SHADOW . 103

5.3. DOMAIN. 104

5.3.1. CREATE DOMAIN . 104

5.3.2. ALTER DOMAIN . 109

5.3.3. DROP DOMAIN . 112

5.4. TABLE. 113

5.4.1. CREATE TABLE . 113

5.4.2. ALTER TABLE . 129

5.4.3. DROP TABLE . 135

5.4.4. RECREATE TABLE . 136

5.5. INDEX. 137

5.5.1. CREATE INDEX . 137

5.5.2. ALTER INDEX . 140

5.5.3. DROP INDEX . 142

5.5.4. SET STATISTICS . 143

5.6. VIEW. 144

5.6.1. CREATE VIEW . 144

5.6.2. ALTER VIEW . 148

5.6.3. CREATE OR ALTER VIEW . 149

5.6.4. DROP VIEW . 150

5.6.5. RECREATE VIEW . 151

5.7. TRIGGER. 152

5.7.1. CREATE TRIGGER . 152

5.7.2. ALTER TRIGGER . 164

5.7.3. CREATE OR ALTER TRIGGER . 166

5.7.4. DROP TRIGGER . 167

5.7.5. RECREATE TRIGGER . 168

5.8. PROCEDURE. 168

5.8.1. CREATE PROCEDURE . 169

5.8.2. ALTER PROCEDURE . 173

5.8.3. CREATE OR ALTER PROCEDURE . 174

5.8.4. DROP PROCEDURE . 175

5.8.5. RECREATE PROCEDURE . 176

5.9. FUNCTION. 177

5.9.1. CREATE FUNCTION . 177

5.9.2. ALTER FUNCTION . 183

5.9.3. CREATE OR ALTER FUNCTION . 184

5.9.4. DROP FUNCTION . 185

5.9.5. RECREATE FUNCTION . 186

5.10. EXTERNAL FUNCTION . 187

Table of Contents

4

5.10.1. DECLARE EXTERNAL FUNCTION . 187
5.10.2. ALTER EXTERNAL FUNCTION . 191

5.10.3. DROP EXTERNAL FUNCTION . 192

5.11. PACKAGE. 193

5.11.1. CREATE PACKAGE . 193

5.11.2. ALTER PACKAGE . 196

5.11.3. CREATE OR ALTER PACKAGE . 197

5.11.4. DROP PACKAGE . 197

5.11.5. RECREATE PACKAGE . 198

5.12. PACKAGE BODY. 199

5.12.1. CREATE PACKAGE BODY . 199

5.12.2. DROP PACKAGE BODY . 202

5.12.3. RECREATE PACKAGE BODY . 203

5.13. FILTER . 204

5.13.1. DECLARE FILTER . 204

5.13.2. DROP FILTER . 206

5.14. SEQUENCE (GENERATOR) . 207

5.14.1. CREATE SEQUENCE . 208

5.14.2. ALTER SEQUENCE . 210

5.14.3. CREATE OR ALTER SEQUENCE . 211

5.14.4. DROP SEQUENCE . 212

5.14.5. RECREATE SEQUENCE . 213

5.14.6. SET GENERATOR . 214

5.15. EXCEPTION. 215

5.15.1. CREATE EXCEPTION . 215

5.15.2. ALTER EXCEPTION . 217

5.15.3. CREATE OR ALTER EXCEPTION . 217

5.15.4. DROP EXCEPTION . 218

5.15.5. RECREATE EXCEPTION . 219

5.16. COLLATION. 219

5.16.1. CREATE COLLATION . 220

5.16.2. DROP COLLATION . 223

5.17. CHARACTER SET. 224

5.17.1. ALTER CHARACTER SET . 224

5.18. Comments . 225

5.18.1. COMMENT ON . 225

6. Data Manipulation (DML) Statements. 229

6.1. SELECT. 229

6.1.1. FIRST, SKIP . 230

6.1.2. The SELECT Columns List . 232

6.1.3. The FROM clause . 236

Table of Contents

5

6.1.4. Joins . 244

6.1.5. The WHERE clause . 254

6.1.6. The GROUP BY clause . 257

6.1.7. The PLAN clause . 262

6.1.8. UNION . 270

6.1.9. ORDER BY . 272

6.1.10. ROWS. 275

6.1.11. OFFSET, FETCH . 279

6.1.12. FOR UPDATE [OF] . 281

6.1.13. WITH LOCK . 281

6.1.14. INTO. 285

6.1.15. Common Table Expressions (“WITH … AS … SELECT”) . 286

6.2. INSERT. 290

6.2.1. INSERT … VALUES . 291

6.2.2. INSERT … SELECT . 292

6.2.3. INSERT … DEFAULT VALUES . 293

6.2.4. The RETURNING clause . 293

6.2.5. Inserting into BLOB columns . 294

6.3. UPDATE. 295

6.3.1. Using an alias. 296

6.3.2. The SET Clause . 296

6.3.3. The WHERE Clause . 297

6.3.4. The ORDER BY and ROWS Clauses . 298

6.3.5. The RETURNING Clause . 298

6.3.6. Updating BLOB columns . 299

6.4. UPDATE OR INSERT . 299

6.4.1. The RETURNING clause . 301

6.4.2. Example of UPDATE OR INSERT . 301

6.5. DELETE. 301

6.5.1. Aliases . 302

6.5.2. WHERE . 303

6.5.3. PLAN . 303

6.5.4. ORDER BY and ROWS . 303

6.5.5. RETURNING . 305

6.6. MERGE. 305

6.6.1. The RETURNING Clause . 308

6.6.2. Examples of MERGE . 309

6.7. EXECUTE PROCEDURE . 310

6.7.1. “Executable” Stored Procedure . 311

6.7.2. Examples of EXECUTE PROCEDURE . 311

6.8. EXECUTE BLOCK . 312

Table of Contents

6

6.8.1. Examples. 313

6.8.2. Input and output parameters . 314

6.8.3. Statement Terminators . 314

7. Procedural SQL (PSQL) Statements . 315

7.1. Elements of PSQL . 315

7.1.1. DML Statements with Parameters . 315

7.1.2. Transactions. 315

7.1.3. Module Structure . 315

7.2. Stored Procedures . 318

7.2.1. Benefits of Stored Procedures . 319

7.2.2. Types of Stored Procedures . 319

7.2.3. Creating a Stored Procedure . 320

7.2.4. Modifying a Stored Procedure. 320

7.2.5. Deleting a Stored Procedure . 320

7.3. Stored Functions. 320

7.3.1. Creating a Stored Function. 320

7.3.2. Modifying a Stored Function . 320

7.3.3. Deleting a Stored Function . 320

7.4. PSQL Blocks . 320

7.5. Packages . 321

7.5.1. Benefits of Packages. 321

7.5.2. Creating a Package . 322

7.5.3. Modifying a Package . 323

7.5.4. Deleting a Package . 323

7.6. Triggers . 323

7.6.1. Firing Order (Order of Execution) . 323

7.6.2. DML Triggers . 323

7.6.3. Database Triggers . 324

7.6.4. DDL Triggers . 325

7.6.5. Creating Triggers . 326

7.6.6. Modifying Triggers . 326

7.6.7. Deleting a Trigger . 326

7.7. Writing the Body Code . 326

7.7.1. Assignment Statements . 326

7.7.2. DECLARE VARIABLE . 327

7.7.3. DECLARE .. CURSOR . 329

7.7.4. DECLARE FUNCTION . 333

7.7.5. DECLARE PROCEDURE . 335

7.7.6. BEGIN … END . 337

7.7.7. IF … THEN … ELSE . 338

7.7.8. WHILE … DO . 340

Table of Contents

7

7.7.9. BREAK . 341
7.7.10. LEAVE. 342

7.7.11. CONTINUE . 344

7.7.12. EXIT. 345

7.7.13. SUSPEND . 346

7.7.14. EXECUTE STATEMENT . 347

7.7.15. FOR SELECT . 352

7.7.16. FOR EXECUTE STATEMENT . 357

7.7.17. OPEN. 358

7.7.18. FETCH. 360

7.7.19. CLOSE. 365

7.7.20. IN AUTONOMOUS TRANSACTION . 366

7.7.21. POST_EVENT . 367

7.7.22. RETURN . 368

7.8. Trapping and Handling Errors . 368

7.8.1. System Exceptions . 369

7.8.2. Custom Exceptions . 369

7.8.3. EXCEPTION . 369

7.8.4. WHEN … DO . 373

8. Built-in Scalar Functions . 378

8.1. Context Functions. 378

8.1.1. RDB$GET_CONTEXT() . 378

8.1.2. RDB$SET_CONTEXT() . 381

8.2. Mathematical Functions . 382

8.2.1. ABS() . 382

8.2.2. ACOS() . 383

8.2.3. ACOSH() . 383

8.2.4. ASIN() . 384

8.2.5. ASINH() . 384

8.2.6. ATAN() . 385

8.2.7. ATAN2() . 385

8.2.8. ATANH() . 386

8.2.9. CEIL(), CEILING() . 387

8.2.10. COS(). 387

8.2.11. COSH() . 388

8.2.12. COT(). 388

8.2.13. EXP(). 389

8.2.14. FLOOR() . 389

8.2.15. LN(). 390

8.2.16. LOG(). 390

8.2.17. LOG10() . 391

Table of Contents

8

8.2.18. MOD(). 392
8.2.19. PI(). 392

8.2.20. POWER() . 393

8.2.21. RAND() . 393

8.2.22. ROUND() . 393

8.2.23. SIGN() . 395

8.2.24. SIN(). 395

8.2.25. SINH() . 396

8.2.26. SQRT() . 396

8.2.27. TAN(). 397

8.2.28. TANH() . 397

8.2.29. TRUNC() . 398

8.3. String Functions . 399

8.3.1. ASCII_CHAR() . 399

8.3.2. ASCII_VAL() . 399

8.3.3. BIT_LENGTH() . 400

8.3.4. CHAR_LENGTH(), CHARACTER_LENGTH() . 401

8.3.5. HASH() . 402

8.3.6. LEFT() . 402

8.3.7. LOWER() . 403

8.3.8. LPAD() . 404

8.3.9. OCTET_LENGTH() . 405

8.3.10. OVERLAY() . 406

8.3.11. POSITION() . 408

8.3.12. REPLACE() . 409

8.3.13. REVERSE() . 410

8.3.14. RIGHT() . 410

8.3.15. RPAD() . 411

8.3.16. SUBSTRING() . 412

8.3.17. TRIM() . 414

8.3.18. UPPER() . 416

8.4. Date and Time Functions . 416

8.4.1. DATEADD() . 416

8.4.2. DATEDIFF() . 418

8.4.3. EXTRACT() . 419

8.5. Type Casting Functions . 421

8.5.1. CAST() . 421

8.6. Bitwise Functions . 424

8.6.1. BIN_AND() . 424

8.6.2. BIN_NOT() . 425

8.6.3. BIN_OR() . 426

Table of Contents

9

8.6.4. BIN_SHL() . 426
8.6.5. BIN_SHR() . 427

8.6.6. BIN_XOR() . 427

8.7. UUID Functions . 428

8.7.1. CHAR_TO_UUID() . 428

8.7.2. GEN_UUID() . 429

8.7.3. UUID_TO_CHAR() . 429

8.8. Functions for Sequences (Generators) . 430

8.8.1. GEN_ID() . 430

8.9. Conditional Functions . 431

8.9.1. COALESCE() . 431

8.9.2. DECODE() . 431

8.9.3. IIF() . 433

8.9.4. MAXVALUE() . 433

8.9.5. MINVALUE() . 434

8.9.6. NULLIF() . 435

9. Aggregate Functions . 436

9.1. General-purpose Aggregate Functions . 436

9.1.1. AVG() . 436

9.1.2. COUNT() . 437

9.1.3. LIST() . 438

9.1.4. MAX() . 439

9.1.5. MIN() . 440

9.1.6. SUM() . 441

9.2. Statistical Aggregate Functions . 441

9.2.1. CORR . 442

9.2.2. COVAR_POP . 442

9.2.3. COVAR_SAMP . 443

9.2.4. STDDEV_POP . 444

9.2.5. STDDEV_SAMP . 445

9.2.6. VAR_POP . 446

9.2.7. VAR_SAMP . 447

9.3. Linear Regression Aggregate Functions . 448

9.3.1. REGR_AVGX . 448

9.3.2. REGR_AVGY . 449

9.3.3. REGR_COUNT . 449

9.3.4. REGR_INTERCEPT . 450

9.3.5. REGR_R2 . 452

9.3.6. REGR_SLOPE . 452

9.3.7. REGR_SXX . 453

9.3.8. REGR_SXY . 454

Table of Contents

10

9.3.9. REGR_SYY . 455
10. Window (Analytical) Functions . 456

10.1. Aggregate Functions as Window Functions. 457

10.2. Partitioning . 457

10.3. Ordering . 458

10.4. Ranking Functions . 459

10.4.1. DENSE_RANK . 460

10.4.2. RANK. 461

10.4.3. ROW_NUMBER . 461

10.5. Navigational Functions. 462

10.5.1. FIRST_VALUE . 463

10.5.2. LAG. 464

10.5.3. LAST_VALUE . 465

10.5.4. LEAD. 465

10.5.5. NTH_VALUE . 466

10.6. Aggregate Functions Inside Window Specification . 467

11. Context Variables . 468

11.1. CURRENT_CONNECTION . 468

11.2. CURRENT_DATE. 468

11.3. CURRENT_ROLE. 469

11.4. CURRENT_TIME. 469

11.5. CURRENT_TIMESTAMP . 470

11.6. CURRENT_TRANSACTION . 472

11.7. CURRENT_USER. 472

11.8. DELETING. 473

11.9. GDSCODE. 473

11.10. INSERTING . 474

11.11. LOCALTIME . 474

11.12. LOCALTIMESTAMP. 475

11.13. NEW . 476

11.14. 'NOW' . 477

11.15. OLD . 478

11.16. ROW_COUNT . 479

11.17. SQLCODE . 479

11.18. SQLSTATE . 480

11.19. 'TODAY' . 481

11.20. 'TOMORROW' . 482

11.21. UPDATING . 482

11.22. 'YESTERDAY' . 483

11.23. USER . 483

12. Transaction Control. 485

Table of Contents

11

12.1. Transaction Statements . 485

12.1.1. SET TRANSACTION . 485

12.1.2. COMMIT . 492

12.1.3. ROLLBACK . 494

12.1.4. SAVEPOINT . 495

12.1.5. RELEASE SAVEPOINT . 496

12.1.6. Internal Savepoints . 497

12.1.7. Savepoints and PSQL . 497

13. Security. 499

13.1. User Authentication. 499

13.1.1. Specially Privileged Users. 500

13.1.2. RDB$ADMIN Role . 501

13.1.3. Administrators . 505

13.2. SQL Statements for User Management . 506

13.2.1. CREATE USER . 507

13.2.2. ALTER USER . 510

13.2.3. CREATE OR ALTER USER . 512

13.2.4. DROP USER . 513

13.3. SQL Privileges . 514

13.3.1. The Object Owner. 514

13.4. ROLE . 515

13.4.1. CREATE ROLE . 515

13.4.2. ALTER ROLE . 516

13.4.3. DROP ROLE . 517

13.5. Statements for Granting Privileges . 517

13.5.1. GRANT. 517

13.6. Statements for Revoking Privileges . 527

13.6.1. REVOKE . 527

13.7. Mapping of Users to Objects . 532

13.7.1. The Mapping Rule. 532

13.7.2. CREATE MAPPING . 533

13.7.3. ALTER MAPPING . 536

13.7.4. CREATE OR ALTER MAPPING . 537

13.7.5. DROP MAPPING . 537

13.8. Database Encryption . 538

13.8.1. Encrypting a Database. 539

13.8.2. Decrypting a Database. 539

14. Management Statements . 541

14.1. Changing the Current Role. 541

14.1.1. SET ROLE . 541

14.1.2. SET TRUSTED ROLE . 542

Table of Contents

12

Appendix A: Supplementary Information . 544

The RDB$VALID_BLR Field . 544

How Invalidation Works . 544

A Note on Equality. 546

Appendix B: Exception Codes and Messages . 547

SQLSTATE Error Codes and Descriptions. 547

SQLCODE and GDSCODE Error Codes and Descriptions . 554

Appendix C: Reserved Words and Keywords . 601

Reserved words . 601

Keywords . 603

Appendix D: System Tables . 607

RDB$AUTH_MAPPING . 609

RDB$BACKUP_HISTORY . 610

RDB$CHARACTER_SETS . 610

RDB$CHECK_CONSTRAINTS. 611

RDB$COLLATIONS . 611

RDB$DATABASE . 612

RDB$DB_CREATORS . 613

RDB$DEPENDENCIES . 613

RDB$EXCEPTIONS . 615

RDB$FIELDS . 615

RDB$FIELD_DIMENSIONS. 620

RDB$FILES . 620

RDB$FILTERS . 621

RDB$FORMATS . 621

RDB$FUNCTIONS . 622

RDB$FUNCTION_ARGUMENTS. 623

RDB$GENERATORS . 626

RDB$INDICES . 626

RDB$INDEX_SEGMENTS . 628

RDB$LOG_FILES . 628

RDB$PACKAGES . 628

RDB$PAGES . 629

RDB$PROCEDURES . 629

RDB$PROCEDURE_PARAMETERS. 631

RDB$REF_CONSTRAINTS . 632

RDB$RELATIONS . 633

RDB$RELATION_CONSTRAINTS. 634

RDB$RELATION_FIELDS . 635

RDB$ROLES . 636

RDB$SECURITY_CLASSES. 637

Table of Contents

13

RDB$TRANSACTIONS . 637
RDB$TRIGGERS . 637

RDB$TRIGGER_TYPE Value . 638

RDB$TRIGGER_MESSAGES. 641

RDB$TYPES . 641

RDB$USER_PRIVILEGES . 642

RDB$VIEW_RELATIONS . 644

Appendix E: Monitoring Tables . 645

MON$ATTACHMENTS . 646

Using MON$ATTACHMENTS to Kill a Connection. 647

MON$CALL_STACK . 648

MON$CONTEXT_VARIABLES. 649

MON$DATABASE . 649

MON$IO_STATS . 651

MON$MEMORY_USAGE . 652

MON$RECORD_STATS . 653

MON$STATEMENTS . 654

Using MON$STATEMENTS to Cancel a Query . 654

MON$TABLE_STATS . 655

MON$TRANSACTIONS . 656

Appendix F: Security tables . 658

SEC$DB_CREATORS . 658

SEC$GLOBAL_AUTH_MAPPING. 658

SEC$USERS . 659

SEC$USER_ATTRIBUTES . 660

Appendix G: Character Sets and Collation Sequences. 661

Appendix H: License notice . 667

Appendix I: Document History . 668

Table of Contents

14

Chapter 1. About the Firebird 3.0 Language
Reference
This Language Reference decribes the SQL language supported by Firebird 3.0.

This Firebird 3.0 Language Reference is the second comprehensive manual to cover all aspects of
the query language used by developers to communicate, through their applications, with the
Firebird relational database management system.

1.1. Subject
The subject of this volume is wholly Firebird’s implementation of the SQL relational database
language. Firebird conforms closely with international standards for SQL, from data type support,
data storage structures, referential integrity mechanisms, to data manipulation capabilities and
access privileges. Firebird also implements a robust procedural language — procedural SQL
(PSQL) — for stored procedures, triggers and dynamically-executable code blocks. These are the
areas addressed in this volume.

This document does not cover configuration of Firebird, Firebird command-line tools, nor its
programming APIs.

1.2. Authorship
For the Firebird 3.0 version, the Firebird 2.5 Language Reference was taken as the base, and Firebird
3.0 information was added based on the Firebird 3.0 release notes, feature documentation, and the
Russian Firebird 3.0 Language Reference. This document, however, is not a direct translation of the
Russian Firebird 3.0 Language Reference.

1.2.1. Contributors

Direct Content

• Dmitry Filippov (writer)

• Alexander Karpeykin (writer)

• Alexey Kovyazin (writer, editor)

• Dmitry Kuzmenko (writer, editor)

• Denis Simonov (writer, editor)

• Paul Vinkenoog (writer, designer)

• Dmitry Yemanov (writer)

• Mark Rotteveel (writer)

Resource Content

• Adriano dos Santos Fernandes

Chapter 1. About the Firebird 3.0 Language Reference

15

• Alexander Peshkov

• Vladyslav Khorsun

• Claudio Valderrama

• Helen Borrie

• and others

1.3. Acknowledgments

Sponsors and Other Donors

See also the Firebird 2.5 Language Reference for its donors.

Sponsors of the Russian Language Reference Manual

Moscow Exchange (Russia)

Moscow Exchange is the largest exchange holding in Russia and Eastern Europe, founded on
December 19, 2011, through the consolidation of the MICEX (founded in 1992) and RTS (founded in
1995) exchange groups. Moscow Exchange ranks among the world’s top 20 exchanges by trading
in bonds and by the total capitalization of shares traded, as well as among the 10 largest exchange
platforms for trading derivatives.

IBSurgeon (ibase.ru) (Russia)

Technical support and developer of administrator tools for the Firebird DBMS.

1.4. Contributing
There are several ways you can contribute to the documentation of Firebird, or Firebird in general:

• Participate on the mailing lists (see https://www.firebirdsql.org/en/mailing-lists/)

• Report bugs or submit pull requests on GitHub (https://github.com/FirebirdSQL/)

• Become a developer (contact us on firebird-devel)

• Donate to the Firebird Foundation (see https://www.firebirdsql.org/en/donate/)

• Become a paying member or sponsor of the Firebird Foundation (see
https://www.firebirdsql.org/en/firebird-foundation/)

Chapter 1. About the Firebird 3.0 Language Reference

16

https://www.moex.com
https://www.ib-aid.com
https://ibase.ru
https://www.firebirdsql.org/en/mailing-lists/
https://github.com/FirebirdSQL/
https://groups.google.com/g/firebird-devel
https://www.firebirdsql.org/en/donate/
https://www.firebirdsql.org/en/firebird-foundation/

Chapter 2. SQL Language Structure
This reference describes the SQL language supported by Firebird.

2.1. Background to Firebird’s SQL Language
To begin, a few points about some characteristics that are in the background to Firebird’s language
implementation.

2.1.1. SQL Flavours

Distinct subsets of SQL apply to different sectors of activity. The SQL subsets in Firebird’s language
implementation are:

• Dynamic SQL (DSQL)

• Procedural SQL (PSQL)

• Embedded SQL (ESQL)

• Interactive SQL (ISQL)

Dynamic SQL is the major part of the language which corresponds to the Part 2 (SQL/Foundation)
part of the SQL specification. DSQL represents statements passed by client applications through the
public Firebird API and processed by the database engine.

Procedural SQL augments Dynamic SQL to allow compound statements containing local variables,
assignments, conditions, loops and other procedural constructs. PSQL corresponds to the Part 4
(SQL/PSM) part of the SQL specifications. Originally, PSQL extensions were available in persistent
stored modules (procedures and triggers) only, but in more recent releases they were surfaced in
Dynamic SQL as well (see EXECUTE BLOCK).

Embedded SQL defines the DSQL subset supported by Firebird gpre, the application which allows
you to embed SQL constructs into your host programming language (C, C++, Pascal, Cobol, etc.) and
preprocess those embedded constructs into the proper Firebird API calls.

Only a portion of the statements and expressions implemented in DSQL are
supported in ESQL.

Interactive ISQL refers to the language that can be executed using Firebird isql, the command-line
application for accessing databases interactively. As a regular client application, its native language
is DSQL. It also offers a few additional commands that are not available outside its specific
environment.

Both DSQL and PSQL subsets are completely presented in this reference. Neither ESQL nor ISQL
flavours are described here unless mentioned explicitly.

2.1.2. SQL Dialects

SQL dialect is a term that defines the specific features of the SQL language that are available when

Chapter 2. SQL Language Structure

17

accessing a database. SQL dialects can be defined at the database level and specified at the
connection level. Three dialects are available:

• Dialect 1 is intended solely to allow backward comptibility with legacy databases from very old
InterBase versions, v.5 and below. Dialect 1 databases retain certain language features that
differ from Dialect 3, the default for Firebird databases.

◦ Date and time information are stored in a DATE data type. A TIMESTAMP data type is also
available, that is identical to this DATE implementation.

◦ Double quotes may be used as an alternative to apostrophes for delimiting string data. This
is contrary to the SQL standard — double quotes are reserved for a distinct syntactic
purpose both in standard SQL and in Dialect 3. Double-quoting strings is therefore to be
avoided strenuously.

◦ The precision for NUMERIC and DECIMAL data types is smaller than in Dialect 3 and, if the
precision of a fixed decimal number is greater than 9, Firebird stores it internally as a long
floating point value.

◦ The BIGINT (64-bit integer) data type is not supported.

◦ Identifiers are case-insensitive and must always comply with the rules for regular
identifiers — see the section Identifiers below.

◦ Although generator values are stored as 64-bit integers, a Dialect 1 client request, SELECT
GEN_ID (MyGen, 1), for example, will return the generator value truncated to 32 bits.

• Dialect 2 is available only on the Firebird client connection and cannot be set in the database. It
is intended to assist debugging of possible problems with legacy data when migrating a
database from dialect 1 to 3.

• In Dialect 3 databases,

◦ numbers (DECIMAL and NUMERIC data types) are stored internally as long fixed point values
(scaled integers) when the precision is greater than 9.

◦ The TIME data type is available for storing time-of-day data only.

◦ The DATE data type stores only date information.

◦ The 64-bit integer data type BIGINT is available.

◦ Double quotes are reserved for delimiting non-regular identifiers, enabling object names
that are case-sensitive or that do not meet the requirements for regular identifiers in other
ways.

◦ All strings must be delimited with single quotes (apostrophes).

◦ Generator values are stored as 64-bit integers.

Use of Dialect 3 is strongly recommended for newly developed databases and
applications. Both database and connection dialects should match, except under
migration conditions with Dialect 2.

This reference describes the semantics of SQL Dialect 3 unless specified otherwise.

Chapter 2. SQL Language Structure

18

2.1.3. Error Conditions

Processing of every SQL statement either completes successfully or fails due to a specific error
condition. Error handling can be done as in the client the application and on the server side using
PSQL.

2.2. Basic Elements: Statements, Clauses, Keywords
The primary construct in SQL is the statement. A statement defines what the database management
system should do with a particular data or metadata object. More complex statements contain
simpler constructs — clauses and options.

Clauses

A clause defines a certain type of directive in a statement. For instance, the WHERE clause in a
SELECT statement and in some other data manipulation statements (UPDATE, DELETE) specifies
criteria for searching one or more tables for the rows that are to be selected, updated or deleted.
The ORDER BY clause specifies how the output data — result set — should be sorted.

Options

Options, being the simplest constructs, are specified in association with specific keywords to
provide qualification for clause elements. Where alternative options are available, it is usual for
one of them to be the default, used if nothing is specified for that option. For instance, the SELECT
statement will return all of the rows that match the search criteria unless the DISTINCT option
restricts the output to non-duplicated rows.

Keywords

All words that are included in the SQL lexicon are keywords. Some keywords are reserved,
meaning their usage as identifiers for database objects, parameter names or variables is
prohibited in some or all contexts. Non-reserved keywords can be used as identifiers, although it
is not recommended. From time to time, non-reserved keywords may become reserved when
some new language feature is introduced.

For instance, the following statement will be executed without errors because, although ABS is a
keyword, it is not a reserved word.

CREATE TABLE T (ABS INT NOT NULL);

On the contrary, the following statement will return an error because ADD is both a keyword and
a reserved word.

CREATE TABLE T (ADD INT NOT NULL);

Refer to the list of reserved words and keywords in the chapter Reserved Words and Keywords.

Chapter 2. SQL Language Structure

19

2.3. Identifiers
All database objects have names, often called identifiers. The maximum identifier length is 31 bytes.
Two types of names are valid as identifiers: regular names, similar to variable names in regular
programming languages, and delimited names that are specific to SQL. To be valid, each type of
identifier must conform to a set of rules, as follows:

2.3.1. Rules for Regular Object Identifiers

• Length cannot exceed 31 characters

• The name must start with an unaccented, 7-bit ASCII alphabetic character. It may be followed
by other 7-bit ASCII letters, digits, underscores or dollar signs. No other characters, including
spaces, are valid. The name is case-insensitive, meaning it can be declared and used in either
upper or lower case. Thus, from the system’s point of view, the following names are the same:

fullname
FULLNAME
FuLlNaMe
FullName

Regular name syntax

<name> ::=
 <letter> | <name><letter> | <name><digit> | <name>_ | <name>$

<letter> ::= <upper letter> | <lower letter>

<upper letter> ::= A | B | C | D | E | F | G | H | I | J | K | L | M |
 N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<lower letter> ::= a | b | c | d | e | f | g | h | i | j | k | l | m |
 n | o | p | q | r | s | t | u | v | w | x | y | z

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

2.3.2. Rules for Delimited Object Identifiers

• Length cannot exceed 31 bytes. Identifiers are stored in character set UNICODE_FSS, which means
characters outside the ASCII range are stored using 2 or 3 bytes.

• The entire string must be enclosed in double-quotes, e.g. "anIdentifier"

• It may contain any character from the UNICODE_FSS character set, including accented characters,
spaces and special characters

• An identifier can be a reserved word

• Delimited identifiers are case-sensitive in all contexts

• Trailing spaces in delimited names are removed, as with any string constant

Chapter 2. SQL Language Structure

20

• Delimited identifiers are available in Dialect 3 only. For more details on dialects, see SQL
Dialects

Delimited name syntax

<delimited name> ::= "<permitted_character>[<permitted_character> ...]"

A delimited identifier such as "FULLNAME" is the same as the regular identifiers
FULLNAME, fullname, FullName, and so on. The reason is that Firebird stores regular
identifiers in upper case, regardless of how they were defined or declared.
Delimited identifiers are always stored according to the exact case of their
definition or declaration. Thus, "FullName" (quoted) is different from FullName
(unquoted, i.e. regular) which is stored as FULLNAME in the metadata.

2.4. Literals
Literals are used to directly represent data. Examples of standard types of literals are:

integer - 0, -34, 45, 0X080000000;
fixed-point - 0.0, -3.14
floating-point - 3.23e-23;
string - 'text', 'don''t!';
binary string - x'48656C6C6F20776F726C64'
date - DATE '2018-01-19';
time - TIME '15:12:56';
timestamp - TIMESTAMP '2018-01-19 13:32:02';
boolean - true, false, unknown
null state - null

Details about handling the literals for each data type are discussed in the next chapter, Data Types
and Subtypes.

2.5. Operators and Special Characters
A set of special characters is reserved for use as operators or separators.

<special char> ::=
 <space> | " | % | & | ' | (|) | * | + | , | -
 | . | / | : | ; | < | = | > | ? | [|] | ^ | { | }

Some of these characters, alone or in combinations, may be used as operators (arithmetical, string,
logical), as SQL command separators, to quote identifiers and to mark the limits of string literals or
comments.

Chapter 2. SQL Language Structure

21

Operator Syntax

<operator> ::=
 <string concatenation operator>
 | <arithmetic operator>
 | <comparison operator>
 | <logical operator>

<string concatentation operator> ::= "||"

<arithmetic operator> ::= * | / | + | - |

<comparison operator> ::=
 = | <> | != | ~= | ^= | > | < | >= | <=
 | !> | ~> | ^> | !< | ~< | ^<

<logical operator> ::= NOT | AND | OR

For more details on operators, see Expressions.

2.6. Comments
Comments may be present in SQL scripts, SQL statements and PSQL modules. A comment can be
any text specified by the code writer, usually used to document how particular parts of the code
work. The parser ignores the text of comments.

Firebird supports two types of comments: block and in-line.

Syntax

<comment> ::= <block comment> | <single-line comment>

<block comment> ::=
 /* <character>[<character> …] */

<single-line comment> ::=
 -- <character>[<character> …]<end line>

Block comments start with the /* character pair and end with the */ character pair. Text in block
comments may be of any length and can occupy multiple lines.

In-line comments start with a pair of hyphen characters, -- and continue up to the end of the
current line.

Example

CREATE PROCEDURE P(APARAM INT)
 RETURNS (B INT)
AS

Chapter 2. SQL Language Structure

22

BEGIN
 /* This text will be ignored during the execution of the statement
 since it is a comment
 */
 B = A + 1; -- In-line comment
 SUSPEND;
END

Chapter 2. SQL Language Structure

23

Chapter 3. Data Types and Subtypes
Data of various types are used to:

• define columns in a database table in the CREATE TABLE statement or change columns using ALTER
TABLE

• declare or change a domain using the CREATE DOMAIN or ALTER DOMAIN statements

• declare local variables in stored procedures, PSQL blocks and triggers and specify parameters in
stored procedures

• indirectly specify arguments and return values when declaring external functions
(UDFs — user-defined functions)

• provide arguments for the CAST() function when explicitly converting data from one type to
another

Table 1. Overview of Data Types

Name Size Precision &
Limits

Description

BIGINT 64 bits From -263 to (263 -
1)

The data type is available in Dialect 3
only

BLOB Varying The size of a BLOB
segment is limited
to 64K. The
maximum size of
a BLOB field is 4
GB

A data type of variable size for storing
large amounts of data, such as images,
text, digital sounds. The basic
structural unit is a segment. The blob
subtype defines its content

BOOLEAN 8 bits false, true,
unknown

Boolean data type

CHAR(n),
CHARACTER(n)

n characters. Size
in bytes depends
on the encoding,
the number of
bytes in a
character

from 1 to 32,767
bytes

A fixed-length character data type.
When its data is displayed, trailing
spaces are added to the string up to
the specified length. Trailing spaces
are not stored in the database but are
restored to match the defined length
when the column is displayed on the
client side. Network traffic is reduced
by not sending spaces over the LAN. If
the number of characters is not
specified, 1 is used by default.

DATE 32 bits From 0001-01-01
AD to 9999-12-31
AD

ISC_DATE. Date only, no time element

Chapter 3. Data Types and Subtypes

24

Name Size Precision &
Limits

Description

DECIMAL (
precision, scale)

Varying (16, 32 or
64 bits)

precision = from 1
to 18, defines the
least possible
number of digits
to store; scale =
from 0 to 18,
defines the
number of digits
after the decimal
point

A number with a decimal point that
has scale digits after the point. scale
must be less than or equal to precision.
Example: DECIMAL(10,3) contains a
number in exactly the following
format: ppppppp.sss

DOUBLE PRECISION 64 bits 2.225 * 10-308 to
1.797 * 10308

Double-precision IEEE, ~15 digits,
reliable size depends on the platform

FLOAT 32 bits 1.175 * 10-38 to
3.402 * 1038

Single-precision IEEE, ~7 digits

INTEGER, INT 32 bits -2,147,483,648 up
to 2,147,483,647

Signed long

NUMERIC (
precision, scale)

Varying (16, 32 or
64 bits)

precision = from 1
to 18, defines the
exact number of
digits to store;
scale = from 0 to
18, defines the
number of digits
after the decimal
point

A number with a decimal point that
has scale digits after the point. scale
must be less than or equal to precision.
Example: NUMERIC(10,3) contains a
number in exactly the following
format: ppppppp.sss

SMALLINT 16 bits -32,768 to 32,767 Signed short (word)

TIME 32 bits 0:00 to
23:59:59.9999

ISC_TIME. Time of day. It cannot be
used to store an interval of time

TIMESTAMP 64 bits (2 X 32 bits) From start of day
0001-01-01 AD to
end of day 9999-
12-31 AD

Date and time of day

Chapter 3. Data Types and Subtypes

25

Name Size Precision &
Limits

Description

VARCHAR(n), CHAR
VARYING, CHARACTER
VARYING

n characters. Size
in bytes depends
on the encoding,
the number of
bytes in a
character

from 1 to 32,765
bytes

Variable length string type. The total
size of characters in bytes cannot be
larger than (32KB-3), taking into
account their encoding. The two
trailing bytes store the declared
length. There is no default size: the n
argument is mandatory. Leading and
trailing spaces are stored and they are
not trimmed, except for those trailing
characters that are past the declared
length.

Note About Dates

Bear in mind that a time series consisting of dates in past centuries is processed
without taking into account the actual historical facts, as though the Gregorian
calendar were applicable throughout the entire series.

3.1. Integer Data Types
The SMALLINT, INTEGER and BIGINT data types are used for integers of various precision in Dialect 3.
Firebird does not support an unsigned integer data type.

3.1.1. SMALLINT

The 16-bit SMALLINT data type is for compact data storage of integer data for which only a narrow
range of possible values is required. Numbers of the SMALLINT type are within the range from -216 to
216 - 1, that is, from -32,768 to 32,767.

SMALLINT Examples

CREATE DOMAIN DFLAG AS SMALLINT DEFAULT 0 NOT NULL
 CHECK (VALUE=-1 OR VALUE=0 OR VALUE=1);

CREATE DOMAIN RGB_VALUE AS SMALLINT;

3.1.2. INTEGER

The INTEGER data type is a 32-bit integer. The shorthand name of the data type is INT. Numbers of the
INTEGER type are within the range from -232 to 232 - 1, that is, from -2,147,483,648 to 2,147,483,647.

INTEGER Example

CREATE TABLE CUSTOMER (
 CUST_NO INTEGER NOT NULL,
 CUSTOMER VARCHAR(25) NOT NULL,

Chapter 3. Data Types and Subtypes

26

 CONTACT_FIRST VARCHAR(15),
 CONTACT_LAST VARCHAR(20),
 ...
 PRIMARY KEY (CUST_NO))

3.1.3. BIGINT

BIGINT is an SQL:99-compliant 64-bit integer data type, available only in Dialect 3. If a client uses
Dialect 1, the generator value sent by the server is reduced to a 32-bit integer (INTEGER). When
Dialect 3 is used for connection, the generator value is of type BIGINT.

Numbers of the BIGINT type are within the range from -263 to 263 - 1, or from
-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

3.1.4. Hexadecimal Format for Integer Numbers

Starting from Firebird 2.5, constants of the three integer types can be specified in hexadecimal
format by means of 9 to 16 hexadecimal digits for BIGINT or 1 to 8 digits for INTEGER. Hex
representation for writing to SMALLINT is not explicitly supported but Firebird will transparently
convert a hex number to SMALLINT if necessary, provided it falls within the ranges of negative and
positive SMALLINT.

The usage and numerical value ranges of hexadecimal notation are described in more detail in the
discussion of number constants in the chapter entitled Common Language Elements.

Examples Using Integer Types

CREATE TABLE WHOLELOTTARECORDS (
 ID BIGINT NOT NULL PRIMARY KEY,
 DESCRIPTION VARCHAR(32)
);

INSERT INTO MYBIGINTS VALUES (
 -236453287458723,
 328832607832,
 22,
 -56786237632476,
 0X6F55A09D42, -- 478177959234
 0X7FFFFFFFFFFFFFFF, -- 9223372036854775807
 0XFFFFFFFFFFFFFFFF, -- -1
 0X80000000, -- -2147483648, an INTEGER
 0X080000000, -- 2147483648, a BIGINT
 0XFFFFFFFF, -- -1, an INTEGER
 0X0FFFFFFFF -- 4294967295, a BIGINT
);

The hexadecimal INTEGERs in the above example are automatically cast to BIGINT before being
inserted into the table. However, this happens after the numerical value is determined, so
0x80000000 (8 digits) and 0x080000000 (9 digits) will be saved as different BIGINT values.

Chapter 3. Data Types and Subtypes

27

3.2. Floating-Point Data Types
Floating point data types are stored in an IEEE 754 binary format that comprises sign, exponent and
mantissa. Precision is dynamic, corresponding to the physical storage format of the value, which is
exactly 4 bytes for the FLOAT type and 8 bytes for DOUBLE PRECISION.

Considering the peculiarities of storing floating-point numbers in a database, these data types are
not recommended for storing monetary data. For the same reasons, columns with floating-point
data are not recommended for use as keys or to have uniqueness constraints applied to them.

For testing data in columns with floating-point data types, expressions should check using a range,
for instance, BETWEEN, rather than searching for exact matches.

When using these data types in expressions, extreme care is advised regarding the rounding of
evaluation results.

3.2.1. FLOAT

The FLOAT data type has an approximate precision of 7 digits after the decimal point. To ensure the
safety of storage, rely on 6 digits.

3.2.2. DOUBLE PRECISION

The DOUBLE PRECISION data type is stored with an approximate precision of 15 digits.

3.3. Fixed-Point Data Types
Fixed-point data types ensure the predictability of multiplication and division operations, making
them the choice for storing monetary values. Firebird implements two fixed-point data types:
NUMERIC and DECIMAL. According to the standard, both types limit the stored number to the declared
scale (the number of digits after the decimal point).

Different treatments limit precision for each type: precision for NUMERIC columns is exactly “as
declared”, while DECIMAL columns accepts numbers whose precision is at least equal to what was
declared.

The behaviour of NUMERIC and DECIMAL in Firebird is like the SQL-standard DECIMAL;
the precision is at least equal to what was declared.

For instance, NUMERIC(4, 2) defines a number consisting altogether of four digits, including two
digits after the decimal point; that is, it can have up to two digits before the point and no more than
two digits after the point. If the number 3.1415 is written to a column with this data type definition,
the value of 3.14 will be saved in the NUMERIC(4, 2) column.

The form of declaration for fixed-point data, for instance, NUMERIC(p, s), is common to both types. It
is important to realise that the s argument in this template is scale, rather than “a count of digits
after the decimal point”. Understanding the mechanism for storing and retrieving fixed-point data
should help to visualise why: for storage, the number is multiplied by 10s (10 to the power of s),

Chapter 3. Data Types and Subtypes

28

converting it to an integer; when read, the integer is converted back.

The method of storing fixed-point data in the DBMS depends on several factors: declared precision,
database dialect, declaration type.

Table 2. Method of Physical Storage for Real Numbers

Precision Data type Dialect 1 Dialect 3

1 - 4 NUMERIC SMALLINT SMALLINT

1 - 4 DECIMAL INTEGER INTEGER

5 - 9 NUMERIC or DECIMAL INTEGER INTEGER

10 - 18 NUMERIC or DECIMAL DOUBLE PRECISION BIGINT

3.3.1. NUMERIC

Data Declaration Format

 NUMERIC
| NUMERIC(precision)
| NUMERIC(precision, scale)

Table 3. NUMERIC Type Parameters

Parameter Description

precision Precision, between 1 and 18. Defaults to 9.

scale Scale, between 0 and scale. Defaults to 0.

Storage Examples

Further to the explanation above, the DBMS will store NUMERIC data according the declared precision
and scale. Some more examples are:

NUMERIC(4) stored as SMALLINT (exact data)
NUMERIC(4,2) SMALLINT (data * 102)
NUMERIC(10,4) (Dialect 1) DOUBLE PRECISION
 (Dialect 3) BIGINT (data * 104)

Always keep in mind that the storage format depends on the precision. For
instance, you define the column type as NUMERIC(2,2) presuming that its range of
values will be -0.99…0.99. However, the actual range of values for the column will
be -327.68..327.67, which is due to storing the NUMERIC(2,2) data type in the
SMALLINT format. In storage, the NUMERIC(4,2), NUMERIC(3,2) and NUMERIC(2,2) data
types are the same, in fact. It means that if you really want to store data in a
column with the NUMERIC(2,2) data type and limit the range to -0.99…0.99, you will
have to create a constraint for it.

Chapter 3. Data Types and Subtypes

29

3.3.2. DECIMAL

Data Declaration Format

 DECIMAL
| DECIMAL(precision)
| DECIMAL(precision, scale)

Table 4. DECIMAL Type Parameters

Parameter Description

precision Precision, between 1 and 18. Defaults to 9.

scale Scale, between 0 and scale. Defaults to 0.

Storage Examples

The storage format in the database for DECIMAL is very similar to NUMERIC, with some differences that
are easier to observe with the help of some more examples:

DECIMAL(4) stored as INTEGER (exact data)
DECIMAL(4,2) INTEGER (data * 102)
DECIMAL(10,4) (Dialect 1) DOUBLE PRECISION
 (Dialect 3) BIGINT (data * 104)

3.4. Data Types for Dates and Times
The DATE, TIME and TIMESTAMP data types are used to work with data containing dates and times.
Dialect 3 supports all the three types, while Dialect 1 has only DATE. The DATE type in Dialect 3 is
“date-only”, whereas the Dialect 1 DATE type stores both date and time-of-day, equivalent to
TIMESTAMP in Dialect 3. Dialect 1 has no “date-only” type.

Dialect 1 DATE data can be defined alternatively as TIMESTAMP and this is
recommended for new definitions in Dialect 1 databases.

Fractions of Seconds

If fractions of seconds are stored in date and time data types, Firebird stores them to ten-
thousandths of a second. If a lower granularity is preferred, the fraction can be specified explicitly
as thousandths, hundredths or tenths of a second in Dialect 3 databases of ODS 11 or higher.

Some useful knowledge about subseconds precision:

The time-part of a TIME or TIMESTAMP is a 4-byte WORD, with room for
decimilliseconds precision and time values are stored as the number of deci-
milliseconds elapsed since midnight. The actual precision of values stored in or
read from time(stamp) functions and variables is:

• CURRENT_TIME defaults to seconds precision and can be specified up to
milliseconds precision with CURRENT_TIME (0|1|2|3)

Chapter 3. Data Types and Subtypes

30

• CURRENT_TIMESTAMP milliseconds precision. Precision from seconds to
milliseconds can be specified with CURRENT_TIMESTAMP (0|1|2|3)

• Literal 'NOW': milliseconds precision

• Functions DATEADD() and DATEDIFF() support up to milliseconds precision. Deci-
milliseconds can be specified but they are rounded to the nearest integer
before any operation is performed

• The EXTRACT() function returns up to deci-milliseconds precision with the
SECOND and MILLISECOND arguments

• For TIME and TIMESTAMP literals, Firebird happily accepts up to deci-
milliseconds precision, but truncates (not rounds) the time part to the nearest
lower or equal millisecond. Try, for example, SELECT TIME '14:37:54.1249' FROM
rdb$database

• the ‘+’ and ‘-’ operators work with deci-milliseconds precision, but only within
the expression. As soon as something is stored or even just SELECTed from
RDB$DATABASE, it reverts to milliseconds precision

Deci-milliseconds precision is rare and is not currently stored in columns or
variables. The best assumption to make from all this is that, although Firebird
stores TIME and the TIMESTAMP time-part values as the number of deci-milliseconds
(10-4 seconds) elapsed since midnight, the actual precision could vary from seconds
to milliseconds.

3.4.1. DATE

The DATE data type in Dialect 3 stores only date without time. The available range for storing data is
from January 01, 1 to December 31, 9999.

Dialect 1 has no “date-only” type.

In Dialect 1, date literals without a time part, as well as 'TODAY', 'YESTERDAY' and
'TOMORROW' automatically get a zero time part.

If, for some reason, it is important to you to store a Dialect 1 timestamp literal with
an explicit zero time-part, the engine will accept a literal like '2016-12-25
00:00:00.0000'. However, '2016-12-25' would have precisely the same effect, with
fewer keystrokes!

3.4.2. TIME

The TIME data type is available in Dialect 3 only. It stores the time of day within the range from
00:00:00.0000 to 23:59:59.9999.

If you need to get the time-part from DATE in Dialect 1, you can use the EXTRACT function.

Examples Using EXTRACT()

EXTRACT (HOUR FROM DATE_FIELD)

Chapter 3. Data Types and Subtypes

31

EXTRACT (MINUTE FROM DATE_FIELD)
EXTRACT (SECOND FROM DATE_FIELD)

See also the EXTRACT() function in the chapter entitled Built-in Functions.

3.4.3. TIMESTAMP

The TIMESTAMP data type is available in Dialect 3 and Dialect 1. It comprises two 32-bit words — a
date-part and a time-part — to form a structure that stores both date and time-of-day. It is the same
as the DATE type in Dialect 1.

The EXTRACT function works equally well with TIMESTAMP as with the Dialect 1 DATE type.

3.4.4. Operations Using Date and Time Values

The method of storing date and time values makes it possible to involve them as operands in some
arithmetic operations. In storage, a date value or date-part of a timestamp is represented as the
number of days elapsed since “date zero” — November 17, 1898 — whilst a time value or the time-
part of a timestamp is represented as the number of seconds (with fractions of seconds taken into
account) since midnight.

An example is to subtract an earlier date, time or timestamp from a later one, resulting in an
interval of time, in days and fractions of days.

Table 5. Arithmetic Operations for Date and Time Data Types

Operand 1 Operation Operand 2 Result

DATE + TIME TIMESTAMP

DATE + Numeric value n DATE increased by n whole days.
Broken values are rounded (not
floored) to the nearest integer

TIME + DATE TIMESTAMP

TIME + Numeric value n TIME increased by n seconds. The
fractional part is taken into account

TIMESTAMP + Numeric value n TIMESTAMP, where the date will advance
by the number of days and part of a
day represented by number n — so “+
2.75” will push the date forward by 2
days and 18 hours

DATE - DATE Number of days elapsed, within the
range DECIMAL(9, 0)

DATE - Numeric value n DATE reduced by n whole days. Broken
values are rounded (not floored) to the
nearest integer

TIME - TIME Number of seconds elapsed, within the
range DECIMAL(9, 4)

Chapter 3. Data Types and Subtypes

32

Operand 1 Operation Operand 2 Result

TIME - Numeric value n TIME reduced by n seconds. The
fractional part is taken into account

TIMESTAMP - TIMESTAMP Number of days and part-day, within
the range DECIMAL(18, 9)

TIMESTAMP - Numeric value n TIMESTAMP where the date will decrease
by the number of days and part of a
day represented by number n — so “-
2.25” will decrease the date by 2 days
and 6 hours

Notes

The DATE type is considered as TIMESTAMP in Dialect 1.

See also

DATEADD, DATEDIFF

3.5. Character Data Types
For working with character data, Firebird has the fixed-length CHAR and the variable-length VARCHAR
data types. The maximum size of text data stored in these data types is 32,767 bytes for CHAR and
32,765 bytes for VARCHAR. The maximum number of characters that will fit within these limits
depends on the CHARACTER SET being used for the data under consideration. The collation sequence
does not affect this maximum, although it may affect the maximum size of any index that involves
the column.

If no character set is explicitly specified when defining a character object, the default character set
specified when the database was created will be used. If the database does not have a default
character set defined, the field gets the character set NONE.

3.5.1. Unicode

Most current development tools support Unicode, implemented in Firebird with the character sets
UTF8 and UNICODE_FSS. UTF8 comes with collations for many languages. UNICODE_FSS is more limited
and is used mainly by Firebird internally for storing metadata. Keep in mind that one UTF8
character occupies up to 4 bytes, thus limiting the size of CHAR fields to 8,191 characters (32,767/4).

The actual “bytes per character” value depends on the range the character belongs
to. Non-accented Latin letters occupy 1 byte, Cyrillic letters from the WIN1251
encoding occupy 2 bytes in UTF8, characters from other encodings may occupy up
to 4 bytes.

The UTF8 character set implemented in Firebird supports the latest version of the Unicode standard,
thus recommending its use for international databases.

Chapter 3. Data Types and Subtypes

33

3.5.2. Client Character Set

While working with strings, it is essential to keep the character set of the client connection in mind.
If there is a mismatch between the character sets of the stored data and that of the client
connection, the output results for string columns are automatically re-encoded, both when data are
sent from the client to the server and when they are sent back from the server to the client. For
example, if the database was created in the WIN1251 encoding but KOI8R or UTF8 is specified in the
client’s connection parameters, the mismatch will be transparent.

3.5.3. Special Character Sets

Character set NONE

The character set NONE is a special character set in Firebird. It can be characterized such that each
byte is a part of a string, but the string is stored in the system without any clues about what
constitutes any character: character encoding, collation, case, etc. are simply unknown. It is the
responsibility of the client application to deal with the data and provide the means to interpret the
string of bytes in some way that is meaningful to the application and the human user.

Character set OCTETS

Data in OCTETS encoding are treated as bytes that may not actually be interpreted as characters.
OCTETS provides a way to store binary data, which could be the results of some Firebird functions.
The database engine has no concept of what it is meant to do with a string of bits in OCTETS, other
than just store it and retrieve it. Again, the client side is responsible for validating the data,
presenting them in formats that are meaningful to the application and its users and handling any
exceptions arising from decoding and encoding them.

3.5.4. Collation Sequence

Each character set has a default collation sequence (COLLATE) that specifies the collation order.
Usually, it provides nothing more than ordering based on the numeric code of the characters and a
basic mapping of upper- and lower-case characters. If some behaviour is needed for strings that is
not provided by the default collation sequence and a suitable alternative collation is supported for
that character set, a COLLATE collation clause can be specified in the column definition.

A COLLATE collation clause can be applied in other contexts besides the column definition. For
greater-than/less-than comparison operations, it can be added in the WHERE clause of a SELECT
statement. If output needs to be sorted in a special alphabetic sequence, or case-insensitively, and
the appropriate collation exists, then a COLLATE clause can be included with the ORDER BY clause
when rows are being sorted on a character field and with the GROUP BY clause in case of grouping
operations.

Case-Insensitive Searching

For a case-insensitive search, the UPPER function could be used to convert both the search argument
and the searched strings to upper-case before attempting a match:

…

Chapter 3. Data Types and Subtypes

34

where upper(name) = upper(:flt_name)

For strings in a character set that has a case-insensitive collation available, you can simply apply
the collation, to compare the search argument and the searched strings directly. For example, using
the WIN1251 character set, the collation PXW_CYRL is case-insensitive for this purpose:

…
WHERE FIRST_NAME COLLATE PXW_CYRL >= :FLT_NAME
…
ORDER BY NAME COLLATE PXW_CYRL

See also

CONTAINING

UTF8 Collation Sequences

The following table shows the possible collation sequences for the UTF8 character set.

Table 6. Collation Sequences for Character Set UTF8

Collation Characteristics

UCS_BASIC Collation works according to the position of the character in the table
(binary). Added in Firebird 2.0

UNICODE Collation works according to the UCA algorithm (Unicode Collation
Algorithm) (alphabetical). Added in Firebird 2.0

UTF8 The default, binary collation, identical to UCS_BASIC, which was added for
SQL compatibility

UNICODE_CI Case-insensitive collation, works without taking character case into
account. Added in Firebird 2.1

UNICODE_CI_AI Case-insensitive, accent-insensitive collation, works alphabetically
without taking character case or accents into account. Added in Firebird
2.5

Example

An example of collation for the UTF8 character set without taking into account the case or
accentuation of characters (similar to COLLATE PXW_CYRL).

...
ORDER BY NAME COLLATE UNICODE_CI_AI

3.5.5. Character Indexes

In Firebird earlier than version 2.0, a problem can occur with building an index for character
columns that use a non-standard collation sequence: the length of an indexed field is limited to 252
bytes with no COLLATE specified or 84 bytes if COLLATE is specified. Multi-byte character sets and

Chapter 3. Data Types and Subtypes

35

compound indexes limit the size even further.

Starting from Firebird 2.0, the maximum length for an index equals one quarter of the page size, i.e.
from 1,024 — for page size 4,096 — to 4,096 bytes — for page size 16,384. The maximum length of an
indexed string is 9 bytes less than that quarter-page limit.

Calculating Maximum Length of an Indexed String Field

The following formula calculates the maximum length of an indexed string (in characters):

max_char_length = FLOOR((page_size / 4 - 9) / N)

where N is the number of bytes per character in the character set.

The table below shows the maximum length of an indexed string (in characters), according to page
size and character set, calculated using this formula.

Table 7. Maximum Index Lengths by Page Size and Character Size

Page Size Bytes per character

1 2 3 4 6

4,096 1,015 507 338 253 169

8,192 2,039 1,019 679 509 339

16,384 4,087 2,043 1,362 1,021 682

With case-insensitive collations (“_CI”), one character in the index will occupy not
4, but 6 (six) bytes, so the maximum key length for a page of — for example — 4,096
bytes, will be 169 characters.

See also

CREATE DATABASE, Collation sequence, SELECT, WHERE, GROUP BY, ORDER BY

3.5.6. Character Types in Detail

CHAR

CHAR is a fixed-length data type. If the entered number of characters is less than the declared length,
trailing spaces will be added to the field. Generally, the pad character does not have to be a space: it
depends on the character set. For example, the pad character for the OCTETS character set is zero.

The full name of this data type is CHARACTER, but there is no requirement to use full names and
people rarely do so.

Fixed-length character data can be used to store codes whose length is standard and has a definite
“width” in directories. An example of such a code is an EAN13 barcode — 13 characters, all filled.

Declaration Syntax

{CHAR | CHARACTER} [(length)]

Chapter 3. Data Types and Subtypes

36

 [CHARACTER SET <set>] [COLLATE <name>]

If no length is specified, it is taken to be 1.

A valid length is from 1 to the maximum number of characters that can be
accommodated within 32,767 bytes.

Formally, the COLLATE clause is not part of the data type declaration, and its position
depends on the syntax of the statement.

VARCHAR

VARCHAR is the basic string type for storing texts of variable length, up to a maximum of 32,765 bytes.
The stored structure is equal to the actual size of the data plus 2 bytes where the length of the data
is recorded.

All characters that are sent from the client application to the database are considered meaningful,
including the leading and trailing spaces. However, trailing spaces are not stored: they will be
restored upon retrieval, up to the recorded length of the string.

The full name of this type is CHARACTER VARYING. Another variant of the name is written as CHAR
VARYING.

Syntax

{VARCHAR | {CHAR | CHARACTER} VARYING} (length)
 [CHARACTER SET <set>] [COLLATE <name>]

Formally, the COLLATE clause is not part of the data type declaration, and its position
depends on the syntax of the statement.

NCHAR

NCHAR is a fixed-length character data type with the ISO8859_1 character set predefined. In all other
respects it is the same as CHAR.

Syntax

{NCHAR | NATIONAL {CHAR | CHARACTER}} [(length)]

 If no length is specified, it is taken to be 1.

A similar data type is available for the variable-length string type: NATIONAL {CHAR | CHARACTER}
VARYING.

Chapter 3. Data Types and Subtypes

37

3.6. Boolean Data Type
Firebird 3.0 introduced a fully-fledged Boolean data type.

3.6.1. BOOLEAN

The SQL:2008 compliant BOOLEAN data type (8 bits) comprises the distinct truth values TRUE and
FALSE. Unless prohibited by a NOT NULL constraint, the BOOLEAN data type also supports the truth value
UNKNOWN as the null value. The specification does not make a distinction between the NULL value of
this data type and the truth value UNKNOWN that is the result of an SQL predicate, search condition, or
Boolean value expression: they may be used interchangeably to mean exactly the same thing.

As with many programming languages, the SQL BOOLEAN values can be tested with implicit truth
values. For example, field1 OR field2 and NOT field1 are valid expressions.

The IS Operator

Predicates can use the operator Boolean IS [NOT] for matching. For example, field1 IS FALSE, or
field1 IS NOT TRUE.

 • Equivalence operators (“=”, “!=”, “<>” and so on) are valid in all comparisons.

BOOLEAN Examples

1. Inserting and selecting

CREATE TABLE TBOOL (ID INT, BVAL BOOLEAN);
COMMIT;

INSERT INTO TBOOL VALUES (1, TRUE);
INSERT INTO TBOOL VALUES (2, 2 = 4);
INSERT INTO TBOOL VALUES (3, NULL = 1);
COMMIT;

SELECT * FROM TBOOL;
 ID BVAL
============ =======
 1 <true>
 2 <false>
 3 <null>

2. Test for TRUE value

SELECT * FROM TBOOL WHERE BVAL;
 ID BVAL
============ =======
 1 <true>

Chapter 3. Data Types and Subtypes

38

3. Test for FALSE value

SELECT * FROM TBOOL WHERE BVAL IS FALSE;
 ID BVAL
============ =======
 2 <false>

4. Test for UNKNOWN value

SELECT * FROM TBOOL WHERE BVAL IS UNKNOWN;
 ID BVAL
============ =======
 3 <null>

5. Boolean values in SELECT list

SELECT ID, BVAL, BVAL AND ID < 2
 FROM TBOOL;
 ID BVAL
============ ======= =======
 1 <true> <true>
 2 <false> <false>
 3 <null> <false>

6. PSQL declaration with start value

DECLARE VARIABLE VAR1 BOOLEAN = TRUE;

7. Valid syntax, but as with a comparison with NULL, will never return any record

SELECT * FROM TBOOL WHERE BVAL = UNKNOWN;
SELECT * FROM TBOOL WHERE BVAL <> UNKNOWN;

Use of Boolean against other data types

Although BOOLEAN is not inherently convertible to any other datatype, from version 3.0.1 the strings
'true' and 'false' (case-insensitive) will be implicitly cast to BOOLEAN in value expressions, e.g.

if (true > 'false') then ...

'false' is converted to BOOLEAN. Any attempt to use the Boolean operators AND, NOT, OR and IS will fail.
NOT 'False', for example, is invalid.

A BOOLEAN can be explicitly converted to and from string with CAST. UNKNOWN is not available for any

Chapter 3. Data Types and Subtypes

39

form of casting.

Other Notes

• The type is represented in the API with the FB_BOOLEAN type and FB_TRUE and
FB_FALSE constants.

• The value TRUE is greater than the value FALSE.

3.7. Binary Data Types
BLOBs (Binary Large Objects) are complex structures used to store text and binary data of an
undefined length, often very large.

Syntax

BLOB [SUB_TYPE <subtype>]
 [SEGMENT SIZE <segment size>]
 [CHARACTER SET <character set>]
 [COLLATE <collation name>]

Shortened syntax

BLOB (<segment size>)
BLOB (<segment size>, <subtype>)
BLOB (, <subtype>)

Formally, the COLLATE clause is not part of the data type declaration, and its position
depends on the syntax of the statement.

Segment Size

Specifying the BLOB segment size is throwback to times past, when applications for working
with BLOB data were written in C (Embedded SQL) with the help of the gpre pre-compiler.
Nowadays, it is effectively irrelevant. The segment size for BLOB data is determined by the
client side and is usually larger than the data page size, in any case.

3.7.1. BLOB Subtypes

The optional SUB_TYPE parameter specifies the nature of data written to the column. Firebird
provides two pre-defined subtypes for storing user data:

Subtype 0: BINARY

If a subtype is not specified, the specification is assumed to be for untyped data and the default
SUB_TYPE 0 is applied. The alias for subtype zero is BINARY. This is the subtype to specify when the
data are any form of binary file or stream: images, audio, word-processor files, PDFs and so on.

Chapter 3. Data Types and Subtypes

40

Subtype 1: TEXT

Subtype 1 has an alias, TEXT, which can be used in declarations and definitions. For instance, BLOB
SUB_TYPE TEXT. It is a specialized subtype used to store plain text data that is too large to fit into a
string type. A CHARACTER SET may be specified, if the field is to store text with a different encoding
to that specified for the database. From Firebird 2.0, a COLLATE clause is also supported.

Specifying a CHARACTER SET without SUB_TYPE implies SUB_TYPE TEXT.

Custom Subtypes

It is also possible to add custom data subtypes, for which the range of enumeration from -1 to
-32,768 is reserved. Custom subtypes enumerated with positive numbers are not allowed, as the
Firebird engine uses the numbers from 2-upward for some internal subtypes in metadata.

3.7.2. BLOB Specifics

Size

The maximum size of a BLOB field is limited to 4GB, regardless of whether the server is 32-bit or 64-
bit. (The internal structures related to BLOBs maintain their own 4-byte counters.) For a page size of
4 KB (4096 bytes) the maximum size is lower — slightly less than 2GB.

Operations and Expressions

Text BLOBs of any length and any character set — including multi-byte — can be operands for
practically any statement or internal functions. The following operators are supported completely:

= (assignment)

=, <>, <, ⇐, >, >= (comparison)

|| (concatenation)

BETWEEN, IS [NOT] DISTINCT FROM,

IN, ANY | SOME,

ALL

Partial support:

• An error occurs with these if the search argument is larger than or equal to 32 KB:

STARTING [WITH], LIKE,

CONTAINING

• Aggregation clauses work not on the contents of the field itself, but on the BLOB ID. Aside from
that, there are some quirks:

SELECT
DISTINCT

returns several NULL values by mistake if they are present

ORDER BY  — 

Chapter 3. Data Types and Subtypes

41

GROUP BY concatenates the same strings if they are adjacent to each other, but does not do
it if they are remote from each other

BLOB Storage

• By default, a regular record is created for each BLOB and it is stored on a data page that is
allocated for it. If the entire BLOB fits onto this page, it is called a level 0 BLOB. The number of
this special record is stored in the table record and occupies 8 bytes.

• If a BLOB does not fit onto one data page, its contents are put onto separate pages allocated
exclusively to it (blob pages), while the numbers of these pages are stored into the BLOB record.
This is a level 1 BLOB.

• If the array of page numbers containing the BLOB data does not fit onto a data page, the array is
put on separate blob pages, while the numbers of these pages are put into the BLOB record. This
is a level 2 BLOB.

• Levels higher than 2 are not supported.

See also

FILTER, DECLARE FILTER

3.7.3. ARRAY Type

The support of arrays in the Firebird DBMS is a departure from the traditional relational model.
Supporting arrays in the DBMS could make it easier to solve some data-processing tasks involving
large sets of similar data.

Arrays in Firebird are stored in BLOB of a specialized type. Arrays can be one-dimensional and
multi-dimensional and of any data type except BLOB and ARRAY.

Example

CREATE TABLE SAMPLE_ARR (
 ID INTEGER NOT NULL PRIMARY KEY,
 ARR_INT INTEGER [4]
);

This example will create a table with a field of the array type consisting of four integers. The
subscripts of this array are from 1 to 4.

Specifying Explicit Boundaries for Dimensions

By default, dimensions are 1-based — subscripts are numbered from 1. To specify explicit upper
and lower bounds of the subscript values, use the following syntax:

'[' <lower>:<upper> ']'

Chapter 3. Data Types and Subtypes

42

Adding More Dimensions

A new dimension is added using a comma in the syntax. In this example we create a table with a
two-dimensional array, with the lower bound of subscripts in both dimensions starting from zero:

CREATE TABLE SAMPLE_ARR2 (
 ID INTEGER NOT NULL PRIMARY KEY,
 ARR_INT INTEGER [0:3, 0:3]
);

The DBMS does not offer much in the way of language or tools for working with the contents of
arrays. The database employee.fdb, found in the ../examples/empbuild directory of any Firebird
distribution package, contains a sample stored procedure showing some simple work with arrays:

PSQL Source for SHOW_LANGS, a procedure involving an array

CREATE OR ALTER PROCEDURE SHOW_LANGS (
 CODE VARCHAR(5),
 GRADE SMALLINT,
 CTY VARCHAR(15))
RETURNS (LANGUAGES VARCHAR(15))
AS
 DECLARE VARIABLE I INTEGER;
BEGIN
 I = 1;
 WHILE (I <= 5) DO
 BEGIN
 SELECT LANGUAGE_REQ[:I]
 FROM JOB
 WHERE (JOB_CODE = :CODE)
 AND (JOB_GRADE = :GRADE)
 AND (JOB_COUNTRY = :CTY)
 AND (LANGUAGE_REQ IS NOT NULL))
 INTO :LANGUAGES;

 IF (LANGUAGES = '') THEN
 /* PRINTS 'NULL' INSTEAD OF BLANKS */
 LANGUAGES = 'NULL';
 I = I +1;
 SUSPEND;
 END
END

If the features described are enough for your tasks, you might consider using arrays in your
projects. Currently, no improvements are planned to enhance support for arrays in Firebird.

Chapter 3. Data Types and Subtypes

43

3.8. Special Data Types
“Special” data types …

3.8.1. SQL_NULL Data Type

The SQL_NULL type holds no data, but only a state: NULL or NOT NULL. It is not available as a data type
for declaring table fields, PSQL variables or parameter descriptions. It was added to support the use
of untyped parameters in expressions involving the IS NULL predicate.

An evaluation problem occurs when optional filters are used to write queries of the following type:

WHERE col1 = :param1 OR :param1 IS NULL

After processing, at the API level, the query will look like this:

WHERE col1 = ? OR ? IS NULL

This is a case where the developer writes an SQL query and considers :param1 as though it were a
variable that he can refer to twice. However, at the API level, the query contains two separate and
independent _parameters. The server cannot determine the type of the second parameter since it
comes in association with IS NULL.

The SQL_NULL data type solves this problem. Whenever the engine encounters an “? IS NULL”
predicate in a query, it assigns the SQL_NULL type to the parameter, which will indicate that
parameter is only about “nullness” and the data type or the value need not be addressed.

The following example demonstrates its use in practice. It assumes two named parameters — say,
:size and :colour — which might, for example, get values from on-screen text fields or drop-down
lists. Each named parameter corresponds with two positional parameters in the query.

SELECT
 SH.SIZE, SH.COLOUR, SH.PRICE
FROM SHIRTS SH
WHERE (SH.SIZE = ? OR ? IS NULL)
 AND (SH.COLOUR = ? OR ? IS NULL)

Explaining what happens here assumes the reader is familiar with the Firebird API and the passing
of parameters in XSQLVAR structures — what happens under the surface will not be of interest to
those who are not writing drivers or applications that communicate using the “naked” API.

The application passes the parameterized query to the server in the usual positional ?-form. Pairs of
“identical” parameters cannot be merged into one so, for two optional filters, for example, four
positional parameters are needed: one for each ? in our example.

After the call to isc_dsql_describe_bind(), the SQLTYPE of the second and fourth parameters will be

Chapter 3. Data Types and Subtypes

44

set to SQL_NULL. Firebird has no knowledge of their special relation with the first and third
parameters: that responsibility lies entirely on the application side.

Once the values for size and colour have been set (or left unset) by the user and the query is about
to be executed, each pair of XSQLVARs must be filled as follows:

User has supplied a value

First parameter (value compare): set *sqldata to the supplied value and *sqlind to 0 (for NOT
NULL)

Second parameter (NULL test): set sqldata to null (null pointer, not SQL NULL) and *sqlind to 0 (for
NOT NULL)

User has left the field blank

Both parameters: set sqldata to null (null pointer, not SQL NULL) and *sqlind to -1 (indicating
NULL)

In other words: The value compare parameter is always set as usual. The SQL_NULL parameter is set
the same, except that sqldata remains null at all times.

3.9. Conversion of Data Types
When composing an expression or specifying an operation, the aim should be to use compatible
data types for the operands. When a need arises to use a mixture of data types, it should prompt
you to look for a way to convert incompatible operands before subjecting them to the operation.
The ability to convert data may well be an issue if you are working with Dialect 1 data.

3.9.1. Explicit Data Type Conversion

The CAST function enables explicit conversion between many pairs of data types.

Syntax

CAST (<expression> AS <target_type>)

<target_type> ::= <domain_or_non_array_type> | <array_datatype>

<domain_or_non_array_type> ::=
 !! See Scalar Data Types Syntax !!

<array_datatype> ::=
 !! See Array Data Types Syntax !!

See also CAST() in Chapter Built-in Scalar Functions.

Casting to a Domain

When you cast to a domain, any constraints declared for it are taken into account, i.e., NOT NULL or
CHECK constraints. If the value does not pass the check, the cast will fail.

Chapter 3. Data Types and Subtypes

45

If TYPE OF is additionally specified — casting to its base type — any domain constraints are ignored
during the cast. If TYPE OF is used with a character type (CHAR/VARCHAR), the character set and
collation are retained.

Casting to TYPE OF COLUMN

When operands are cast to the type of a column, the specified column may be from a table or a
view.

Only the type of the column itself is used. For character types, the cast includes the character set,
but not the collation. The constraints and default values of the source column are not applied.

Example

CREATE TABLE TTT (
 S VARCHAR (40)
 CHARACTER SET UTF8 COLLATE UNICODE_CI_AI
);
COMMIT;

SELECT
 CAST ('I have many friends' AS TYPE OF COLUMN TTT.S)
FROM RDB$DATABASE;

Conversions Possible for the CAST Function

Table 8. Conversions with CAST

From Data Type To Data Type

Numeric types Numeric types, [VAR]CHAR, BLOB

[VAR]CHAR [VAR]CHAR, BLOB, Numeric types, DATE, TIME, TIMESTAMP, BOOLEAN

BLOB [VAR]CHAR, BLOB, Numeric types, DATE, TIME, TIMESTAMP, BOOLEAN

DATE, TIME [VAR]CHAR, BLOB, TIMESTAMP

TIMESTAMP [VAR]CHAR, BLOB, DATE, TIME

BOOLEAN BOOLEAN, [VAR]CHAR, BLOB

To convert string data types to the BOOLEAN type, the value must be (case-insensitive) 'true' or
'false', or NULL.

Keep in mind that partial information loss is possible. For instance, when you cast
the TIMESTAMP data type to the DATE data type, the time-part is lost.

Literal Formats

To cast string data types to the DATE, TIME or TIMESTAMP data types, you need the string argument to
be one of the predefined date and time literals (see Table 9) or a representation of the date in one of
the allowed date-time literal formats:

Chapter 3. Data Types and Subtypes

46

<timestamp_format> ::=
 { [YYYY<p>]MM<p>DD[<p>HH[<p>mm[<p>SS[<p>NNNN]]]]
 | MM<p>DD[<p>YYYY[<p>HH[<p>mm[<p>SS[<p>NNNN]]]]]
 | DD<p>MM[<p>YYYY[<p>HH[<p>mm[<p>SS[<p>NNNN]]]]]
 | MM<p>DD[<p>YY[<p>HH[<p>mm[<p>SS[<p>NNNN]]]]]
 | DD<p>MM[<p>YY[<p>HH[<p>mm[<p>SS[<p>NNNN]]]]]
 | NOW
 | TODAY
 | TOMORROW
 | YESTERDAY }

<date_format> ::=
 { [YYYY<p>]MM<p>DD
 | MM<p>DD[<p>YYYY]
 | DD<p>MM[<p>YYYY]
 | MM<p>DD[<p>YY]
 | DD<p>MM[<p>YY]
 | TODAY
 | TOMORROW
 | YESTERDAY }

<time_format> :=
 { HH[<p>mm[<p>SS[<p>NNNN]]]
 | NOW }

<p> ::= whitespace | . | : | , | - | /

Table 9. Date and Time Literal Format Arguments

Argument Description

timestamp_format Format of timestamp literal

date_literal Format of date literal

time_literal Format of time literal

YYYY Four-digit year

YY Two-digit year

MM Month. It may contain 1 or 2 digits (1-12 or 01-12). You can
also specify the three-letter shorthand name or the full
name of a month in English. Case-insensitive

DD Day. It may contain 1 or 2 digits (1-31 or 01-31)

HH Hour. It may contain 1 or 2 digits (0-23 or 00-23)

mm Minutes. It may contain 1 or 2 digits (0-59 or 00-59)

SS Seconds. It may contain 1 or 2 digits (0-59 or 00-59)

NNNN Ten-thousandths of a second. It may contain from 1 to 4
digits (0-9999)

Chapter 3. Data Types and Subtypes

47

Argument Description

p A separator, any of permitted characters. Leading and
trailing spaces are ignored

Table 10. Literals with Predefined Values of Date and Time

Literal Description Data Type

Dialect 1 Dialect 3

'NOW' Current date and time DATE TIMESTAMP

'TODAY' Current date DATE with zero time DATE

'TOMORROW' Current date + 1 (day) DATE with zero time DATE

'YESTERDAY' Current date - 1 (day) DATE with zero time DATE

Use of the complete specification of the year in the four-digit form — YYYY — is
strongly recommended, to avoid confusion in date calculations and aggregations.

Sample Date Literal Interpretations

select
 cast('04.12.2014' as date) as d1, -- DD.MM.YYYY
 cast('04 12 2014' as date) as d2, -- MM DD YYYY
 cast('4-12-2014' as date) as d3, -- MM-DD-YYYY
 cast('04/12/2014' as date) as d4, -- MM/DD/YYYY
 cast('04,12,2014' as date) as d5, -- MM,DD,YYYY
 cast('04.12.14' as date) as d6, -- DD.MM.YY
 -- DD.MM with current year
 cast('04.12' as date) as d7,
 -- MM/DD with current year
 cast('04/12' as date) as d8,
 cast('2014/12/04' as date) as d9, -- YYYY/MM/DD
 cast('2014 12 04' as date) as d10, -- YYYY MM DD
 cast('2014.12.04' as date) as d11, -- YYYY.MM.DD
 cast('2014-12-04' as date) as d12, -- YYYY-MM-DD
 cast('4 Jan 2014' as date) as d13, -- DD MM YYYY
 cast('2014 Jan 4' as date) as dt14, -- YYYY MM DD
 cast('Jan 4, 2014' as date) as dt15, -- MM DD, YYYY
 cast('11:37' as time) as t1, -- HH:mm
 cast('11:37:12' as time) as t2, -- HH:mm:ss
 cast('11:31:12.1234' as time) as t3, -- HH:mm:ss.nnnn
 cast('11.37.12' as time) as t4, -- HH.mm.ss
 -- DD.MM.YYYY HH:mm
 cast('04.12.2014 11:37' as timestamp) as dt1,
 -- MM/DD/YYYY HH:mm:ss
 cast('04/12/2014 11:37:12' as timestamp) as dt2,
 -- DD.MM.YYYY HH:mm:ss.nnnn
 cast('04.12.2014 11:31:12.1234' as timestamp) as dt3,
 -- MM/DD/YYYY HH.mm.ss
 cast('04/12/2014 11.37.12' as timestamp) as dt4

Chapter 3. Data Types and Subtypes

48

from rdb$database

Shorthand Casts for Date and Time Data Types

Firebird allows the use of a shorthand “C-style” type syntax for casts from string to the types DATE,
TIME and TIMESTAMP. The SQL standard calls these datetime literals.

Syntax

<data_type> 'date_literal_string'

Example

-- 1
 UPDATE PEOPLE
 SET AGECAT = 'SENIOR'
 WHERE BIRTHDATE < DATE '1-Jan-1943';
-- 2
 INSERT INTO APPOINTMENTS
 (EMPLOYEE_ID, CLIENT_ID, APP_DATE, APP_TIME)
 VALUES (973, 8804, DATE 'today' + 2, TIME '16:00');
-- 3
 NEW.LASTMOD = TIMESTAMP 'now';

These shorthand expressions are evaluated directly during parsing, as though the
statement were already prepared for execution. Thus, even if the query is run
several times, the value of, for instance, timestamp 'now' remains the same no
matter how much time passes.

If you need the time to be evaluated at each execution, use the full CAST syntax. An
example of using such an expression in a trigger:

NEW.CHANGE_DATE = CAST('now' AS TIMESTAMP);

Firebird 4 will no longer allow these implicit datetime values like 'now', 'today',
etc in these shorthand casts. It is advisable to switch to using the full CAST
expression for implicit values.

3.9.2. Implicit Data Type Conversion

Implicit data conversion is not possible in Dialect 3 — the CAST function is almost always required to
avoid data type clashes.

In Dialect 1, in many expressions, one type is implicitly cast to another without the need to use the
CAST function. For instance, the following statement in Dialect 1 is valid:

Chapter 3. Data Types and Subtypes

49

UPDATE ATABLE
 SET ADATE = '25.12.2016' + 1

and the date literal will be cast to the date type implicitly.

In Dialect 3, this statement will throw error 35544569, “Dynamic SQL Error: expression evaluation
not supported, Strings cannot be added or subtracted in dialect 3” — a cast will be needed:

UPDATE ATABLE
 SET ADATE = CAST ('25.12.2016' AS DATE) + 1

or, with the short cast:

UPDATE ATABLE
 SET ADATE = DATE '25.12.2016' + 1

In Dialect 1, mixing integer data and numeric strings is usually possible because the parser will try
to cast the string implicitly. For example,

2 + '1'

will be executed correctly.

In Dialect 3, an expression like this will raise an error, so you will need to write it as a CAST
expression:

2 + CAST('1' AS SMALLINT)

The exception to the rule is during string concatenation.

Implicit Conversion During String Concatenation

When multiple data elements are being concatenated, all non-string data will undergo implicit
conversion to string, if possible.

Example

SELECT 30||' days hath September, April, June and November' CONCAT$
 FROM RDB$DATABASE;

CONCAT$
--
30 days hath September, April, June and November

Chapter 3. Data Types and Subtypes

50

3.10. Custom Data Types — Domains
In Firebird, the concept of a “user-defined data type” is implemented in the form of the domain.
Creating a domain does not truly create a new data type, of course. A domain provides the means to
encapsulate an existing data type with a set of attributes and make this “capsule” available for
multiple usage across the whole database. If several tables need columns defined with identical or
nearly identical attributes, a domain makes sense.

Domain usage is not limited to column definitions for tables and views. Domains can be used to
declare input and output parameters and variables in PSQL code.

3.10.1. Domain Attributes

A domain definition contains required and optional attributes. The data type is a required attribute.
Optional attributes include:

• a default value

• to allow or forbid NULL

• CHECK constraints

• character set (for character data types and text BLOB fields)

• collation (for character data types)

Sample domain definition

CREATE DOMAIN BOOL3 AS SMALLINT
 CHECK (VALUE IS NULL OR VALUE IN (0, 1));

See also

Explicit Data Type Conversion for the description of differences in the data conversion mechanism
when domains are specified for the TYPE OF and TYPE OF COLUMN modifiers.

3.10.2. Domain Override

While defining a column using a domain, it is possible to override some of the attributes inherited
from the domain. Table 3.9 summarises the rules for domain override.

Table 11. Rules for Overriding Domain Attributes in Column Definition

Attribute Override? Comments

Data type No

Default value Yes

Text character set Yes It can be also used to restore the default
database values for the column

Text collation sequence Yes

Chapter 3. Data Types and Subtypes

51

Attribute Override? Comments

CHECK constraints Yes To add new conditions to the check, you can use
the corresponding CHECK clauses in the CREATE
and ALTER statements at the table level.

NOT NULL No Often it is better to leave domain nullable in its
definition and decide whether to make it NOT
NULL when using the domain to define columns.

3.10.3. Creating and Administering Domains

A domain is created with the DDL statement CREATE DOMAIN.

Short Syntax

CREATE DOMAIN name [AS] <type>
 [DEFAULT {<const> | <literal> | NULL | <context_var>}]
 [NOT NULL] [CHECK (<condition>)]
 [COLLATE <collation>]

See also

CREATE DOMAIN in the Data Definition Language (DDL) section.

Altering a Domain

To change the attributes of a domain, use the DDL statement ALTER DOMAIN. With this statement you
can:

• rename the domain

• change the data type

• drop the current default value

• set a new default value

• drop the NOT NULL constraint

• set the NOT NULL constraint

• drop an existing CHECK constraint

• add a new CHECK constraint

Short Syntax

ALTER DOMAIN name
 [{TO new_name}]
 [{SET DEFAULT { <literal> | NULL | <context_var> } |
 DROP DEFAULT}]
 [{SET | DROP} NOT NULL]
 [{ADD [CONSTRAINT] CHECK (<dom_condition>) |
 DROP CONSTRAINT}]

Chapter 3. Data Types and Subtypes

52

 [{TYPE <datatype>}]

Example

ALTER DOMAIN STORE_GRP SET DEFAULT -1;

When changing a domain, its dependencies must be taken into account: whether there are table
columns, any variables, input and/or output parameters with the type of this domain declared in
the PSQL code. If you change domains in haste, without carefully checking them, your code may
stop working!

When you convert data types in a domain, you must not perform any conversions
that may result in data loss. Also, for example, if you convert VARCHAR to INTEGER,
check carefully that all data using this domain can be successfully converted.

See also

ALTER DOMAIN in the Data Definition Language (DDL) section.

Deleting (Dropping) a Domain

The DDL statement DROP DOMAIN deletes a domain from the database, provided it is not in use by any
other database objects.

Syntax

DROP DOMAIN name

 Any user connected to the database can delete a domain.

Example

DROP DOMAIN Test_Domain

See also

DROP DOMAIN in the Data Definition Language (DDL) section.

3.11. Data Type Declaration Syntax
This section documents the syntax of declaring data types. Data type declaration most commonly
occurs in DDL statements, but also in CAST and EXECUTE BLOCK.

The syntax documented below is referenced from other parts of this language reference.

3.11.1. Scalar Data Types Syntax

The scalar data types are simple data types that hold a single value. For reasons of organisation, the

Chapter 3. Data Types and Subtypes

53

syntax of BLOB types are defined separately in BLOB Data Types Syntax.

Scalar Data Types Syntax

<domain_or_non_array_type> ::=
 <scalar_datatype>
 | <blob_datatype>
 | [TYPE OF] domain
 | TYPE OF COLUMN rel.col

<scalar_datatype> ::=
 SMALLINT | INT[EGER] | BIGINT
 | FLOAT | DOUBLE PRECISION
 | BOOLEAN
 | DATE | TIME | TIMESTAMP
 | {DECIMAL | NUMERIC} [(precision [, scale])]
 | {VARCHAR | {CHAR | CHARACTER} VARYING} (length)
 [CHARACTER SET charset]
 | {CHAR | CHARACTER} [(length)] [CHARACTER SET charset]
 | {NCHAR | NATIONAL {CHARACTER | CHAR}} VARYING (length)
 | {NCHAR | NATIONAL {CHARACTER | CHAR}} [(length)]

Table 12. Arguments for the Scalar Data Types Syntax

Argument Description

domain Domain (only non-array domains)

rel Name of a table or view

col Name of a column in a table or view (only columns of a non-array type)

precision Numeric precision in decimal digits. From 1 to 18

scale Scale, or number of decimals. From 0 to 18. It must be less than or equal
to precision

length The maximum length of a string, in characters

charset Character set

domain_or_non_array_t
ype

Non-array types that can be used in PSQL code and casts

Use of Domains in Declarations

A domain name can be specified as the type of a PSQL parameter or local variable. The parameter
or variable will inherit all domain attributes. If a default value is specified for the parameter or
variable, it overrides the default value specified in the domain definition.

If the TYPE OF clause is added before the domain name, only the data type of the domain is used:
any of the other attributes of the domain — NOT NULL constraint, CHECK constraints, default
value — are neither checked nor used. However, if the domain is of a text type, its character set and
collation sequence are always used.

Chapter 3. Data Types and Subtypes

54

Use of Column Type in Declarations

Input and output parameters or local variables can also be declared using the data type of columns
in existing tables and views. The TYPE OF COLUMN clause is used for that, specifying relationname
.columnname as its argument.

When TYPE OF COLUMN is used, the parameter or variable inherits only the data type and — for string
types — the character set and collation sequence. The constraints and default value of the column
are ignored.

3.11.2. BLOB Data Types Syntax

The BLOB data types hold binary, character or custom format data of unspecified size. For more
information, see Binary Data Types.

BLOB Data Types Syntax

<blob_datatype> ::=
 BLOB [SUB_TYPE {subtype_num | subtype_name}]
 [SEGMENT SIZE seglen] [CHARACTER SET charset]
 | BLOB [(seglen [, subtype_num])]

Table 13. Arguments for the Blob Data Types Syntax

Argument Description

charset Character set (ignored for sub-types other than TEXT/1)

subtype_num BLOB subtype number

subtype_name BLOB subtype mnemonic name; this can be TEXT, BINARY, or one of the
(other) standard or custom names defined in RDB$TYPES for RDB$FIELD_NAME
= 'RDB$FIELD_SUB_TYPE'.

seglen Segment size, cannot be greater than 65,535, defaults to 80 when not
specified. See also Segment Size

3.11.3. Array Data Types Syntax

The array data types hold multiple scalar values in a single or multi-dimensional array. For more
information, see ARRAY Type

Array Data Types Syntax

<array_datatype> ::=
 {SMALLINT | INT[EGER] | BIGINT} <array_dim>
 | {FLOAT | DOUBLE PRECISION} <array_dim>
 | BOOLEAN <array_dim>
 | {DATE | TIME | TIMESTAMP} <array_dim>
 | {DECIMAL | NUMERIC} [(precision [, scale])] <array_dim>
 | {VARCHAR | {CHAR | CHARACTER} VARYING} (length)
 <array_dim> [CHARACTER SET charset]

Chapter 3. Data Types and Subtypes

55

 | {CHAR | CHARACTER} [(length)] <array_dim>
 [CHARACTER SET charset]
 | {NCHAR | NATIONAL {CHARACTER | CHAR}} VARYING (length)
 <array_dim>
 | {NCHAR | NATIONAL {CHARACTER | CHAR}}
 [(length)] <array_dim>

<array_dim> ::= '[' [m:]n [,[m:]n ...] ']'

Table 14. Arguments for the Array Data Types Syntax

Argument Description

array_dim Array dimensions

precision Numeric precision in decimal digits. From 1 to 18

scale Scale, or number of decimals. From 0 to 18. It must be less than or equal
to precision

length The maximum length of a string, in characters; optional for fixed-width
character types, defaults to 1

charset Character set

m, n Integer numbers defining the index range of an array dimension

Chapter 3. Data Types and Subtypes

56

Chapter 4. Common Language Elements
This chapter covers the elements that are common throughout the implementation of the SQL
language — the expressions that are used to extract and operate on conditions about data and the
predicates that test the truth of those assertions.

4.1. Expressions
SQL expressions provide formal methods for evaluating, transforming and comparing values. SQL
expressions may include table columns, variables, constants, literals, various statements and
predicates and also other expressions. The complete list of possible tokens in expressions follows.

Description of Expression Elements

Column name

Identifier of a column from a specified table used in evaluations or as a search condition. A
column of the array type cannot be an element in an expression except when used with the IS
[NOT] NULL predicate.

Array element

An expression may contain a reference to an array member i.e., <array_name>[s], where s is the
subscript of the member in the array <array_name>

Arithmetic operators

The +, -, *, / characters used to calculate values

Concatenation operator

The || (“double-pipe”) operator used to concatenate strings

Logical operators

The reserved words NOT, AND and OR, used to combine simple search conditions in order to create
complex conditions

Comparison operators

The symbols =, <>, !=, ~=, ^=, <, <=, >, >=, !<, ~<, ^<, !>, ~> and ^>

Comparison predicates

LIKE, STARTING WITH, CONTAINING, SIMILAR TO, BETWEEN, IS [NOT] NULL, IS [NOT] {TRUE | FALSE |
UNKNOWN} and IS [NOT] DISTINCT FROM

Existential predicates

Predicates used to check the existence of values in a set. The IN predicate can be used both with
sets of comma-separated constants and with subqueries that return a single column. The EXISTS,
SINGULAR, ALL, ANY and SOME predicates can be used only with subqueries.

Constant or Literal

Numbers, or string literals enclosed in apostrophes, Boolean values TRUE, FALSE and UNKOWN, NULL

Chapter 4. Common Language Elements

57

Date/time literal

An expression, similar to a string literal enclosed in apostrophes, that can be interpreted as a
date, time or timestamp value. Date literals can be predefined literals ('TODAY', 'NOW', etc.) or
strings of characters and numerals, such as '25.12.2016 15:30:35', that can be resolved as date
and/or time strings.

Context variable

An internally-defined context variable

Local variable

Declared local variable, input or output parameter of a PSQL module (stored procedure, trigger,
unnamed PSQL block in DSQL)

Positional parameter

A member of in an ordered group of one or more unnamed parameters passed to a stored
procedure or prepared query

Subquery

A SELECT statement enclosed in parentheses that returns a single (scalar) value or, when used in
existential predicates, a set of values

Function identifier

The identifier of an internal or external function in a function expression

Type cast

An expression explicitly converting data of one data type to another using the CAST function (
CAST (<value> AS <datatype>)). For date/time literals only, the shorthand syntax <datatype>
<value> is also supported (DATE '2016-12-25').

Conditional expression

Expressions using CASE and related internal functions

Parentheses

Bracket pairs (…) used to group expressions. Operations inside the parentheses are performed
before operations outside them. When nested parentheses are used, the most deeply nested
expressions are evaluated first and then the evaluations move outward through the levels of
nesting.

COLLATE clause

Clause applied to CHAR and VARCHAR types to specify the character-set-specific collation
sequence to use in string comparisons

NEXT VALUE FOR sequence

Expression for obtaining the next value of a specified generator (sequence). The internal
GEN_ID() function does the same.

Chapter 4. Common Language Elements

58

4.1.1. Literals (Constants)

A literal — or constant — is a value that is supplied directly in an SQL statement, not derived from
an expression, a parameter, a column reference nor a variable. It can be a string or a number.

String Literals

A string literal is a series of characters enclosed between a pair of apostrophes (“single quotes”).
The maximum length of a string literal is 32,765 for CHAR/VARCHAR, or 65,533 bytes for BLOB; the
maximum character count will be determined by the number of bytes used to encode each
character.

• Double quotes are NOT VALID for quoting strings. The SQL standard reserves
double quotes for a different purpose: quoting identifiers.

• If a literal apostrophe is required within a string constant, it is “escaped” by
prefixing it with another apostrophe. For example, 'Mother O''Reilly’s home-
made hooch'.

• Care should be taken with the string length if the value is to be written to a CHAR
or VARCHAR column. The maximum length for a CHAR or VARCHAR` literal is
32,765 bytes.

The character set of a string constant is assumed to be the same as the character set of its destined
storage.

String Literals in Hexadecimal Notation

From Firebird 2.5 forward, string literals can be entered in hexadecimal notation, so-called “binary
strings”. Each pair of hex digits defines one byte in the string. Strings entered this way will have
character set OCTETS by default, but the introducer syntax can be used to force a string to be
interpreted as another character set.

Syntax

{x|X}'<hexstring>'

<hexstring> ::= an even number of <hexdigit>
<hexdigit> ::= one of 0..9, A..F, a..f

Examples

select x'4E657276656E' from rdb$database
-- returns 4E657276656E, a 6-byte 'binary' string

select _ascii x'4E657276656E' from rdb$database
-- returns 'Nerven' (same string, now interpreted as ASCII text)

select _iso8859_1 x'53E46765' from rdb$database
-- returns 'Säge' (4 chars, 4 bytes)

Chapter 4. Common Language Elements

59

select _utf8 x'53C3A46765' from rdb$database
-- returns 'Säge' (4 chars, 5 bytes)

Notes

The client interface determines how binary strings are displayed to the user. The
isql utility, for example, uses upper case letters A-F, while FlameRobin uses lower
case letters. Other client programs may use other conventions, such as displaying
spaces between the byte pairs: '4E 65 72 76 65 6E'.

The hexadecimal notation allows any byte value (including 00) to be inserted at
any position in the string. However, if you want to coerce it to anything other than
OCTETS, it is your responsibility to supply the bytes in a sequence that is valid for
the target character set.

Alternative String Literals

Since Firebird 3.0, it is possible to use a character, or character pair, other than the doubled
(escaped) apostrophe, to embed a quoted string inside another string. The keyword q or Q preceding
a quoted string informs the parser that certain left-right pairs or pairs of identical characters
within the string are the delimiters of the embedded string literal.

Syntax

<alternative string literal> ::=
 { q | Q } <quote> <start char> [<char> ...] <end char> <quote>

Rules

When <start char> is ‘(’, ‘{’, ‘[’ or ‘<’, <end char> is paired up with its respective
“partner”, viz. ‘)’, ‘}’, ‘]’ and ‘>’. In other cases, <end char> is the same as <start
char>.

Inside the string, i.e. <char> items, single (not escaped) quotes can be used. Each
quote will be part of the result string.

Examples

select q'{abc{def}ghi}' from rdb$database; -- result: abc{def}ghi
select q'!That's a string!' from rdb$database; -- result: That's a string

Introducer Syntax for String Literals

If necessary, a string literal may be preceded by a character set name, itself prefixed with an
underscore “_”. This is known as introducer syntax. Its purpose is to inform the engine about how to
interpret and store the incoming string.

Example

Chapter 4. Common Language Elements

60

INSERT INTO People
VALUES (_ISO8859_1 'Hans-Jörg Schäfer')

Number Literals

A number literal is any valid number in a supported notation:

• In SQL, for numbers in the standard decimal notation, the decimal point is always represented
by period character (‘.’, full-stop, dot); thousands are not separated. Inclusion of commas,
blanks, etc. will cause errors.

• Exponential notation is supported. For example, 0.0000234 can be expressed as 2.34e-5.

• Hexadecimal notation is supported by Firebird 2.5 and higher versions — see below.

The format of the literal decides the type (<d> for a decimal digit, <h> for a hexadecimal digit):

Format Type

<d>[<d> …] INTEGER or BIGINT (depends on if value
fits in the type)

0{x|X} <h><h>[<h><h> …] INTEGER for 1-8 <h><h> pairs or BIGINT
for 9-16 pairs

<d>[<d> …] "." [<d> …] NUMERIC(18, n) where n depends on
the number of digits after the decimal
point

<d>[<d> …]["." [<d> …]] E <d>[<d> …] DOUBLE PRECISION

Hexadecimal Notation for Numbers

From Firebird 2.5 forward, integer values can be entered in hexadecimal notation. Numbers with 1-
8 hex digits will be interpreted as type INTEGER; numbers with 9-16 hex digits as type BIGINT.

Syntax

0{x|X}<hexdigits>

<hexdigits> ::= 1-16 of <hexdigit>
<hexdigit> ::= one of 0..9, A..F, a..f

Examples

select 0x6FAA0D3 from rdb$database -- returns 117088467
select 0x4F9 from rdb$database -- returns 1273
select 0x6E44F9A8 from rdb$database -- returns 1850014120
select 0x9E44F9A8 from rdb$database -- returns -1639646808 (an INTEGER)
select 0x09E44F9A8 from rdb$database -- returns 2655320488 (a BIGINT)
select 0x28ED678A4C987 from rdb$database -- returns 720001751632263

Chapter 4. Common Language Elements

61

select 0xFFFFFFFFFFFFFFFF from rdb$database -- returns -1

Hexadecimal Value Ranges

• Hex numbers in the range 0 .. 7FFF FFFF are positive INTEGERs with values between 0 ..
2147483647 decimal. To coerce a number to BIGINT, prepend enough zeroes to bring the total
number of hex digits to nine or above. That changes the type but not the value.

• Hex numbers between 8000 0000 .. FFFF FFFF require some attention:

◦ When written with eight hex digits, as in 0x9E44F9A8, a value is interpreted as 32-bit INTEGER.
Since the leftmost bit (sign bit) is set, it maps to the negative range -2147483648 .. -1 decimal.

◦ With one or more zeroes prepended, as in 0x09E44F9A8, a value is interpreted as 64-bit BIGINT
in the range 0000 0000 8000 0000 .. 0000 0000 FFFF FFFF. The sign bit is not set now, so they
map to the positive range 2147483648 .. 4294967295 decimal.

Thus, in this range — and only in this range — prepending a mathematically insignificant 0
results in a totally different value. This is something to be aware of.

• Hex numbers between 1 0000 0000 .. 7FFF FFFF FFFF FFFF are all positive BIGINT.

• Hex numbers between 8000 0000 0000 0000 .. FFFF FFFF FFFF FFFF are all negative BIGINT.

• A SMALLINT cannot be written in hex, strictly speaking, since even 0x1 is evaluated as INTEGER.
However, if you write a positive integer within the 16-bit range 0x0000 (decimal zero) to 0x7FFF
(decimal 32767) it will be converted to SMALLINT transparently.

It is possible to write to a negative SMALLINT in hex, using a 4-byte hex number within the range
0xFFFF8000 (decimal -32768) to 0xFFFFFFFF (decimal -1).

Boolean Literals

A Boolean literal is one of TRUE, FALSE or UNKNOWN.

4.1.2. SQL Operators

SQL operators comprise operators for comparing, calculating, evaluating and concatenating values.

Operator Precedence

SQL Operators are divided into four types. Each operator type has a precedence, a ranking that
determines the order in which operators and the values obtained with their help are evaluated in
an expression. The higher the precedence of the operator type is, the earlier it will be evaluated.
Each operator has its own precedence within its type, that determines the order in which they are
evaluated in an expression.

Operators with the same precedence are evaluated from left to right. To force a different evaluation
order, operations can be grouped by means of parentheses.

Table 15. Operator Type Precedence

Chapter 4. Common Language Elements

62

Operator Type Precedence Explanation

Concatenation 1 Strings are concatenated before any other operations take
place

Arithmetic 2 Arithmetic operations are performed after strings are
concatenated, but before comparison and logical
operations

Comparison 3 Comparison operations take place after string
concatenation and arithmetic operations, but before
logical operations

Logical 4 Logical operators are executed after all other types of
operators

Concatenation Operator

The concatenation operator, two pipe characters known as “double pipe” — ‘||’ — concatenates
(connects together) two character strings to form a single string. Character strings can be constants
or values obtained from columns or other expressions.

Example

SELECT LAST_NAME || ', ' || FIRST_NAME AS FULL_NAME
FROM EMPLOYEE

Arithmetic Operators

Table 16. Arithmetic Operator Precedence

Operator Purpose Precedence

+signed_number Unary plus 1

-signed_number Unary minus 1

* Multiplication 2

/ Division 2

+ Addition 3

- Subtraction 3

Example

UPDATE T
 SET A = 4 + 1/(B-C)*D

Where operators have the same precedence, they are evaluated in left-to-right
sequence.

Chapter 4. Common Language Elements

63

Comparison Operators

Table 17. Comparison Operator Precedence

Operator Purpose Precedence

IS Checks that the expression on the left is (not)
NULL or the Boolean value on the right

1

= Is equal to, is identical to 2

<>, !=, ~=, ^= Is not equal to 2

> Is greater than 2

< Is less than 2

>= Is greater than or equal to 2

<= Is less than or equal to 2

!>, ~>, ^> Is not greater than 2

!<, ~<, ^< Is not less than 2

This group also includes comparison predicates BETWEEN, LIKE, CONTAINING, SIMILAR TO and others.

Example

IF (SALARY > 1400) THEN
…

See also

Other Comparison Predicates.

Logical Operators

Table 18. Logical Operator Precedence

Operator Purpose Precedence

NOT Negation of a search condition 1

AND Combines two or more predicates, each of which
must be true for the entire predicate to be true

2

OR Combines two or more predicates, of which at
least one predicate must be true for the entire
predicate to be true

3

Example

IF (A < B OR (A > C AND A > D) AND NOT (C = D)) THEN …

NEXT VALUE FOR

Available in

Chapter 4. Common Language Elements

64

DSQL, PSQL

Syntax

NEXT VALUE FOR sequence-name

NEXT VALUE FOR returns the next value of a sequence. SEQUENCE is the SQL-standard term for what is
historically called a generator in Firebird and its ancestor, InterBase. The NEXT VALUE FOR operator is
equivalent to the legacy GEN_ID (…, 1) function, and is the recommended syntax for retrieving the
next sequence value.

Unlike GEN_ID (…, 1), the NEXT VALUE FOR variant does not take any parameters
and thus, provides no way to retrieve the current value of a sequence, nor to step
the next value by more than 1. GEN_ID (…, <step value>) is still needed for these
tasks. A step value of 0 returns the current sequence value.

Example

NEW.CUST_ID = NEXT VALUE FOR CUSTSEQ;

See also

SEQUENCE (GENERATOR), GEN_ID()

4.1.3. Conditional Expressions

A conditional expression is one that returns different values according to how a certain condition is
met. It is composed by applying a conditional function construct, of which Firebird supports
several. This section describes only one conditional expression construct: CASE. All other conditional
expressions apply internal functions derived from CASE and are described in Conditional Functions.

CASE

Available in

DSQL, PSQL

The CASE construct returns a single value from a number of possible values. Two syntactic variants
are supported:

• The simple CASE, comparable to a case construct in Pascal or a switch in C

• The searched CASE, which works like a series of “if … else if … else if” clauses.

Simple CASE

Syntax

…
CASE <test-expr>
 WHEN <expr> THEN <result>

Chapter 4. Common Language Elements

65

 [WHEN <expr> THEN <result> ...]
 [ELSE <defaultresult>]
END
…

When this variant is used, test-expr is compared to the first expr, second expr and so on, until a
match is found, and the corresponding result is returned. If no match is found, defaultresult from
the optional ELSE clause is returned. If there are no matches and no ELSE clause, NULL is returned.

The matching works identically to the “=” operator. That is, if test-expr is NULL, it does not match any
expr, not even an expression that resolves to NULL.

The returned result does not have to be a literal value: it might be a field or variable name,
compound expression or NULL literal.

Example

SELECT
 NAME,
 AGE,
 CASE UPPER(SEX)
 WHEN 'M' THEN 'Male'
 WHEN 'F' THEN 'Female'
 ELSE 'Unknown'
 END GENDER,
RELIGION
 FROM PEOPLE

A short form of the simple CASE construct is the DECODE function.

Searched CASE

Syntax

CASE
 WHEN <bool_expr> THEN <result>
 [WHEN <bool_expr> THEN <result> …]
 [ELSE <defaultresult>]
END

The bool_expr expression is one that gives a ternary logical result: TRUE, FALSE or NULL. The first
expression to return TRUE determines the result. If no expressions return TRUE, defaultresult from
the optional ELSE clause is returned as the result. If no expressions return TRUE and there is no ELSE
clause, the result will be NULL.

As with the simple CASE construct, the result need not be a literal value: it might be a field or
variable name, a compound expression, or be NULL.

Chapter 4. Common Language Elements

66

Example

CANVOTE = CASE
 WHEN AGE >= 18 THEN 'Yes'
 WHEN AGE < 18 THEN 'No'
 ELSE 'Unsure'
END

4.1.4. NULL in Expressions

NULL is not a value in SQL, but a state indicating that the value of the element either is unknown or it
does not exist. It is not a zero, nor a void, nor an “empty string”, and it does not act like any value.

When you use NULL in numeric, string or date/time expressions, the result will always be NULL. When
you use NULL in logical (Boolean) expressions, the result will depend on the type of the operation
and on other participating values. When you compare a value to NULL, the result will be unknown.

NULL means NULL but, in Firebird, the logical result unknown is also represented by
NULL.

Expressions Returning NULL

Expressions in this list will always return NULL:

1 + 2 + 3 + NULL
'Home ' || 'sweet ' || NULL
MyField = NULL
MyField <> NULL
NULL = NULL
not (NULL)

If it seems difficult to understand why, remember that NULL is a state that stands for “unknown”.

NULL in Logical Expressions

It has already been shown that NOT (NULL) results in NULL. The interaction is a bit more complicated
for the logical AND and logical OR operators:

NULL or false → NULL
NULL or true → true
NULL or NULL → NULL
NULL and false → false
NULL and true → NULL
NULL and NULL → NULL

As a basic rule-of-thumb, if applying TRUE instead of NULL produces a different
result than applying FALSE, then the outcome of the original expression is

Chapter 4. Common Language Elements

67

unknown, or NULL.

Examples

(1 = NULL) or (1 <> 1) -- returns NULL
(1 = NULL) or FALSE -- returns NULL
(1 = NULL) or (1 = 1) -- returns TRUE
(1 = NULL) or TRUE -- returns TRUE
(1 = NULL) or (1 = NULL) -- returns NULL
(1 = NULL) or UNKNOWN -- returns NULL
(1 = NULL) and (1 <> 1) -- returns FALSE
(1 = NULL) and FALSE -- returns FALSE
(1 = NULL) and (1 = 1) -- returns NULL
(1 = NULL) and TRUE -- returns NULL
(1 = NULL) and (1 = NULL) -- returns NULL
(1 = NULL) and UNKNOWN -- returns NULL

4.1.5. Subqueries

A subquery is a special form of expression that is actually a query embedded within another query.
Subqueries are written in the same way as regular SELECT queries, but they must be enclosed in
parentheses. Subquery expressions can be used in the following ways:

• To specify an output column in the SELECT list

• To obtain values or conditions for search predicates (the WHERE, HAVING clauses).

• To produce a set that the enclosing query can select from, as though were a regular table or
view. Subqueries like this appear in the FROM clause (derived tables) or in a Common Table
Expression (CTE)

Correlated Subqueries

A subquery can be correlated. A query is correlated when the subquery and the main query are
interdependent. To process each record in the subquery, it is necessary to fetch a record in the main
query; i.e. the subquery fully depends on the main query.

Sample Correlated Subquery

SELECT *
FROM Customers C
WHERE EXISTS
 (SELECT *
 FROM Orders O
 WHERE C.cnum = O.cnum
 AND O.adate = DATE '10.03.1990');

When subqueries are used to get the values of the output column in the SELECT list, a subquery must
return a scalar result (see below).

Chapter 4. Common Language Elements

68

Scalar Results

Subqueries used in search predicates, other than existential and quantified predicates, must return
a scalar result; that is, not more than one column from not more than one matching row or
aggregation. If the result would return more, a run-time error will occur (“Multiple rows in a
singleton select…”).

Although it is reporting a genuine error, the message can be slightly misleading. A
“singleton SELECT” is a query that must not be capable of returning more than one
row. However, “singleton” and “scalar” are not synonymous: not all singleton
SELECTS are required to be scalar; and single-column selects can return multiple
rows for existential and quantified predicates.

Subquery Examples

1. A subquery as the output column in a SELECT list:

SELECT
 e.first_name,
 e.last_name,
 (SELECT
 sh.new_salary
 FROM
 salary_history sh
 WHERE
 sh.emp_no = e.emp_no
 ORDER BY sh.change_date DESC ROWS 1) AS last_salary
FROM
 employee e

2. A subquery in the WHERE clause for obtaining the employee’s maximum salary and filtering by it:

SELECT
 e.first_name,
 e.last_name,
 e.salary
FROM employee e
WHERE
 e.salary = (
 SELECT MAX(ie.salary)
 FROM employee ie
)

4.2. Predicates
A predicate is a simple expression asserting some fact, let’s call it P. If P resolves as TRUE, it
succeeds. If it resolves to FALSE or NULL (UNKNOWN), it fails. A trap lies here, though: suppose the
predicate, P, returns FALSE. In this case NOT(P) will return TRUE. On the other hand, if P returns

Chapter 4. Common Language Elements

69

NULL (unknown), then NOT(P) returns NULL as well.

In SQL, predicates can appear in CHECK constraints, WHERE and HAVING clauses, CASE expressions, the
IIF() function and in the ON condition of JOIN clauses, and — since Firebird 3.0 — anywhere a
normal expression can occur.

4.2.1. Conditions

A condition  — or Boolean expression — is a statement about the data that, like a predicate, can
resolve to TRUE, FALSE or NULL. Conditions consist of one or more predicates, possibly negated
using NOT and connected by AND and OR operators. Parentheses may be used for grouping predicates
and controlling evaluation order.

A predicate may embed other predicates. Evaluation sequence is in the outward direction, i.e., the
innermost predicates are evaluated first. Each “level” is evaluated in precedence order until the
truth value of the ultimate condition is resolved.

4.2.2. Comparison Predicates

A comparison predicate consists of two expressions connected with a comparison operator. There
are six traditional comparison operators:

=, >, <, >=, <=, <>

For the complete list of comparison operators with their variant forms, see Comparison Operators.

If one of the sides (left or right) of a comparison predicate has NULL in it, the value of the predicate
will be UNKNOWN.

Examples

1. Retrieve information about computers with the CPU frequency not less than 500 MHz and the
price lower than $800:

SELECT *
FROM Pc
WHERE speed >= 500 AND price < 800;

2. Retrieve information about all dot matrix printers that cost less than $300:

SELECT *
FROM Printer
WHERE ptrtype = 'matrix' AND price < 300;

3. The following query will return no data, even if there are printers with no type specified for
them, because a predicate that compares NULL with NULL returns NULL:

Chapter 4. Common Language Elements

70

SELECT *
FROM Printer
WHERE ptrtype = NULL AND price < 300;

On the other hand, ptrtype can be tested for NULL and return a result: it is just that it is not a
comparison test:

SELECT *
FROM Printer
WHERE ptrtype IS NULL AND price < 300;

 — see IS [NOT] NULL.

Note about String Comparison

When CHAR and VARCHAR fields are compared for equality, trailing spaces are
ignored in all cases.

Other Comparison Predicates

Other comparison predicates are marked by keyword symbols.

BETWEEN

Available in

DSQL, PSQL, ESQL

Syntax

<value> [NOT] BETWEEN <value_1> AND <value_2>

The BETWEEN predicate tests whether a value falls within a specified range of two values. (NOT
BETWEEN tests whether the value does not fall within that range.)

The operands for BETWEEN predicate are two arguments of compatible data types. Unlike in some
other DBMS, the BETWEEN predicate in Firebird is not symmetrical — if the lower value is not the first
argument, the BETWEEN predicate will always return FALSE. The search is inclusive (the values
represented by both arguments are included in the search). In other words, the BETWEEN predicate
could be rewritten:

<value> >= <value_1> AND <value> <= <value_2>

When BETWEEN is used in the search conditions of DML queries, the Firebird optimizer can use an
index on the searched column, if it is available.

Chapter 4. Common Language Elements

71

Example

SELECT *
FROM EMPLOYEE
WHERE HIRE_DATE BETWEEN date '1992-01-01' AND CURRENT_DATE

LIKE

Available in

DSQL, PSQL, ESQL

Syntax

<match_value> [NOT] LIKE <pattern>
 [ESCAPE <escape character>]

<match_value> ::= character-type expression
<pattern> ::= search pattern
<escape character> ::= escape character

The LIKE predicate compares the character-type expression with the pattern defined in the second
expression. Case- or accent-sensitivity for the comparison is determined by the collation that is in
use. A collation can be specified for either operand, if required.

Wildcards

Two wildcard symbols are available for use in the search pattern:

• the percentage symbol (%) will match any sequence of zero or more characters in the tested
value

• the underscore character (_) will match any single character in the tested value

If the tested value matches the pattern, taking into account wildcard symbols, the predicate is
TRUE.

Using the ESCAPE Character Option

If the search string contains either of the wildcard symbols, the ESCAPE clause can be used to specify
an escape character. The escape character must precede the ‘%’ or ‘_’} symbol in the search string, to
indicate that the symbol is to be interpreted as a literal character.

Examples using LIKE

1. Find the numbers of departments whose names start with the word “Software”:

SELECT DEPT_NO
FROM DEPT
WHERE DEPT_NAME LIKE 'Software%';

Chapter 4. Common Language Elements

72

It is possible to use an index on the DEPT_NAME field if it exists.

About LIKE and the Optimizer

Actually, the LIKE predicate does not use an index. However, if the predicate
takes the form of LIKE 'string%', it will be converted to the STARTING WITH
predicate, which will use an index. This optimization only works for literal
patterns, not for parameters.

So, if you need to search for the beginning of a string, it is recommended to use
the STARTING WITH predicate instead of the LIKE predicate.

2. Search for employees whose names consist of 5 letters, start with the letters “Sm” and end with
“th”. The predicate will be true for such names as “Smith” and “Smyth”.

SELECT
 first_name
FROM
 employee
WHERE first_name LIKE 'Sm_th'

3. Search for all clients whose address contains the string “Rostov”:

SELECT *
FROM CUSTOMER
WHERE ADDRESS LIKE '%Rostov%'

If you need to do a case-insensitive search for something enclosed inside a
string (LIKE '%Abc%'), use of the CONTAINING predicate is recommended, in
preference to the LIKE predicate.

4. Search for tables containing the underscore character in their names. The ‘#’ character is used
as the escape character:

SELECT
 RDB$RELATION_NAME
FROM RDB$RELATIONS
WHERE RDB$RELATION_NAME LIKE '%#_%' ESCAPE '#'

See also

STARTING WITH, CONTAINING, SIMILAR TO

STARTING WITH

Available in

DSQL, PSQL, ESQL

Chapter 4. Common Language Elements

73

Syntax

<value> [NOT] STARTING WITH <value>

The STARTING WITH predicate searches for a string or a string-like type that starts with the characters
in its value argument. The case- and accent-sensitivity of STARTING WITH depends on the collation of
the first value.

When STARTING WITH is used in the search conditions of DML queries, the Firebird optimizer can use
an index on the searched column, if it exists.

Example

Search for employees whose last names start with “Jo”:

SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE
WHERE LAST_NAME STARTING WITH 'Jo'

See also

LIKE

CONTAINING

Available in

DSQL, PSQL, ESQL

Syntax

<value> [NOT] CONTAINING <value>

The CONTAINING predicate searches for a string or a string-like type looking for the sequence of
characters that matches its argument. It can be used for an alphanumeric (string-like) search on
numbers and dates. A CONTAINING search is not case-sensitive. However, if an accent-sensitive
collation is in use then the search will be accent-sensitive.

Examples

1. Search for projects whose names contain the substring “Map”:

SELECT *
FROM PROJECT
WHERE PROJ_NAME CONTAINING 'Map';

Two rows with the names “AutoMap” and “MapBrowser port” are returned.

2. Search for changes in salaries with the date containing number 84 (in this case, it means
changes that took place in 1984):

Chapter 4. Common Language Elements

74

SELECT *
FROM SALARY_HISTORY
WHERE CHANGE_DATE CONTAINING 84;

See also

LIKE

SIMILAR TO

Available in

DSQL, PSQL

Syntax

string-expression [NOT] SIMILAR TO <pattern> [ESCAPE <escape-char>]

<pattern> ::= an SQL regular expression
<escape-char> ::= a single character

SIMILAR TO matches a string against an SQL regular expression pattern. Unlike in some other
languages, the pattern must match the entire string in order to succeed — matching a substring is
not enough. If any operand is NULL, the result is NULL. Otherwise, the result is TRUE or FALSE.

Syntax: SQL Regular Expressions

The following syntax defines the SQL regular expression format. It is a complete and correct top-
down definition. It is also highly formal, rather long and probably perfectly fit to discourage
everybody who hasn’t already some experience with regular expressions (or with highly formal,
rather long top-down definitions). Feel free to skip it and read the next section, Building Regular
Expressions, which uses a bottom-up approach, aimed at the rest of us.

<regular expression> ::= <regular term> ['|' <regular term> ...]

<regular term> ::= <regular factor> ...

<regular factor> ::= <regular primary> [<quantifier>]

<quantifier> ::= ? | * | + | '{' <m> [,[<n>]] '}'

<m>, <n> ::= unsigned int, with <m> <= <n> if both present

<regular primary> ::=
 <character> | <character class> | %
 | (<regular expression>)

<character> ::= <escaped character> | <non-escaped character>

<escaped character> ::=

Chapter 4. Common Language Elements

75

 <escape-char> <special character> | <escape-char> <escape-char>

<special character> ::= any of the characters []()|^-+*%_?{}

<non-escaped character> ::=
 any character that is not a <special character>
 and not equal to <escape-char> (if defined)

<character class> ::=
 '_' | '[' <member> ... ']' | '[^' <non-member> ... ']'
 | '[' <member> ... '^' <non-member> ... ']'

<member>, <non-member> ::= <character> | <range> | <predefined class>

<range> ::= <character>-<character>

<predefined class> ::= '[:' <predefined class name> ':]'

<predefined class name> ::=
 ALPHA | UPPER | LOWER | DIGIT | ALNUM | SPACE | WHITESPACE

Building Regular Expressions

In this section are the elements and rules for building SQL regular expressions.

Characters

Within regular expressions, most characters represent themselves. The only exceptions are the
special characters below:

[] () | ^ - + * % _ ? { }

... and the escape character, if it is defined.

A regular expression that contains no special character or escape characters matches only strings
that are identical to itself (subject to the collation in use). That is, it functions just like the ‘=’
operator:

'Apple' similar to 'Apple' -- true
'Apples' similar to 'Apple' -- false
'Apple' similar to 'Apples' -- false
'APPLE' similar to 'Apple' -- depends on collation

Wildcards

The known SQL wildcards ‘_’ and ‘%’ match any single character and a string of any length,
respectively:

Chapter 4. Common Language Elements

76

'Birne' similar to 'B_rne' -- true
'Birne' similar to 'B_ne' -- false
'Birne' similar to 'B%ne' -- true
'Birne' similar to 'Bir%ne%' -- true
'Birne' similar to 'Birr%ne' -- false

Notice how ‘%’ also matches the empty string.

Character Classes

A bunch of characters enclosed in brackets define a character class. A character in the string
matches a class in the pattern if the character is a member of the class:

'Citroen' similar to 'Cit[arju]oen' -- true
'Citroen' similar to 'Ci[tr]oen' -- false
'Citroen' similar to 'Ci[tr][tr]oen' -- true

As can be seen from the second line, the class only matches a single character, not a sequence.

Within a class definition, two characters connected by a hyphen define a range. A range comprises
the two endpoints and all the characters that lie between them in the active collation. Ranges can
be placed anywhere in the class definition without special delimiters to keep them apart from the
other elements.

'Datte' similar to 'Dat[q-u]e' -- true
'Datte' similar to 'Dat[abq-uy]e' -- true
'Datte' similar to 'Dat[bcg-km-pwz]e' -- false

Predefined Character Classes

The following predefined character classes can also be used in a class definition:

[:ALPHA:]

Latin letters a..z and A..Z. With an accent-insensitive collation, this class also matches accented
forms of these characters.

[:DIGIT:]

Decimal digits 0..9.

[:ALNUM:]

Union of [:ALPHA:] and [:DIGIT:].

[:UPPER:]

Uppercase Latin letters A..Z. Also matches lowercase with case-insensitive collation and accented
forms with accent-insensitive collation.

Chapter 4. Common Language Elements

77

[:LOWER:]

Lowercase Latin letters a..z. Also matches uppercase with case-insensitive collation and accented
forms with accent-insensitive collation.

[:SPACE:]

Matches the space character (ASCII 32).

[:WHITESPACE:]

Matches horizontal tab (ASCII 9), linefeed (ASCII 10), vertical tab (ASCII 11), formfeed (ASCII 12),
carriage return (ASCII 13) and space (ASCII 32).

Including a predefined class has the same effect as including all its members. Predefined classes are
only allowed within class definitions. If you need to match against a predefined class and nothing
more, place an extra pair of brackets around it.

'Erdbeere' similar to 'Erd[[:ALNUM:]]eere' -- true
'Erdbeere' similar to 'Erd[[:DIGIT:]]eere' -- false
'Erdbeere' similar to 'Erd[a[:SPACE:]b]eere' -- true
'Erdbeere' similar to [[:ALPHA:]] -- false
'E' similar to [[:ALPHA:]] -- true

If a class definition starts with a caret, everything that follows is excluded from the class. All other
characters match:

'Framboise' similar to 'Fra[^ck-p]boise' -- false
'Framboise' similar to 'Fr[^a][^a]boise' -- false
'Framboise' similar to 'Fra[^[:DIGIT:]]boise' -- true

If the caret is not placed at the start of the sequence, the class contains everything before the caret,
except for the elements that also occur after the caret:

'Grapefruit' similar to 'Grap[a-m^f-i]fruit' -- true
'Grapefruit' similar to 'Grap[abc^xyz]fruit' -- false
'Grapefruit' similar to 'Grap[abc^de]fruit' -- false
'Grapefruit' similar to 'Grap[abe^de]fruit' -- false

'3' similar to '[[:DIGIT:]^4-8]' -- true
'6' similar to '[[:DIGIT:]^4-8]' -- false

Lastly, the already mentioned wildcard ‘_’ is a character class of its own, matching any single
character.

Quantifiers

A question mark (‘?’) immediately following a character or class indicates that the preceding item
may occur 0 or 1 times in order to match:

Chapter 4. Common Language Elements

78

'Hallon' similar to 'Hal?on' -- false
'Hallon' similar to 'Hal?lon' -- true
'Hallon' similar to 'Halll?on' -- true
'Hallon' similar to 'Hallll?on' -- false
'Hallon' similar to 'Halx?lon' -- true
'Hallon' similar to 'H[a-c]?llon[x-z]?' -- true

An asterisk (‘*’) immediately following a character or class indicates that the preceding item may
occur 0 or more times in order to match:

'Icaque' similar to 'Ica*que' -- true
'Icaque' similar to 'Icar*que' -- true
'Icaque' similar to 'I[a-c]*que' -- true
'Icaque' similar to '_*' -- true
'Icaque' similar to '[[:ALPHA:]]*' -- true
'Icaque' similar to 'Ica[xyz]*e' -- false

A plus sign (‘+’) immediately following a character or class indicates that the preceding item must
occur 1 or more times in order to match:

'Jujube' similar to 'Ju_+' -- true
'Jujube' similar to 'Ju+jube' -- true
'Jujube' similar to 'Jujuber+' -- false
'Jujube' similar to 'J[jux]+be' -- true
'Jujube' sililar to 'J[[:DIGIT:]]+ujube' -- false

If a character or class is followed by a number enclosed in braces (‘{’ and ‘}’), it must be repeated
exactly that number of times in order to match:

'Kiwi' similar to 'Ki{2}wi' -- false
'Kiwi' similar to 'K[ipw]{2}i' -- true
'Kiwi' similar to 'K[ipw]{2}' -- false
'Kiwi' similar to 'K[ipw]{3}' -- true

If the number is followed by a comma (‘,’), the item must be repeated at least that number of times
in order to match:

'Limone' similar to 'Li{2,}mone' -- false
'Limone' similar to 'Li{1,}mone' -- true
'Limone' similar to 'Li[nezom]{2,}' -- true

If the braces contain two numbers separated by a comma, the second number not smaller than the
first, then the item must be repeated at least the first number and at most the second number of
times in order to match:

Chapter 4. Common Language Elements

79

'Mandarijn' similar to 'M[a-p]{2,5}rijn' -- true
'Mandarijn' similar to 'M[a-p]{2,3}rijn' -- false
'Mandarijn' similar to 'M[a-p]{2,3}arijn' -- true

The quantifiers ‘?’, ‘*’ and ‘+’ are shorthand for {0,1}, {0,} and {1,}, respectively.

OR-ing Terms

Regular expression terms can be OR’ed with the ‘|’ operator. A match is made when the argument
string matches at least one of the terms:

'Nektarin' similar to 'Nek|tarin' -- false
'Nektarin' similar to 'Nektarin|Persika' -- true
'Nektarin' similar to 'M_+|N_+|P_+' -- true

Subexpressions

One or more parts of the regular expression can be grouped into subexpressions (also called
subpatterns) by placing them between parentheses (‘(’ and ‘)’). A subexpression is a regular
expression in its own right. It can contain all the elements allowed in a regular expression, and can
also have quantifiers added to it.

'Orange' similar to 'O(ra|ri|ro)nge' -- true
'Orange' similar to 'O(r[a-e])+nge' -- true
'Orange' similar to 'O(ra){2,4}nge' -- false
'Orange' similar to 'O(r(an|in)g|rong)?e' -- true

Escaping Special Characters

In order to match against a character that is special in regular expressions, that character has to be
escaped. There is no default escape character; rather, the user specifies one when needed:

'Peer (Poire)' similar to 'P[^]+ \(P[^]+\)' escape '\' -- true
'Pera [Pear]' similar to 'P[^]+ #[P[^]+#]' escape '#' -- true
'Päron-äppledryck' similar to 'P%$-ä%' escape '$' -- true
'Pärondryck' similar to 'P%--ä%' escape '-' -- false

The last line demonstrates that the escape character can also escape itself, if needed.

IS [NOT] DISTINCT FROM

Available in

DSQL, PSQL

Chapter 4. Common Language Elements

80

Syntax

<operand1> IS [NOT] DISTINCT FROM <operand2>

Two operands are considered DISTINCT (different) if they have a different value or if one of them is
NULL and the other non-null. They are considered NOT DISTINCT (equal) if they have the same value
or if both of them are NULL.

IS [NOT] DISTINCT FROM always returns TRUE or FALSE and never UNKNOWN (NULL) (unknown
value). Operators ‘=’ and ‘<>’, conversely, will return UNKNOWN (NULL) if one or both operands are
NULL.

Table 19. Results of Various Comparison Predicates

Operand values Result of various predicates

= IS NOT DISTINCT
FROM <> IS DISTINCT FROM

Same value TRUE TRUE FALSE FALSE

Different values FALSE FALSE TRUE TRUE

Both NULL UNKNOWN TRUE UNKNOWN FALSE

One NULL, one non-NULL UNKNOWN FALSE UNKNOWN TRUE

Examples

SELECT ID, NAME, TEACHER
FROM COURSES
WHERE START_DAY IS NOT DISTINCT FROM END_DAY;

-- PSQL fragment
IF (NEW.JOB IS DISTINCT FROM OLD.JOB)
THEN POST_EVENT 'JOB_CHANGED';

See also

IS [NOT] NULL, Boolean IS [NOT]

Boolean IS [NOT]

Available in

DSQL, PSQL

Syntax

<value> IS [NOT] { TRUE | FALSE | UNKNOWN }

The IS predicate with Boolean literal values checks if the expression on the left side matches the
Boolean value on the right side. The expression on the left side must be of type BOOLEAN, otherwise
an exception is raised.

Chapter 4. Common Language Elements

81

The IS [NOT] UNKNOWN is equivalent to IS [NOT] NULL.

The right side of the predicate only accepts the literals TRUE, FALSE and UNKNOWN (and
NULL). It does not accept expressions.

Using the IS predicate with a Boolean data type

-- Checking FALSE value
SELECT * FROM TBOOL WHERE BVAL IS FALSE;

ID BVAL
============= =======
2 <false>

-- Checking UNKNOWN value
SELECT * FROM TBOOL WHERE BVAL IS UNKNOWN;

ID BVAL
============= =======
3 <null>

See also

IS [NOT] NULL

IS [NOT] NULL

Available in

DSQL, PSQL, ESQL

Syntax

<value> IS [NOT] NULL

Since NULL is not a value, these operators are not comparison operators. The IS [NOT] NULL predicate
tests that the expression on the left side has a value (IS NOT NULL) or has no value (IS NULL).

Example

Search for sales entries that have no shipment date set for them:

SELECT * FROM SALES
WHERE SHIP_DATE IS NULL;

Note regarding the IS predicates

Up to and including Firebird 2.5, the IS predicates, like the other comparison
predicates, do not have precedence over the others. In Firebird 3.0 and higher,
these predicates take precedence above the others.

Chapter 4. Common Language Elements

82

4.2.3. Existential Predicates

This group of predicates includes those that use subqueries to submit values for all kinds of
assertions in search conditions. Existential predicates are so called because they use various
methods to test for the existence or non-existence of some condition, returning TRUE if the existence
or non-existence is confirmed or FALSE otherwise.

EXISTS

Available in

DSQL, PSQL, ESQL

Syntax

[NOT] EXISTS (<select_stmt>)

The EXISTS predicate uses a subquery expression as its argument. It returns TRUE if the subquery
result would contain at least one row; otherwise it returns FALSE.

NOT EXISTS returns FALSE if the subquery result would contain at least one row; it returns TRUE
otherwise.

The subquery can specify multiple columns, or SELECT *, because the evaluation is
made on the number of rows that match its criteria, not on the data.

Examples

1. Find those employees who have projects.

SELECT *
FROM employee
WHERE EXISTS(SELECT *
 FROM employee_project ep
 WHERE ep.emp_no = employee.emp_no)

2. Find those employees who have no projects.

SELECT *
FROM employee
WHERE NOT EXISTS(SELECT *
 FROM employee_project ep
 WHERE ep.emp_no = employee.emp_no)

IN

Available in

DSQL, PSQL, ESQL

Chapter 4. Common Language Elements

83

Syntax

<value> [NOT] IN (<select_stmt> | <value_list>)

<value_list> ::= <value_1> [, <value_2> …]

The IN predicate tests whether the value of the expression on the left side is present in the set of
values specified on the right side. The set of values cannot have more than 1500 items. The IN
predicate can be replaced with the following equivalent forms:

(<value> = <value_1> [OR <value> = <value_2> …])

<value> = { ANY | SOME } (<select_stmt>)

When the IN predicate is used in the search conditions of DML queries, the Firebird optimizer can
use an index on the searched column, if a suitable one exists.

In its second form, the IN predicate tests whether the value of the expression on the left side is
present — or not present, if NOT IN is used — in the result of the executed subquery on the right side.

The subquery must be specified to result in only one column, otherwise the error “count of column
list and variable list do not match” will occur.

Queries specified using the IN predicate with a subquery can be replaced with a similar query using
the EXISTS predicate. For instance, the following query:

SELECT
 model, speed, hd
FROM PC
WHERE
model IN (SELECT model
 FROM product
 WHERE maker = 'A');

can be replaced with a similar one using the EXISTS predicate:

SELECT
 model, speed, hd
FROM PC
WHERE
 EXISTS (SELECT *
 FROM product
 WHERE maker = 'A'
 AND product.model = PC.model);

However, a query using NOT IN with a subquery does not always give the same result as its NOT
EXISTS counterpart. The reason is that EXISTS always returns TRUE or FALSE, whereas IN returns

Chapter 4. Common Language Elements

84

NULL in one of these two cases:

a. when the test value is NULL and the IN () list is not empty

b. when the test value has no match in the IN () list and at least one list element is NULL

It is in only these two cases that IN () will return NULL while the corresponding EXISTS predicate will
return FALSE ('no matching row found'). In a search or, for example, an IF (…) statement, both
results mean “failure” and it makes no difference to the outcome.

But, for the same data, NOT IN () will return NULL, while NOT EXISTS will return TRUE, leading to
opposite results.

As an example, suppose you have the following query:

-- Looking for people who were not born
-- on the same day as any famous New York citizen
SELECT P1.name AS NAME
FROM Personnel P1
WHERE P1.birthday NOT IN (SELECT C1.birthday
 FROM Celebrities C1
 WHERE C1.birthcity = 'New York');

Now, assume that the NY celebrities list is not empty and contains at least one NULL birthday. Then
for every citizen who does not share his birthday with a NY celebrity, NOT IN will return NULL,
because that is what IN does. The search condition is thereby not satisfied and the citizen will be left
out of the SELECT result, which is wrong.

For citizens whose birthday does match with a celebrity’s birthday, NOT IN will correctly return
FALSE, so they will be left out too, and no rows will be returned.

If the NOT EXISTS form is used:

-- Looking for people who were not born
-- on the same day as any famous New York citizen
SELECT P1.name AS NAME
FROM Personnel P1
WHERE NOT EXISTS (SELECT *
 FROM Celebrities C1
 WHERE C1.birthcity = 'New York'
 AND C1.birthday = P1.birthday);

non-matches will have a NOT EXISTS result of TRUE and their records will be in the result set.

If there is any chance of NULLs being encountered when searching for a non-match,
you will want to use NOT EXISTS.

Examples of use

1. Find employees with the names “Pete”, “Ann” and “Roger”:

Chapter 4. Common Language Elements

85

SELECT *
FROM EMPLOYEE
WHERE FIRST_NAME IN ('Pete', 'Ann', 'Roger');

2. Find all computers that have models whose manufacturer starts with the letter “A”:

SELECT
 model, speed, hd
FROM PC
WHERE
 model IN (SELECT model
 FROM product
 WHERE maker STARTING WITH 'A');

See also

EXISTS

SINGULAR

Available in

DSQL, PSQL, ESQL

Syntax

[NOT] SINGULAR (<select_stmt>)

The SINGULAR predicate takes a subquery as its argument and evaluates it as TRUE if the subquery
returns exactly one result row; otherwise the predicate is evaluated as FALSE. The subquery may
list several output columns since the rows are not returned anyway. They are only tested for
(singular) existence. For brevity, people usually specify ‘SELECT *’. The SINGULAR predicate can return
only two values: TRUE or FALSE.

Example

Find those employees who have only one project.

SELECT *
FROM employee
WHERE SINGULAR(SELECT *
 FROM employee_project ep
 WHERE ep.emp_no = employee.emp_no)

4.2.4. Quantified Subquery Predicates

A quantifier is a logical operator that sets the number of objects for which this condition is true. It is
not a numeric quantity, but a logical one that connects the condition with the full set of possible
objects. Such predicates are based on logical universal and existential quantifiers that are

Chapter 4. Common Language Elements

86

recognised in formal logic.

In subquery expressions, quantified predicates make it possible to compare separate values with
the results of subqueries; they have the following common form:

<value expression> <comparison operator> <quantifier> <subquery>

ALL

Available in

DSQL, PSQL, ESQL

Syntax

<value> <op> ALL (<select_stmt>)

When the ALL quantifier is used, the predicate is TRUE if every value returned by the subquery
satisfies the condition in the predicate of the main query.

Example

Show only those clients whose ratings are higher than the rating of every client in Paris.

SELECT c1.*
FROM Customers c1
WHERE c1.rating > ALL
 (SELECT c2.rating
 FROM Customers c2
 WHERE c2.city = 'Paris')

If the subquery returns an empty set, the predicate is TRUE for every left-side
value, regardless of the operator. This may appear to be contradictory, because
every left-side value will thus be considered both smaller and greater than, both
equal to and unequal to, every element of the right-side stream.

Nevertheless, it aligns perfectly with formal logic: if the set is empty, the predicate
is true 0 times, i.e. for every row in the set.

ANY and SOME

Available in

DSQL, PSQL, ESQL

Syntax

<value> <op> {ANY | SOME} (<select_stmt>)

Chapter 4. Common Language Elements

87

The quantifiers ANY and SOME are identical in their behaviour. Apparently, both are present in the
SQL standard so that they could be used interchangeably in order to improve the readability of
operators. When the ANY or the SOME quantifier is used, the predicate is TRUE if any of the values
returned by the subquery satisfies the condition in the predicate of the main query. If the subquery
would return no rows at all, the predicate is automatically considered as FALSE.

Example

Show only those clients whose ratings are higher than those of one or more clients in Rome.

SELECT *
FROM Customers
WHERE rating > ANY
 (SELECT rating
 FROM Customers
 WHERE city = 'Rome')

Chapter 4. Common Language Elements

88

Chapter 5. Data Definition (DDL) Statements
DDL is the data definition language subset of Firebird’s SQL language. DDL statements are used to
create, modify and delete database objects that have been created by users. When a DDL statement
is committed, the metadata for the object are created, changed or deleted.

5.1. DATABASE
This section describes how to create a database, connect to an existing database, alter the file
structure of a database and how to delete one. It also explains how to back up a database in two
quite different ways and how to switch the database to the “copy-safe” mode for performing an
external backup safely.

5.1.1. CREATE DATABASE

Used for

Creating a new database

Available in

DSQL, ESQL

Syntax

CREATE {DATABASE | SCHEMA} <filespec>
 [<db_initial_option> [<db_initial_option> ...]]
 [<db_config_option> [<db_config_option> ...]]

<db_initial_option> ::=
 USER username
 | PASSWORD 'password'
 | ROLE rolename
 | PAGE_SIZE [=] size
 | LENGTH [=] num [PAGE[S]]
 | SET NAMES 'charset'

<db_config_option> ::=
 DEFAULT CHARACTER SET default_charset
 [COLLATION collation] -- not supported in ESQL
 | <sec_file>
 | DIFFERENCE FILE 'diff_file' -- not supported in ESQL

<filespec> ::= "'" [server_spec]{filepath | db_alias} "'"

<server_spec> ::=
 host[/{port | service}]:
 | \\host\
 | <protocol>://[host[:{port | service}]/]

<protocol> ::= inet | inet4 | inet6 | wnet | xnet

Chapter 5. Data Definition (DDL) Statements

89

<sec_file> ::=
 FILE 'filepath'
 [LENGTH [=] num [PAGE[S]]
 [STARTING [AT [PAGE]] pagenum]

Each db_initial_option and db_config_option can occur at most once, except sec_file,
which can occur zero or more times.

Table 20. CREATE DATABASE Statement Parameters

Parameter Description

filespec File specification for primary database file

server_spec Remote server specification. Some protocols require specifying a
hostname. Optionally includes a port number or service name. Required
if the database is created on a remote server.

filepath Full path and file name including its extension. The file name must be
specified according to the rules of the platform file system being used.

db_alias Database alias previously created in the databases.conf file

host Host name or IP address of the server where the database is to be created

port The port number where the remote server is listening (parameter
RemoteServicePort in firebird.conf file)

service Service name. Must match the parameter value of RemoteServiceName in
firebird.conf file)

username Username of the owner of the new database. It may consist of up to 31
characters. The username can optionally be enclosed in single or double
quotes. When a username is enclosed in double quotes, it is case-sensitive
following the rules for quoted identifiers. When enclosed in single quotes,
it behaves as if the value was specified without quotes. The user must be
an administrator or have the CREATE DATABASE privilege.

password Password of the user as the database owner. When using the Legacy_Auth
authentication plugin, only the first 8 characters are used. Case-sensitive

rolename The name of the role whose rights should be taken into account when
creating a database. The role name can be enclosed in single or double
quotes. When the role name is enclosed in double quotes, it is case-
sensitive following the rules for quoted identifiers. When enclosed in
single quotes, it behaves as if the value was specified without quotes.

size Page size for the database, in bytes. Possible values are 4096, 8192 and
16384. The default page size is 8192.

num Maximum size of the primary database file, or a secondary file, in pages

charset Specifies the character set of the connection available to a client
connecting after the database is successfully created. Single quotes are
required.

Chapter 5. Data Definition (DDL) Statements

90

Parameter Description

default_charset Specifies the default character set for string data types

collation Default collation for the default character set

sec_file File specification for a secondary file

pagenum Starting page number for a secondary database file

diff_file File path and name for DIFFERENCE files (.delta files) for backup mode

The CREATE DATABASE statement creates a new database. You can use CREATE DATABASE or CREATE
SCHEMA. They are synonymous, but we recommend to always use CREATE DATABASE as this may change
in a future version of Firebird.

A database may consist of one or several files. The first (main) file is called the primary file,
subsequent files are called secondary file(s).

Multi-file Databases

Nowadays, multi-file databases are considered an anachronism. It made sense to
use multi-file databases on old file systems where the size of any file is limited. For
instance, you could not create a file larger than 4 GB on FAT32.

The primary file specification is the name of the database file and its extension with the full path to
it according to the rules of the OS platform file system being used. The database file must not exist
at the moment the database is being created. If it does exist, you will get an error message, and the
database will not be created.

If the full path to the database is not specified, the database will be created in one of the system
directories. The particular directory depends on the operating system. For this reason, unless you
have a strong reason to prefer that situation, always specify either the absolute path or an alias,
when creating a database.

Using a Database Alias

You can use aliases instead of the full path to the primary database file. Aliases are defined in the
databases.conf file in the following format:

alias = filepath

Executing a CREATE DATABASE statement requires special consideration in the client
application or database driver. As a result, it is not always possible to execute a
CREATE DATABASE statement. Some drivers provide other ways to create databases.
For example, Jaybird provides the class org.firebirdsql.management.FBManager to
programmatically create a database.

If necessary, you can always fallback to isql to create a database.

Chapter 5. Data Definition (DDL) Statements

91

Creating a Database on a Remote Server

If you create a database on a remote server, you need to specify the remote server specification.
The remote server specification depends on the protocol being used. If you use the TCP/IP protocol
to create a database, the primary file specification should look like this:

host[/{port|service}]:{filepath | db_alias}

If you use the Named Pipes protocol to create a database on a Windows server, the primary file
specification should look like this:

\\host\{filepath | db_alias}

Since Firebird 3.0, there is also a unified URL-like syntax for the remote server specification. In this
syntax, the first part specifies the name of the protocol, then a host name or IP address, port
number, and path of the primary database file, or an alias.

The following values can be specified as the protocol:

INET

TCP/IP (first tries to connect using the IPv6 protocol, if it fails, then IPv4)

INET4

TCP/IP v4 (since Firebird 3.0.1)

INET6

TCP/IP v6 (since Firebird 3.0.1)

WNET

NetBEUI or Named Pipes Protocol

XNET

local protocol (does not include a host, port and service name)

<protocol>://[host[:{port | service}]/]{filepath | db_alias}

Optional Parameters for CREATE DATABASE

USER and PASSWORD

Clauses for specifying the username and the password, respectively, of an existing user in the
security database (security3.fdb or whatever is configured in the SecurityDatabase
configuration). You do not have to specify the username and password if the ISC_USER and
ISC_PASSWORD environment variables are set. The user specified in the process of creating the
database will be its owner. This will be important when considering database and object
privileges.

Chapter 5. Data Definition (DDL) Statements

92

ROLE

The ROLE clause specifies the name of the role (usually RDB$ADMIN), which will be taken into
account when creating the database. The role must be assigned to the user in the applicable
security database.

PAGE_SIZE

Clause for specifying the database page size. This size will be set for the primary file and all
secondary files of the database. If you specify the database page size less than 4,096, it will be
automatically rounded up to 4,096. Other values not equal to either 4,096, 8,192 or 16,384 will be
changed to the closest smaller supported value. If the database page size is not specified, it is set
to the default value of 8,192.

LENGTH

Clause specifying the maximum size of the primary or secondary database file, in pages. When a
database is created, its primary and secondary files will occupy the minimum number of pages
necessary to store the system data, regardless of the value specified in the LENGTH clause. The
LENGTH value does not affect the size of the only (or last, in a multi-file database) file. The file will
keep increasing its size automatically when necessary.

SET NAMES

Clause specifying the character set of the connection available after the database is successfully
created. The character set NONE is used by default. Notice that the character set should be
enclosed in a pair of apostrophes (single quotes).

DEFAULT CHARACTER SET

Clause specifying the default character set for creating data structures of string data types.
Character sets are used for CHAR, VARCHAR and BLOB SUB_TYPE TEXT data types. The character set
NONE is used by default. It is also possible to specify the default COLLATION for the default character
set, making that collation sequence the default for the default character set. The default will be
used for the entire database except where an alternative character set, with or without a
specified collation, is used explicitly for a field, domain, variable, cast expression, etc.

STARTING AT

Clause that specifies the database page number at which the next secondary database file should
start. When the previous file is completely filled with data according to the specified page
number, the system will start adding new data to the next database file.

DIFFERENCE FILE

Clause specifying the path and name for the file delta that stores any mutations to the database
file after it has been switched to the “copy-safe” mode by the ALTER DATABASE BEGIN BACKUP
statement. For the detailed description of this clause, see ALTER DATABASE.

Specifying the Database Dialect

Databases are created in Dialect 3 by default. For the database to be created in SQL dialect 1, you
will need to execute the statement SET SQL DIALECT 1 from script or the client application, e.g. in
isql, before the CREATE DATABASE statement.

Chapter 5. Data Definition (DDL) Statements

93

Who Can Create a Database

The CREATE DATABASE statement can be executed by:

• Administrators

• Users with the CREATE DATABASE privilege

Examples Using CREATE DATABASE

1. Creating a database in Windows, located on disk D with a page size of 4,096. The owner of the
database will be the user wizard. The database will be in Dialect , and will use WIN1251 as its
default character set.

SET SQL DIALECT 1;
CREATE DATABASE 'D:\test.fdb'
USER 'wizard' PASSWORD 'player'
PAGE_SIZE = 4096 DEFAULT CHARACTER SET WIN1251;

2. Creating a database in the Linux operating system with a page size of 8,192 (default). The owner
of the database will be the user wizard. The database will be in Dialect 3 and will use UTF8 as its
default character set, with UNICODE_CI_AI as the default collation.

CREATE DATABASE '/home/firebird/test.fdb'
USER 'wizard' PASSWORD 'player'
DEFAULT CHARACTER SET UTF8 COLLATION UNICODE_CI_AI;

3. Creating a database on the remote server “baseserver” with the path specified in the alias “test”
that has been defined previously in the file databases.conf. The TCP/IP protocol is used. The
owner of the database will be the user wizard. The database will be in Dialect 3 and will use
UTF8 as its default character set.

CREATE DATABASE 'baseserver:test'
USER 'wizard' PASSWORD 'player'
DEFAULT CHARACTER SET UTF8;

4. Creating a database in Dialect 3 with UTF8 as its default character set. The primary file will
contain up to 10,000 pages with a page size of 8,192. As soon as the primary file has reached the
maximum number of pages, Firebird will start allocating pages to the secondary file test.fdb2.
If that file is filled up to its maximum as well, test.fdb3 becomes the recipient of all new page
allocations. As the last file, it has no page limit imposed on it by Firebird. New allocations will
continue for as long as the file system allows it or until the storage device runs out of free space.
If a LENGTH parameter were supplied for this last file, it would be ignored.

SET SQL DIALECT 3;
CREATE DATABASE 'baseserver:D:\test.fdb'
USER 'wizard' PASSWORD 'player'

Chapter 5. Data Definition (DDL) Statements

94

PAGE_SIZE = 8192
DEFAULT CHARACTER SET UTF8
FILE 'D:\test.fdb2'
STARTING AT PAGE 10001
FILE 'D:\test.fdb3'
STARTING AT PAGE 20001;

5. Creating a database in Dialect 3 with UTF8 as its default character set. The primary file will
contain up to 10,000 pages with a page size of 8,192. As far as file size and the use of secondary
files are concerned, this database will behave exactly like the one in the previous example.

SET SQL DIALECT 3;
CREATE DATABASE 'baseserver:D:\test.fdb'
USER 'wizard' PASSWORD 'player'
PAGE_SIZE = 8192
LENGTH 10000 PAGES
DEFAULT CHARACTER SET UTF8
FILE 'D:\test.fdb2'
FILE 'D:\test.fdb3'
STARTING AT PAGE 20001;

See also

ALTER DATABASE, DROP DATABASE

5.1.2. ALTER DATABASE

Used for

Altering the file organisation of a database, toggling its “copy-safe” state, managing encryption, and
other database-wide configuration

Available in

DSQL, ESQL — limited feature set

Syntax

ALTER {DATABASE | SCHEMA} <alter_db_option> [<alter_db_option> ...]

<alter_db_option> :==
 <add_sec_clause>
 | {ADD DIFFERENCE FILE 'diff_file' | DROP DIFFERENCE FILE}
 | {BEGIN | END} BACKUP
 | SET DEFAULT CHARACTER SET charset
 | SET LINGER TO linger_duration
 | DROP LINGER
 | {ENCRYPT WITH plugin_name [KEY key_name] | DECRYPT}

<add_sec_clause> ::= ADD <sec_file> [<sec_file> ...]

Chapter 5. Data Definition (DDL) Statements

95

<sec_file> ::=
 FILE 'filepath'
 [STARTING [AT [PAGE]] pagenum]
 [LENGTH [=] num [PAGE[S]]

Multiple files can be added in one ADD clause:

ALTER DATABASE
 ADD FILE x LENGTH 8000
 FILE y LENGTH 8000
 FILE z

Multiple occurrences of add_sec_clause (ADD FILE clauses) are allowed; an ADD FILE
clause that adds multiple files (as in the example above) can be mixed with others
that add only one file. The statement was documented incorrectly in the old
InterBase 6 Language Reference.

Table 21. ALTER DATABASE Statement Parameters

Parameter Description

add_sec_clause Adding a secondary database file

sec_file File specification for secondary file

filepath Full path and file name of the delta file or secondary database file

pagenum Page number from which the secondary database file is to start

num Maximum size of the secondary file in pages

diff_file File path and name of the .delta file (difference file)

charset New default character set of the database

linger_duration Duration of linger delay in seconds; must be greater than or equal to 0
(zero)

plugin_name The name of the encryption plugin

key_name The name of the encryption key

The ALTER DATABASE statement can:

• add secondary files to a database

• switch a single-file database into and out of the “copy-safe” mode (DSQL only)

• set or unset the path and name of the delta file for physical backups (DSQL only)

SCHEMA is currently a synonym for DATABASE; this may change in a future version, so
we recommend to always use DATABASE

Chapter 5. Data Definition (DDL) Statements

96

Who Can Alter the Database

The ALTER DATABASE statement can be executed by:

• Administrators

• Users with the ALTER DATABASE privilege

Parameters for ALTER DATABASE

ADD (FILE)

Adds secondary files to the database. It is necessary to specify the full path to the file and the
name of the secondary file. The description for the secondary file is similar to the one given for
the CREATE DATABASE statement.

ADD DIFFERENCE FILE

Specifies the path and name of the delta file that stores any mutations to the database whenever
it is switched to the “copy-safe” mode. This clause does not actually add any file. It just overrides
the default name and path of the .delta file. To change the existing settings, you should delete the
previously specified description of the .delta file using the DROP DIFFERENCE FILE clause before
specifying the new description of the delta file. If the path and name of the .delta file are not
overridden, the file will have the same path and name as the database, but with the .delta file
extension.

If only a file name is specified, the .delta file will be created in the current
directory of the server. On Windows, this will be the system directory — a very
unwise location to store volatile user files and contrary to Windows file system
rules.

DROP DIFFERENCE FILE

Deletes the description (path and name) of the .delta file specified previously in the ADD
DIFFERENCE FILE clause. The file is not actually deleted. DROP DIFFERENCE FILE deletes the path and
name of the .delta file from the database header. Next time the database is switched to the “copy-
safe” mode, the default values will be used (i.e. the same path and name as those of the database,
but with the .delta extension).

BEGIN BACKUP

Switches the database to the “copy-safe” mode. ALTER DATABASE with this clause freezes the main
database file, making it possible to back it up safely using file system tools, even if users are
connected and performing operations with data. Until the backup state of the database is
reverted to NORMAL, all changes made to the database will be written to the .delta (difference)
file.

Despite its syntax, a statement with the BEGIN BACKUP clause does not start a
backup process but just creates the conditions for doing a task that requires the
database file to be read-only temporarily.

END BACKUP

Switches the database from the “copy-safe” mode to the normal mode. A statement with this

Chapter 5. Data Definition (DDL) Statements

97

clause merges the .delta file with the main database file and restores the normal operation of the
database. Once the END BACKUP process starts, the conditions no longer exist for creating safe
backups by means of file system tools.

Use of BEGIN BACKUP and END BACKUP and copying the database files with
filesystem tools, is not safe with multi-file databases! Use this method only on
single-file databases.

Making a safe backup with the gbak utility remains possible at all times,
although it is not recommended running gbak while the database is in LOCKED
or MERGE state.

SET DEFAULT CHARACTER SET

Changes the default character set of the database. This change does not affect existing data or
columns. The new default character set will only be used in subsequent DDL commands.

SET LINGER TO

Sets the linger-delay. The linger-delay applies only to Firebird SuperServer, and is the number of
seconds the server keeps a database file (and its caches) open after the last connection to that
database was closed. This can help to improve performance at low cost, when the database is
opened and closed frequently, by keeping resources “warm” for the next connection.

This mode can be useful for web applications - without a connection pool -
where the connection to the database usually “lives” for a very short time.

The SET LINGER TO and DROP LINGER clauses can be combined in a single
statement, but the last clause “wins”. For example, ALTER DATABASE SET LINGER
TO 5 DROP LINGER will set the linger-delay to 0 (no linger), while ALTER DATABASE
DROP LINGER SET LINGER to 5 will set the linger-delay to 5 seconds.

DROP LINGER

Drops the linger-delay (sets it to zero). Using DROP LINGER is equivalent to using SET LINGER TO 0.

Dropping LINGER is not an ideal solution for the occasional need to turn it off for
some once-only condition where the server needs a forced shutdown. The gfix
utility now has the -NoLinger switch, which will close the specified database
immediately after the last attachment is gone, regardless of the LINGER setting in
the database. The LINGER setting is retained and works normally the next time.

The same one-off override is also available through the Services API, using the
tag isc_spb_prp_nolinger, e.g. (in one line):

fbsvcmgr host:service_mgr user sysdba password xxx
 action_properties dbname employee prp_nolinger

 The DROP LINGER and SET LINGER TO clauses can be combined in a single

Chapter 5. Data Definition (DDL) Statements

98

statement, but the last clause “wins”.

ENCRYPT WITH

See Encrypting a Database in the Security chapter.

DECRYPT

See Decrypting a Database in the Security chapter.

Examples of ALTER DATABASE Usage

1. Adding a secondary file to the database. As soon as 30000 pages are filled in the previous
primary or secondary file, the Firebird engine will start adding data to the secondary file
test4.fdb.

ALTER DATABASE
 ADD FILE 'D:\test4.fdb'
 STARTING AT PAGE 30001;

2. Specifying the path and name of the delta file:

ALTER DATABASE
 ADD DIFFERENCE FILE 'D:\test.diff';

3. Deleting the description of the delta file:

ALTER DATABASE
 DROP DIFFERENCE FILE;

4. Switching the database to the “copy-safe” mode:

ALTER DATABASE
 BEGIN BACKUP;

5. Switching the database back from the “copy-safe” mode to the normal operation mode:

ALTER DATABASE
 END BACKUP;

6. Changing the default character set for a database to WIN1251

ALTER DATABASE
 SET DEFAULT CHARACTER SET WIN1252;

Chapter 5. Data Definition (DDL) Statements

99

7. Setting a linger-delay of 30 seconds

ALTER DATABASE
 SET LINGER TO 30;

8. Encrypting the database with a plugin called DbCrypt

ALTER DATABASE
 ENCRYPT WITH DbCrypt;

9. Decrypting the database

ALTER DATABASE
 DECRYPT;

See also

CREATE DATABASE, DROP DATABASE

5.1.3. DROP DATABASE

Used for

Deleting the database to which you are currently connected

Available in

DSQL, ESQL

Syntax

DROP DATABASE

The DROP DATABASE statement deletes the current database. Before deleting a database, you have to
connect to it. The statement deletes the primary file, all secondary files and all shadow files.

Contrary to CREATE DATABASE and ALTER DATABASE, DROP SCHEMA is not a valid alias for
DROP DATABASE. This is intentional.

Who Can Drop a Database

The DROP DATABASE statement can be executed by:

• Administrators

• Users with the DROP DATABASE privilege

Chapter 5. Data Definition (DDL) Statements

100

Example of DROP DATABASE

Deleting the current database

DROP DATABASE;

See also

CREATE DATABASE, ALTER DATABASE

5.2. SHADOW
A shadow is an exact, page-by-page copy of a database. Once a shadow is created, all changes made
in the database are immediately reflected in the shadow. If the primary database file becomes
unavailable for some reason, the DBMS will switch to the shadow.

This section describes how to create and delete shadow files.

5.2.1. CREATE SHADOW

Used for

Creating a shadow for the current database

Available in

DSQL, ESQL

Syntax

CREATE SHADOW <sh_num> [{AUTO | MANUAL}] [CONDITIONAL]
 'filepath' [LENGTH [=] num [PAGE[S]]]
 [<secondary_file> ...]

<secondary_file> ::=
 FILE 'filepath'
 [STARTING [AT [PAGE]] pagenum]
 [LENGTH [=] num [PAGE[S]]]

Table 22. CREATE SHADOW Statement Parameters

Parameter Description

sh_num Shadow number — a positive number identifying the shadow set

filepath The name of the shadow file and the path to it, in accord with the rules of
the operating system

num Maximum shadow size, in pages

secondary_file Secondary file specification

page_num The number of the page at which the secondary shadow file should start

The CREATE SHADOW statement creates a new shadow. The shadow starts duplicating the database

Chapter 5. Data Definition (DDL) Statements

101

right at the moment it is created. It is not possible for a user to connect to a shadow.

Like a database, a shadow may be multi-file. The number and size of a shadow’s files are not
related to the number and size of the files of database it is shadowing.

The page size for shadow files is set to be equal to the database page size and cannot be changed.

If a calamity occurs involving the original database, the system converts the shadow to a copy of
the database and switches to it. The shadow is then unavailable. What happens next depends on the
MODE option.

AUTO | MANUAL Modes

When a shadow is converted to a database, it becomes unavailable. A shadow might alternatively
become unavailable because someone accidentally deletes its file, or the disk space where the
shadow files are stored is exhausted or is itself damaged.

• If the AUTO mode is selected (the default value), shadowing ceases automatically, all references
to it are deleted from the database header, and the database continues functioning normally.

If the CONDITIONAL option was set, the system will attempt to create a new shadow to replace the
lost one. It does not always succeed, however, and a new one may need to be created manually.

• If the MANUAL mode attribute is set when the shadow becomes unavailable, all attempts to
connect to the database and to query it will produce error messages. The database will remain
inaccessible until either the shadow again becomes available, or the database administrator
deletes it using the DROP SHADOW statement. MANUAL should be selected if continuous shadowing is
more important than uninterrupted operation of the database.

Options for CREATE SHADOW

LENGTH

Specifies the maximum size of the primary or secondary shadow file in pages. The LENGTH value
does not affect the size of the only shadow file, nor the last if it is a set. The last (or only) file will
keep automatically growing as long as it is necessary.

STARTING AT

Specifies the shadow page number at which the next shadow file should start. The system will
start adding new data to the next shadow file when the previous file is filled with data up to the
specified page number.

You can verify the sizes, names and location of the shadow files by connecting to
the database using isql and running the command SHOW DATABASE;

Who Can Create a Shadow

The CREATE SHADOW statement can be executed by:

• Administrators

Chapter 5. Data Definition (DDL) Statements

102

• Users with the ALTER DATABASE privilege

Examples Using CREATE SHADOW

1. Creating a shadow for the current database as “shadow number 1”:

CREATE SHADOW 1 'g:\data\test.shd';

2. Creating a multi-file shadow for the current database as “shadow number 2”:

CREATE SHADOW 2 'g:\data\test.sh1'
 LENGTH 8000 PAGES
 FILE 'g:\data\test.sh2';

See also

CREATE DATABASE, DROP SHADOW

5.2.2. DROP SHADOW

Used for

Deleting a shadow from the current database

Available in

DSQL, ESQL

Syntax

DROP SHADOW sh_num
 [{DELETE | PRESERVE} FILE]

Table 23. DROP SHADOW Statement Parameter

Parameter Description

sh_num Shadow number — a positive number identifying the shadow set

The DROP SHADOW statement deletes the specified shadow for the current database. When a shadow is
dropped, all files related to it are deleted and shadowing to the specified sh_num ceases. The
optional DELETE FILE clause makes this behaviour explicit. On the contrary, the PRESERVE FILE clause
will remove the shadow from the database, but the file itself will not be deleted.

Who Can Drop a Shadow

The DROP SHADOW statement can be executed by:

• Administrators

• Users with the ALTER DATABASE privilege

Chapter 5. Data Definition (DDL) Statements

103

Example of DROP SHADOW

Deleting “shadow number 1”.

DROP SHADOW 1;

See also

CREATE SHADOW

5.3. DOMAIN
DOMAIN is one of the object types in a relational database. A domain is created as a specific data type
with some attributes attached to it. Once it has been defined in the database, it can be reused
repeatedly to define table columns, PSQL arguments and PSQL local variables. Those objects inherit
all of the attributes of the domain. Some attributes can be overridden when the new object is
defined, if required.

This section describes the syntax of statements used to create, modify and delete domains. A
detailed description of domains and their usage can be found in Custom Data Types — Domains.

5.3.1. CREATE DOMAIN

Used for

Creating a new domain

Available in

DSQL, ESQL

Syntax

CREATE DOMAIN name [AS] <datatype>
 [DEFAULT {<literal> | NULL | <context_var>}]
 [NOT NULL] [CHECK (<dom_condition>)]
 [COLLATE collation_name]

<datatype> ::=
 <scalar_datatype> | <blob_datatype> | <array_datatype>

<scalar_datatype> ::=
 !! See Scalar Data Types Syntax !!

<blob_datatype> ::=
 !! See BLOB Data Types Syntax !!

<array_datatype> ::=
 !! See Array Data Types Syntax !!

<dom_condition> ::=
 <val> <operator> <val>

Chapter 5. Data Definition (DDL) Statements

104

 | <val> [NOT] BETWEEN <val> AND <val>
 | <val> [NOT] IN ({<val> [, <val> ...] | <select_list>})
 | <val> IS [NOT] NULL
 | <val> IS [NOT] DISTINCT FROM <val>
 | <val> [NOT] CONTAINING <val>
 | <val> [NOT] STARTING [WITH] <val>
 | <val> [NOT] LIKE <val> [ESCAPE <val>]
 | <val> [NOT] SIMILAR TO <val> [ESCAPE <val>]
 | <val> <operator> {ALL | SOME | ANY} (<select_list>)
 | [NOT] EXISTS (<select_expr>)
 | [NOT] SINGULAR (<select_expr>)
 | (<dom_condition>)
 | NOT <dom_condition>
 | <dom_condition> OR <dom_condition>
 | <dom_condition> AND <dom_condition>

<operator> ::=
 <> | != | ^= | ~= | = | < | > | <= | >=
 | !< | ^< | ~< | !> | ^> | ~>

<val> ::=
 VALUE
 | <literal>
 | <context_var>
 | <expression>
 | NULL
 | NEXT VALUE FOR genname
 | GEN_ID(genname, <val>)
 | CAST(<val> AS <cast_type>)
 | (<select_one>)
 | func([<val> [, <val> ...]])

<cast_type> ::= <domain_or_non_array_type> | <array_datatype>

<domain_or_non_array_type> ::=
 !! See Scalar Data Types Syntax !!

Table 24. CREATE DOMAIN Statement Parameters

Parameter Description

name Domain name consisting of up to 31 characters

datatype SQL data type

literal A literal value that is compatible with datatype

context_var Any context variable whose type is compatible with datatype

dom_condition Domain condition

collation_name Name of a collation sequence that is valid for charset_name, if it is
supplied with datatype or, otherwise, is valid for the default character set
of the database

Chapter 5. Data Definition (DDL) Statements

105

Parameter Description

select_one A scalar SELECT statement — selecting one column and returning only one
row

select_list A SELECT statement selecting one column and returning zero or more
rows

select_expr A SELECT statement selecting one or more columns and returning zero or
more rows

expression An expression resolving to a value that is compatible with datatype

genname Sequence (generator) name

func Internal function or UDF

The CREATE DOMAIN statement creates a new domain.

Any SQL data type can be specified as the domain type.

Type-specific Details

Array Types

• If the domain is to be an array, the base type can be any SQL data type except BLOB and array.

• The dimensions of the array are specified between square brackets. (In the Syntax block,
these brackets appear in quotes to distinguish them from the square brackets that identify
optional syntax elements.)

• For each array dimension, one or two integer numbers define the lower and upper
boundaries of its index range:

◦ By default, arrays are 1-based. The lower boundary is implicit and only the upper
boundary need be specified. A single number smaller than 1 defines the range num..1
and a number greater than 1 defines the range 1..num.

◦ Two numbers separated by a colon (‘:’) and optional whitespace, the second greater than
the first, can be used to define the range explicitly. One or both boundaries can be less
than zero, as long as the upper boundary is greater than the lower.

• When the array has multiple dimensions, the range definitions for each dimension must be
separated by commas and optional whitespace.

• Subscripts are validated only if an array actually exists. It means that no error messages
regarding invalid subscripts will be returned if selecting a specific element returns nothing
or if an array field is NULL.

String Types

You can use the CHARACTER SET clause to specify the character set for the CHAR, VARCHAR and BLOB
(SUB_TYPE TEXT) types. If the character set is not specified, the character set specified as DEFAULT
CHARACTER SET of the database will be used. If no character set was specified then, the character
set NONE is applied by default when you create a character domain.

With character set NONE, character data are stored and retrieved the way they
were submitted. Data in any encoding can be added to a column based on such

Chapter 5. Data Definition (DDL) Statements

106

a domain, but it is impossible to add this data to a column with a different
encoding. Because no transliteration is performed between the source and
destination encodings, errors may result.

DEFAULT Clause

The optional DEFAULT clause allows you to specify a default value for the domain. This value will
be added to the table column that inherits this domain when the INSERT statement is executed, if
no value is specified for it in the DML statement. Local variables and arguments in PSQL
modules that reference this domain will be initialized with the default value. For the default
value, use a literal of a compatible type or a context variable of a compatible type.

NOT NULL Constraint

Columns and variables based on a domain with the NOT NULL constraint will be prevented from
being written as NULL, i.e., a value is required.

When creating a domain, take care to avoid specifying limitations that would
contradict one another. For instance, NOT NULL and DEFAULT NULL are
contradictory.

CHECK Constraint(s)

The optional CHECK clause specifies constraints for the domain. A domain constraint specifies
conditions that must be satisfied by the values of table columns or variables that inherit from
the domain. A condition must be enclosed in parentheses. A condition is a logical expression
(also called a predicate) that can return the Boolean results TRUE, FALSE and UNKNOWN. A condition
is considered satisfied if the predicate returns the value TRUE or “unknown value” (equivalent to
NULL). If the predicate returns FALSE, the condition for acceptance is not met.

VALUE Keyword

The keyword VALUE in a domain constraint substitutes for the table column that is based on this
domain or for a variable in a PSQL module. It contains the value assigned to the variable or the
table column. VALUE can be used anywhere in the CHECK constraint, though it is usually used in the
left part of the condition.

COLLATE

The optional COLLATE clause allows you to specify the collation sequence if the domain is based
on one of the string data types, including BLOBs with text subtypes. If no collation sequence is
specified, the collation sequence will be the one that is default for the specified character set at
the time the domain is created.

Who Can Create a Domain

The CREATE DOMAIN statement can be executed by:

• Administrators

• Users with the CREATE DOMAIN privilege

Chapter 5. Data Definition (DDL) Statements

107

CREATE DOMAIN Examples

1. Creating a domain that can take values greater than 1,000, with a default value of 10,000.

CREATE DOMAIN CUSTNO AS
 INTEGER DEFAULT 10000
 CHECK (VALUE > 1000);

2. Creating a domain that can take the values 'Yes' and 'No' in the default character set specified
during the creation of the database.

CREATE DOMAIN D_BOOLEAN AS
 CHAR(3) CHECK (VALUE IN ('Yes', 'No'));

3. Creating a domain with the UTF8 character set and the UNICODE_CI_AI collation sequence.

CREATE DOMAIN FIRSTNAME AS
 VARCHAR(30) CHARACTER SET UTF8
 COLLATE UNICODE_CI_AI;

4. Creating a domain of the DATE type that will not accept NULL and uses the current date as the
default value.

CREATE DOMAIN D_DATE AS
 DATE DEFAULT CURRENT_DATE
 NOT NULL;

5. Creating a domain defined as an array of 2 elements of the NUMERIC(18, 3) type. The starting
array index is 1.

CREATE DOMAIN D_POINT AS
 NUMERIC(18, 3) [2];

Domains defined over an array type may be used only to define table columns.
You cannot use array domains to define local variables in PSQL modules.

6. Creating a domain whose elements can be only country codes defined in the COUNTRY table.

CREATE DOMAIN D_COUNTRYCODE AS CHAR(3)
 CHECK (EXISTS(SELECT * FROM COUNTRY
 WHERE COUNTRYCODE = VALUE));

 The example is given only to show the possibility of using predicates with

Chapter 5. Data Definition (DDL) Statements

108

queries in the domain test condition. It is not recommended to create this style
of domain in practice unless the lookup table contains data that are never
deleted.

See also

ALTER DOMAIN, DROP DOMAIN

5.3.2. ALTER DOMAIN

Used for

Altering the current attributes of a domain or renaming it

Available in

DSQL, ESQL

Syntax

ALTER DOMAIN domain_name
 [TO new_name]
 [TYPE <datatype>]
 [{SET DEFAULT {<literal> | NULL | <context_var>} | DROP DEFAULT}]
 [{SET | DROP} NOT NULL]
 [{ADD [CONSTRAINT] CHECK (<dom_condition>) | DROP CONSTRAINT}]

<datatype> ::=
 <scalar_datatype> | <blob_datatype>

<scalar_datatype> ::=
 !! See Scalar Data Types Syntax !!

<blob_datatype> ::=
 !! See BLOB Data Types Syntax !!

!! See also CREATE DOMAIN Syntax !!

Table 25. ALTER DOMAIN Statement Parameters

Parameter Description

new_name New name for domain, consisting of up to 31 characters

literal A literal value that is compatible with datatype

context_var Any context variable whose type is compatible with datatype

The ALTER DOMAIN statement enables changes to the current attributes of a domain, including its
name. You can make any number of domain alterations in one ALTER DOMAIN statement.

ALTER DOMAIN clauses

Chapter 5. Data Definition (DDL) Statements

109

TO name

Use the TO clause to rename the domain, as long as there are no dependencies on the domain, i.e.
table columns, local variables or procedure arguments referencing it.

SET DEFAULT

With the SET DEFAULT clause you can set a new default value. If the domain already has a default
value, there is no need to delete it first — it will be replaced by the new one.

DROP DEFAULT

Use this clause to delete a previously specified default value and replace it with NULL.

SET NOT NULL

Use this class to add a NOT NULL constraint to the domain; columns or parameters of this domain
will be prevented from being written as NULL, i.e., a value is required.

Adding a NOT NULL constraint to an existing domain will subject all columns
using this comain to a full data validation, so ensure that the columns have no
nulls before attempting the change.

DROP NOT NULL

Drop the NOT NULL constraint from the domain.

An explicit NOT NULL constraint on a column that depends on a domain prevails
over the domain. In this situation, the modification of the domain to make it
nullable does not propagate to the column.

ADD CONSTRAINT CHECK

Use the ADD CONSTRAINT CHECK clause to add a CHECK constraint to the domain. If the domain
already has a CHECK constraint, it will have to be deleted first, using an ALTER DOMAIN statement
that includes a DROP CONSTRAINT clause.

TYPE

The TYPE clause is used to change the data type of the domain to a different, compatible one. The
system will forbid any change to the type that could result in data loss. An example would be if
the number of characters in the new type were smaller than in the existing type.

When you alter the attributes of a domain, existing PSQL code may become
invalid. For information on how to detect it, read the piece entitled The
RDB$VALID_BLR Field in Appendix A.

What ALTER DOMAIN Cannot Alter

• If the domain was declared as an array, it is not possible to change its type or its dimensions;
nor can any other type be changed to an array type.

• There is no way to change the default collation without dropping the domain and recreating it
with the desired attributes.

Chapter 5. Data Definition (DDL) Statements

110

Who Can Alter a Domain

The ALTER DOMAIN statement can be executed by:

• Administrators

• The owner of the domain

• Users with the ALTER ANY DOMAIN privilege

Domain alterations can be prevented by dependencies from objects to which the user does not have
sufficient privileges.

ALTER DOMAIN Examples

1. Changing the data type to INTEGER and setting or changing the default value to 2,000:

ALTER DOMAIN CUSTNO
 TYPE INTEGER
 SET DEFAULT 2000;

2. Renaming a domain.

ALTER DOMAIN D_BOOLEAN TO D_BOOL;

3. Deleting the default value and adding a constraint for the domain:

ALTER DOMAIN D_DATE
 DROP DEFAULT
 ADD CONSTRAINT CHECK (VALUE >= date '01.01.2000');

4. Changing the CHECK constraint:

ALTER DOMAIN D_DATE
 DROP CONSTRAINT;

ALTER DOMAIN D_DATE
 ADD CONSTRAINT CHECK
 (VALUE BETWEEN date '01.01.1900' AND date '31.12.2100');

5. Changing the data type to increase the permitted number of characters:

ALTER DOMAIN FIRSTNAME
 TYPE VARCHAR(50) CHARACTER SET UTF8;

6. Adding a NOT NULL constraint:

Chapter 5. Data Definition (DDL) Statements

111

ALTER DOMAIN FIRSTNAME
 SET NOT NULL;

7. Removing a NOT NULL constraint:

ALTER DOMAIN FIRSTNAME
 DROP NOT NULL;

See also

CREATE DOMAIN, DROP DOMAIN

5.3.3. DROP DOMAIN

Used for

Deleting an existing domain

Available in

DSQL, ESQL

Syntax

DROP DOMAIN domain_name

The DROP DOMAIN statement deletes a domain that exists in the database. It is not possible to delete a
domain if it is referenced by any database table columns or used in any PSQL module. In order to
delete a domain that is in use, all columns in all tables that refer to the domain will have to be
dropped and all references to the domain will have to be removed from PSQL modules.

Who Can Drop a Domain

The DROP DOMAIN statement can be executed by:

• Administrators

• The owner of the domain

• Users with the DROP ANY DOMAIN privilege

Example of DROP DOMAIN

Deleting the COUNTRYNAME domain

DROP DOMAIN COUNTRYNAME;

See also

CREATE DOMAIN, ALTER DOMAIN

Chapter 5. Data Definition (DDL) Statements

112

5.4. TABLE
As a relational DBMS, Firebird stores data in tables. A table is a flat, two-dimensional structure
containing any number of rows. Table rows are often called records.

All rows in a table have the same structure and consist of columns. Table columns are often called
fields. A table must have at least one column. Each column contains a single type of SQL data.

This section describes how to create, alter and delete tables in a database.

5.4.1. CREATE TABLE

Used for

creating a new table (relation)

Available in

DSQL, ESQL

Syntax

CREATE [GLOBAL TEMPORARY] TABLE tablename
 [EXTERNAL [FILE] 'filespec']
 (<col_def> [, {<col_def> | <tconstraint>} ...])
 [ON COMMIT {DELETE | PRESERVE} ROWS]

<col_def> ::=
 <regular_col_def>
 | <computed_col_def>
 | <identity_col_def>

<regular_col_def> ::=
 colname {<datatype> | domainname}
 [DEFAULT {<literal> | NULL | <context_var>}]
 [<col_constraint> ...]
 [COLLATE collation_name]

<computed_col_def> ::=
 colname [{<datatype> | domainname}]
 {COMPUTED [BY] | GENERATED ALWAYS AS} (<expression>)

<identity_col_def> ::=
 colname {<datatype> | domainname}
 GENERATED BY DEFAULT AS IDENTITY [(START WITH startvalue)]
 [<col_constraint> ...]

<datatype> ::=
 <scalar_datatype> | <blob_datatype> | <array_datatype>

<scalar_datatype> ::=
 !! See Scalar Data Types Syntax !!

Chapter 5. Data Definition (DDL) Statements

113

<blob_datatype> ::=
 !! See BLOB Data Types Syntax !!

<array_datatype> ::=
 !! See Array Data Types Syntax !!

<col_constraint> ::=
 [CONSTRAINT constr_name]
 { PRIMARY KEY [<using_index>]
 | UNIQUE [<using_index>]
 | REFERENCES other_table [(colname)] [<using_index>]
 [ON DELETE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
 [ON UPDATE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
 | CHECK (<check_condition>)
 | NOT NULL }

<tconstraint> ::=
 [CONSTRAINT constr_name]
 { PRIMARY KEY (<col_list>) [<using_index>]
 | UNIQUE (<col_list>) [<using_index>]
 | FOREIGN KEY (<col_list>)
 REFERENCES other_table [(<col_list>)] [<using_index>]
 [ON DELETE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
 [ON UPDATE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
 | CHECK (<check_condition>) }

<col_list> ::= colname [, colname ...]

<using_index> ::= USING
 [ASC[ENDING] | DESC[ENDING]] INDEX indexname

<check_condition> ::=
 <val> <operator> <val>
 | <val> [NOT] BETWEEN <val> AND <val>
 | <val> [NOT] IN (<val> [, <val> ...] | <select_list>)
 | <val> IS [NOT] NULL
 | <val> IS [NOT] DISTINCT FROM <val>
 | <val> [NOT] CONTAINING <val>
 | <val> [NOT] STARTING [WITH] <val>
 | <val> [NOT] LIKE <val> [ESCAPE <val>]
 | <val> [NOT] SIMILAR TO <val> [ESCAPE <val>]
 | <val> <operator> {ALL | SOME | ANY} (<select_list>)
 | [NOT] EXISTS (<select_expr>)
 | [NOT] SINGULAR (<select_expr>)
 | (<check_condition>)
 | NOT <check_condition>
 | <check_condition> OR <check_condition>
 | <check_condition> AND <check_condition>

<operator> ::=

Chapter 5. Data Definition (DDL) Statements

114

 <> | != | ^= | ~= | = | < | > | <= | >=
 | !< | ^< | ~< | !> | ^> | ~>

<val> ::=
 colname ['['array_idx [, array_idx ...]']']
 | <literal>
 | <context_var>
 | <expression>
 | NULL
 | NEXT VALUE FOR genname
 | GEN_ID(genname, <val>)
 | CAST(<val> AS <cast_type>)
 | (<select_one>)
 | func([<val> [, <val> ...]])

<cast_type> ::= <domain_or_non_array_type> | <array_datatype>

<domain_or_non_array_type> ::=
 !! See Scalar Data Types Syntax !!

Table 26. CREATE TABLE Statement Parameters

Parameter Description

tablename Name (identifier) for the table. It may consist of up to 31 characters and
must be unique in the database.

filespec File specification (only for external tables). Full file name and path,
enclosed in single quotes, correct for the local file system and located on
a storage device that is physically connected to Firebird’s host computer.

colname Name (identifier) for a column in the table. May consist of up to 31
characters and must be unique in the table.

datatype SQL data type

domain_name Domain name

start_value The initial value of the identity column

col_constraint Column constraint

tconstraint Table constraint

constr_name The name (identifier) of a constraint. May consist of up to 31 characters.

other_table The name of the table referenced by the foreign key constraint

other_col The name of the column in other_table that is referenced by the foreign
key

literal A literal value that is allowed in the given context

context_var Any context variable whose data type is allowed in the given context

check_condition The condition applied to a CHECK constraint, that will resolve as either
true, false or NULL

Chapter 5. Data Definition (DDL) Statements

115

Parameter Description

collation Collation

select_one A scalar SELECT statement — selecting one column and returning only one
row

select_list A SELECT statement selecting one column and returning zero or more
rows

select_expr A SELECT statement selecting one or more columns and returning zero or
more rows

expression An expression resolving to a value that is allowed in the given context

genname Sequence (generator) name

func Internal function or UDF

The CREATE TABLE statement creates a new table. Any user can create it and its name must be unique
among the names of all tables, views and stored procedures in the database.

A table must contain at least one column that is not computed, and the names of columns must be
unique in the table.

A column must have either an explicit SQL data type, the name of a domain whose attributes will be
copied for the column, or be defined as COMPUTED BY an expression (a calculated field).

A table may have any number of table constraints, including none.

Character Columns

You can use the CHARACTER SET clause to specify the character set for the CHAR, VARCHAR and BLOB (text
subtype) types. If the character set is not specified, the default character set of the database - at time
of the creation of the column - will be used. If the database has no default character set, the NONE
character set is applied. In this case, data is stored and retrieved the way it was submitted. Data in
any encoding can be added to such a column, but it is not possible to add this data to a column with
a different encoding. No transliteration is performed between the source and destination
encodings, which may result in errors.

The optional COLLATE clause allows you to specify the collation sequence for character data types,
including BLOB SUB_TYPE TEXT. If no collation sequence is specified, the default collation sequence
for the specified character set - at time of the creation of the column - is applied.

Setting a DEFAULT Value

The optional DEFAULT clause allows you to specify the default value for the table column. This value
will be added to the column when an INSERT statement is executed if no value was specified for it
and that column was omitted from the INSERT command.

The default value can be a literal of a compatible type, a context variable that is type-compatible
with the data type of the column, or NULL, if the column allows it. If no default value is explicitly
specified, NULL is implied.

Chapter 5. Data Definition (DDL) Statements

116

An expression cannot be used as a default value.

Domain-based Columns

To define a column, you can use a previously defined domain. If the definition of a column is based
on a domain, it may contain a new default value, additional CHECK constraints, and a COLLATE clause
that will override the values specified in the domain definition. The definition of such a column
may contain additional column constraints (for instance, NOT NULL), if the domain does not have it.

It is not possible to define a domain-based column that is nullable if the domain
was defined with the NOT NULL attribute. If you want to have a domain that might
be used for defining both nullable and non-nullable columns and variables, it is
better practice defining the domain nullable and apply NOT NULL in the
downstream column definitions and variable declarations.

Identity Columns (autoincrement)

Identity columns can be defined using the GENERATED BY DEFAULT AS IDENTITY clause. The identity
column is the column associated with internal sequence generator. Its value is set automatically
every time it is not specified in the INSERT statement. The optional START WITH clause allows you to
specify an initial value other than 1.

Incorrect START WITH behaviour

The SQL standard requires that START WITH specifies the first value to be generated.
Unfortunately, the current implementation in Firebird instead uses the specified
value as the initial value of the internal generator backing the identity column.
That means that right now it specifies the value before the first value that is
generated.

This will be fixed in Firebird 4, see also CORE-6376.

Rules

• The data type of an identity column must be an exact number type with zero scale. Allowed
types are thus SMALLINT, INTEGER, BIGINT, NUMERIC(p[,0]) and DECIMAL(p[,0]).

• An identity column cannot have a DEFAULT or COMPUTED value.

• An identity column cannot be altered to become a regular column. The reverse
is also true. Firebird 4 will introduce the option to alter an identity column to a
regular column.

• Identity columns are implicitly NOT NULL (non-nullable).

• Uniqueness is not enforced automatically. A UNIQUE or PRIMARY KEY constraint is
required to guarantee uniqueness.

• The use of other methods of generating key values for identity columns, e.g. by
trigger-generator code or by allowing users to change or add them, is
discouraged to avoid unexpected key violations.

Chapter 5. Data Definition (DDL) Statements

117

http://tracker.firebirdsql.org/browse/CORE-6376

Calculated Fields

Calculated fields can be defined with the COMPUTED [BY] or GENERATED ALWAYS AS clause (according to
the SQL:2003 standard). They mean the same. Describing the data type is not required (but possible)
for calculated fields, as the DBMS calculates and stores the appropriate type as a result of the
expression analysis. Appropriate operations for the data types included in an expression must be
specified precisely.

If the data type is explicitly specified for a calculated field, the calculation result is converted to the
specified type. This means, for instance, that the result of a numeric expression could be rendered
as a string.

In a query that selects a COMPUTED BY column, the expression is evaluated for each row of the
selected data.

Instead of a computed column, in some cases it makes sense to use a regular
column whose value is evaluated in triggers for adding and updating data. It may
reduce the performance of inserting/updating records, but it will increase the
performance of data selection.

Defining an Array Column

• If the column is to be an array, the base type can be any SQL data type except BLOB and array.

• The dimensions of the array are specified between square brackets. (In the Syntax block these
brackets appear in quotes to distinguish them from the square brackets that identify optional
syntax elements.)

• For each array dimension, one or two integer numbers define the lower and upper boundaries
of its index range:

◦ By default, arrays are 1-based. The lower boundary is implicit and only the upper boundary
need be specified. A single number smaller than 1 defines the range num..1 and a number
greater than 1 defines the range 1..num.

◦ Two numbers separated by a colon (‘:’) and optional whitespace, the second greater than the
first, can be used to define the range explicitly. One or both boundaries can be less than
zero, as long as the upper boundary is greater than the lower.

• When the array has multiple dimensions, the range definitions for each dimension must be
separated by commas and optional whitespace.

• Subscripts are validated only if an array actually exists. It means that no error messages
regarding invalid subscripts will be returned if selecting a specific element returns nothing or if
an array field is NULL.

Constraints

Five types of constraints can be specified. They are:

• Primary key (PRIMARY KEY)

• Unique key (UNIQUE)

Chapter 5. Data Definition (DDL) Statements

118

• Foreign key (REFERENCES)

• CHECK constraint (CHECK)

• NOT NULL constraint (NOT NULL)

Constraints can be specified at column level (“column constraints”) or at table level (“table
constraints”). Table-level constraints are required when keys (unique constraint, Primary Key,
Foreign Key) consist of multiple columns and when a CHECK constraint involves other columns in the
row besides the column being defined. The NOT NULL constraint can only be specified as a column
constraint. Syntax for some types of constraint may differ slightly according to whether the
constraint is defined at the column or table level.

• A column-level constraint is specified during a column definition, after all column attributes
except COLLATION are specified, and can involve only the column specified in that definition

• A table-level constraints can only be specified after the definitions of the columns used in the
constraint.

• Table-level constraints are a more flexible way to set constraints, since they can cater for
constraints involving multiple columns

• You can mix column-level and table-level constraints in the same CREATE TABLE statement

The system automatically creates the corresponding index for a primary key (PRIMARY KEY), a
unique key (UNIQUE) and a foreign key (REFERENCES for a column-level constraint, FOREIGN KEY
REFERENCES for one at the table level).

Names for Constraints and Their Indexes

Column-level constraints and their indexes are named automatically:

• The constraint name has the form INTEG_n, where n represents one or more digits

• The index name has the form RDB$PRIMARYn (for a primary key index), RDB$FOREIGNn (for a foreign
key index) or RDB$n (for a unique key index). Again, n represents one or more digits.

Automatic naming of table-level constraints and their indexes follows the same pattern, unless the
names are supplied explicitly.

Named Constraints

A constraint can be named explicitly if the CONSTRAINT clause is used for its definition. While the
CONSTRAINT clause is optional for defining column-level constraints, it is mandatory for table-level
constraints. By default, the constraint index will have the same name as the constraint. If a
different name is wanted for the constraint index, a USING clause can be included.

The USING Clause

The USING clause allows you to specify a user-defined name for the index that is created
automatically and, optionally, to define the direction of the index — either ascending (the default)
or descending.

Chapter 5. Data Definition (DDL) Statements

119

PRIMARY KEY

The PRIMARY KEY constraint is built on one or more key columns, where each column has the NOT
NULL constraint specified. The values across the key columns in any row must be unique. A table can
have only one primary key.

• A single-column Primary Key can be defined as a column level or a table-level constraint

• A multi-column Primary Key must be specified as a table-level constraint

The UNIQUE Constraint

The UNIQUE constraint defines the requirement of content uniqueness for the values in a key
throughout the table. A table can contain any number of unique key constraints.

As with the Primary Key, the Unique constraint can be multi-column. If so, it must be specified as a
table-level constraint.

NULL in Unique Keys

Firebird’s SQL-99-compliant rules for UNIQUE constraints allow one or more NULLs in a column with a
UNIQUE constraint. That makes it possible to define a UNIQUE constraint on a column that does not
have the NOT NULL constraint.

For UNIQUE keys that span multiple columns, the logic is a little complicated:

• Multiple rows having null in all the columns of the key are allowed

• Multiple rows having keys with different combinations of nulls and non-null values are allowed

• Multiple rows having the same key columns null and the rest filled with non-null values are
allowed, provided the values differ in at least one column

• Multiple rows having the same key columns null and the rest filled with non-null values that
are the same in every column will violate the constraint

The rules for uniqueness can be summarised thus:

In principle, all nulls are considered distinct. However, if two rows have
exactly the same key columns filled with non-null values, the NULL columns
are ignored and the uniqueness is determined on the non-null columns as
though they constituted the entire key.

Illustration

RECREATE TABLE t(x int, y int, z int, unique(x,y,z));
INSERT INTO t values(NULL, 1, 1);
INSERT INTO t values(NULL, NULL, 1);
INSERT INTO t values(NULL, NULL, NULL);
INSERT INTO t values(NULL, NULL, NULL); -- Permitted
INSERT INTO t values(NULL, NULL, 1); -- Not permitted

Chapter 5. Data Definition (DDL) Statements

120

FOREIGN KEY

A Foreign Key ensures that the participating column(s) can contain only values that also exist in the
referenced column(s) in the master table. These referenced columns are often called target
columns. They must be the primary key or a unique key in the target table. They need not have a
NOT NULL constraint defined on them although, if they are the primary key, they will, of course, have
that constraint.

The foreign key columns in the referencing table itself do not require a NOT NULL constraint.

A single-column Foreign Key can be defined in the column declaration, using the keyword
REFERENCES:

... ,
 ARTIFACT_ID INTEGER REFERENCES COLLECTION (ARTIFACT_ID),

The column ARTIFACT_ID in the example references a column of the same name in the table
COLLECTIONS.

Both single-column and multi-column foreign keys can be defined at the table level. For a multi-
column Foreign Key, the table-level declaration is the only option. This method also enables the
provision of an optional name for the constraint:

...
 CONSTRAINT FK_ARTSOURCE FOREIGN KEY(DEALER_ID, COUNTRY)
 REFERENCES DEALER (DEALER_ID, COUNTRY),

Notice that the column names in the referenced (“master”) table may differ from those in the
Foreign Key.

If no target columns are specified, the Foreign Key automatically references the
target table’s Primary Key.

Foreign Key Actions

With the sub-clauses ON UPDATE and ON DELETE it is possible to specify an action to be taken on the
affected foreign key column(s) when referenced values in the master table are changed:

NO ACTION

(the default) - Nothing is done

CASCADE

The change in the master table is propagated to the corresponding row(s) in the child table. If a
key value changes, the corresponding key in the child records changes to the new value; if the
master row is deleted, the child records are deleted.

SET DEFAULT

The Foreign Key columns in the affected rows will be set to their default values as they were

Chapter 5. Data Definition (DDL) Statements

121

when the foreign key constraint was defined.

SET NULL

The Foreign Key columns in the affected rows will be set to NULL.

The specified action, or the default NO ACTION, could cause a Foreign Key column to become invalid.
For example, it could get a value that is not present in the master table, or it could become NULL
while the column has a NOT NULL constraint. Such conditions will cause the operation on the master
table to fail with an error message.

Example

...
 CONSTRAINT FK_ORDERS_CUST
 FOREIGN KEY (CUSTOMER) REFERENCES CUSTOMERS (ID)
 ON UPDATE CASCADE ON DELETE SET NULL

CHECK Constraint

The CHECK constraint defines the condition the values inserted in this column must satisfy. A
condition is a logical expression (also called a predicate) that can return the TRUE, FALSE and
UNKNOWN values. A condition is considered satisfied if the predicate returns TRUE or value
UNKNOWN (equivalent to NULL). If the predicate returns FALSE, the value will not be accepted. This
condition is used for inserting a new row into the table (the INSERT statement) and for updating the
existing value of the table column (the UPDATE statement) and also for statements where one of these
actions may take place (UPDATE OR INSERT, MERGE).

A CHECK constraint on a domain-based column does not replace an existing CHECK
condition on the domain, but becomes an addition to it. The Firebird engine has no
way, during definition, to verify that the extra CHECK does not conflict with the
existing one.

CHECK constraints — whether defined at table level or column level — refer to table columns by their
names. The use of the keyword VALUE as a placeholder — as in domain CHECK constraints — is not
valid in the context of defining column constraints.

Example

with two column-level constraints and one at table-level:

CREATE TABLE PLACES (
 ...
 LAT DECIMAL(9, 6) CHECK (ABS(LAT) <= 90),
 LON DECIMAL(9, 6) CHECK (ABS(LON) <= 180),
 ...
 CONSTRAINT CHK_POLES CHECK (ABS(LAT) < 90 OR LON = 0)
);

Chapter 5. Data Definition (DDL) Statements

122

NOT NULL constraint

In Firebird, columns are nullable by default. The NOT NULL constraint specifies that the column
cannot take NULL in place of a value.

A NOT NULL constraint can only be defined as a column constraint, not as a table constraint.

Who Can Create a Table

The CREATE TABLE statement can be executed by:

• Administrators

• Users with the CREATE TABLE privilege

The user executing the CREATE TABLE statement becomes the owner of the table.

CREATE TABLE Examples

1. Creating the COUNTRY table with the primary key specified as a column constraint.

CREATE TABLE COUNTRY (
 COUNTRY COUNTRYNAME NOT NULL PRIMARY KEY,
 CURRENCY VARCHAR(10) NOT NULL
);

2. Creating the STOCK table with the named primary key specified at the column level and the
named unique key specified at the table level.

CREATE TABLE STOCK (
 MODEL SMALLINT NOT NULL CONSTRAINT PK_STOCK PRIMARY KEY,
 MODELNAME CHAR(10) NOT NULL,
 ITEMID INTEGER NOT NULL,
 CONSTRAINT MOD_UNIQUE UNIQUE (MODELNAME, ITEMID)
);

3. Creating the JOB table with a primary key constraint spanning two columns, a foreign key
constraint for the COUNTRY table and a table-level CHECK constraint. The table also contains an
array of 5 elements.

CREATE TABLE JOB (
 JOB_CODE JOBCODE NOT NULL,
 JOB_GRADE JOBGRADE NOT NULL,
 JOB_COUNTRY COUNTRYNAME,
 JOB_TITLE VARCHAR(25) NOT NULL,
 MIN_SALARY NUMERIC(18, 2) DEFAULT 0 NOT NULL,
 MAX_SALARY NUMERIC(18, 2) NOT NULL,
 JOB_REQUIREMENT BLOB SUB_TYPE 1,
 LANGUAGE_REQ VARCHAR(15) [1:5],

Chapter 5. Data Definition (DDL) Statements

123

 PRIMARY KEY (JOB_CODE, JOB_GRADE),
 FOREIGN KEY (JOB_COUNTRY) REFERENCES COUNTRY (COUNTRY)
 ON UPDATE CASCADE
 ON DELETE SET NULL,
 CONSTRAINT CHK_SALARY CHECK (MIN_SALARY < MAX_SALARY)
);

4. Creating the PROJECT table with primary, foreign and unique key constraints with custom index
names specified with the USING clause.

CREATE TABLE PROJECT (
 PROJ_ID PROJNO NOT NULL,
 PROJ_NAME VARCHAR(20) NOT NULL UNIQUE USING DESC INDEX IDX_PROJNAME,
 PROJ_DESC BLOB SUB_TYPE 1,
 TEAM_LEADER EMPNO,
 PRODUCT PRODTYPE,
 CONSTRAINT PK_PROJECT PRIMARY KEY (PROJ_ID) USING INDEX IDX_PROJ_ID,
 FOREIGN KEY (TEAM_LEADER) REFERENCES EMPLOYEE (EMP_NO)
 USING INDEX IDX_LEADER
);

5. Creating a table with an identity column

create table objects (
 id integer generated by default as identity primary key,
 name varchar(15)
);

insert into objects (name) values ('Table');
insert into objects (id, name) values (10, 'Computer');
insert into objects (name) values ('Book');

select * from objects order by id;

 ID NAME
============ ===============
 1 Table
 2 Book
 10 Computer

6. Creating the SALARY_HISTORY table with two computed fields. The first one is declared according
to the SQL:2003 standard, while the second one is declared according to the traditional
declaration of computed fields in Firebird.

CREATE TABLE SALARY_HISTORY (
 EMP_NO EMPNO NOT NULL,
 CHANGE_DATE TIMESTAMP DEFAULT 'NOW' NOT NULL,

Chapter 5. Data Definition (DDL) Statements

124

 UPDATER_ID VARCHAR(20) NOT NULL,
 OLD_SALARY SALARY NOT NULL,
 PERCENT_CHANGE DOUBLE PRECISION DEFAULT 0 NOT NULL,
 SALARY_CHANGE GENERATED ALWAYS AS
 (OLD_SALARY * PERCENT_CHANGE / 100),
 NEW_SALARY COMPUTED BY
 (OLD_SALARY + OLD_SALARY * PERCENT_CHANGE / 100)
);

Global Temporary Tables (GTT)

Global temporary tables have persistent metadata, but their contents are transaction-bound (the
default) or connection-bound. Every transaction or connection has its own private instance of a
GTT, isolated from all the others. Instances are only created if and when the GTT is referenced. They
are destroyed when the transaction ends or on disconnection. The metadata of a GTT can be
modified or removed using ALTER TABLE and DROP TABLE, respectively.

Syntax

CREATE GLOBAL TEMPORARY TABLE tablename
 (<column_def> [, {<column_def> | <table_constraint>} ...])
 [ON COMMIT {DELETE | PRESERVE} ROWS]

Syntax notes

• ON COMMIT DELETE ROWS creates a transaction-level GTT (the default), ON COMMIT
PRESERVE ROWS a connection-level GTT

• An EXTERNAL [FILE] clause is not allowed in the definition of a global temporary
table

Since Firebird 3.0, GTTs are writable in read-only transactions. The effect is as follows:

Read-only transaction in read-write database

Writable in both ON COMMIT PRESERVE ROWS and ON COMMIT DELETE ROWS

Read-only transaction in read-only database

Writable in ON COMMIT DELETE ROWS only

Restrictions on GTTs

GTTs can be “dressed up” with all the features and paraphernalia of ordinary tables (keys,
references, indexes, triggers and so on) but there are a few restrictions:

• GTTs and regular tables cannot reference one another

• A connection-bound (“PRESERVE ROWS”) GTT cannot reference a transaction-bound (“DELETE ROWS”)
GTT

• Domain constraints cannot reference any GTT

• The destruction of a GTT instance at the end of its life cycle does not cause any BEFORE/AFTER

Chapter 5. Data Definition (DDL) Statements

125

delete triggers to fire

In an existing database, it is not always easy to distinguish a regular table from a
GTT, or a transaction-level GTT from a connection-level GTT. Use this query to find
out what type of table you are looking at:

select t.rdb$type_name
from rdb$relations r
join rdb$types t on r.rdb$relation_type = t.rdb$type
where t.rdb$field_name = 'RDB$RELATION_TYPE'
and r.rdb$relation_name = 'TABLENAME'

For an overview of the types of all the relations in the database:

select r.rdb$relation_name, t.rdb$type_name
from rdb$relations r
join rdb$types t on r.rdb$relation_type = t.rdb$type
where t.rdb$field_name = 'RDB$RELATION_TYPE'
and coalesce (r.rdb$system_flag, 0) = 0

The RDB$TYPE_NAME field will show PERSISTENT for a regular table, VIEW for a view,
GLOBAL_TEMPORARY_PRESERVE for a connection-bound GTT and
GLOBAL_TEMPORARY_DELETE for a transaction_bound GTT.

Examples of Global Temporary Tables

1. Creating a connection-scoped global temporary table.

CREATE GLOBAL TEMPORARY TABLE MYCONNGTT (
 ID INTEGER NOT NULL PRIMARY KEY,
 TXT VARCHAR(32),
 TS TIMESTAMP DEFAULT CURRENT_TIMESTAMP)
ON COMMIT PRESERVE ROWS;

2. Creating a transaction-scoped global temporary table that uses a foreign key to reference a
connection-scoped global temporary table. The ON COMMIT sub-clause is optional because DELETE
ROWS is the default.

CREATE GLOBAL TEMPORARY TABLE MYTXGTT (
 ID INTEGER NOT NULL PRIMARY KEY,
 PARENT_ID INTEGER NOT NULL REFERENCES MYCONNGTT(ID),
 TXT VARCHAR(32),
 TS TIMESTAMP DEFAULT CURRENT_TIMESTAMP
) ON COMMIT DELETE ROWS;

Chapter 5. Data Definition (DDL) Statements

126

External Tables

The optional EXTERNAL [FILE] clause specifies that the table is stored outside the database in an
external text file of fixed-length records. The columns of a table stored in an external file can be of
any type except BLOB or ARRAY, although for most purposes, only columns of CHAR types would be
useful.

All you can do with a table stored in an external file is insert new rows (INSERT) and query the data
(SELECT). Updating existing data (UPDATE) and deleting rows (DELETE) are not possible.

A file that is defined as an external table must be located on a storage device that is physically
present on the machine where the Firebird server runs and, if the parameter ExternalFileAccess in
the firebird.conf configuration file is Restrict, it must be in one of the directories listed there as
the argument for Restrict. If the file does not exist yet, Firebird will create it on first access.

The ability to use external files for a table depends on the value set for the
ExternalFileAccess parameter in firebird.conf:

• If it is set to None (the default), any attempt to access an external file will be
denied.

• The Restrict setting is recommended, for restricting external file access to
directories created explicitly for the purpose by the server administrator. For
example:

◦ ExternalFileAccess = Restrict externalfiles will restrict access to a
directory named externalfiles directly beneath the Firebird root directory

◦ ExternalFileAccess = d:\databases\outfiles; e:\infiles will restrict access
to just those two directories on the Windows host server. Note that any
path that is a network mapping will not work. Paths enclosed in single or
double quotes will not work, either.

• If this parameter is set to Full, external files may be accessed anywhere on the
host file system. This creates a security vulnerability and is not recommended.

External File Format

The “row” format of the external table is fixed length and binary. There are no field delimiters: both
field and row boundaries are determined by maximum sizes, in bytes, of the field definitions. It is
important to keep this in mind, both when defining the structure of the external table and when
designing an input file for an external table that is to import data from another application. The
ubiquitous “.csv” format, for example, is of no use as an input file and cannot be generated directly
into an external file.

The most useful data type for the columns of external tables is the fixed-length CHAR type, of suitable
lengths for the data they are to carry. Date and number types are easily cast to and from strings
whereas, unless the files are to be read by another Firebird database, the native data
types — binary data — will appear to external applications as unparseable “alphabetti”.

Of course, there are ways to manipulate typed data so as to generate output files from Firebird that
can be read directly as input files to other applications, using stored procedures, with or without

Chapter 5. Data Definition (DDL) Statements

127

employing external tables. Such techniques are beyond the scope of a language reference. Here, we
provide some guidelines and tips for producing and working with simple text files, since the
external table feature is often used as an easy way to produce or read transaction-independent logs
that can be studied off-line in a text editor or auditing application.

Row Delimiters

Generally, external files are more useful if rows are separated by a delimiter, in the form of a
“newline” sequence that is recognised by reader applications on the intended platform. For most
contexts on Windows, it is the two-byte 'CRLF' sequence, carriage return (ASCII code decimal 13)
and line feed (ASCII code decimal 10). On POSIX, LF on its own is usual; for some MacOSX
applications, it may be LFCR. There are various ways to populate this delimiter column. In our
example below, it is done by using a BEFORE INSERT trigger and the internal function ASCII_CHAR.

External Table Example

For our example, we will define an external log table that might be used by an exception handler in
a stored procedure or trigger. The external table is chosen because the messages from any handled
exceptions will be retained in the log, even if the transaction that launched the process is
eventually rolled back because of another, unhandled exception. For demonstration purposes, it
has just two data columns, a time stamp and a message. The third column stores the row delimiter:

CREATE TABLE ext_log
 EXTERNAL FILE 'd:\externals\log_me.txt' (
 stamp CHAR (24),
 message CHAR(100),
 crlf CHAR(2) -- for a Windows context
);
COMMIT;

Now, a trigger, to write the timestamp and the row delimiter each time a message is written to the
file:

SET TERM ^;
CREATE TRIGGER bi_ext_log FOR ext_log
ACTIVE BEFORE INSERT
AS
BEGIN
 IF (new.stamp is NULL) then
 new.stamp = CAST (CURRENT_TIMESTAMP as CHAR(24));
 new.crlf = ASCII_CHAR(13) || ASCII_CHAR(10);
END ^
COMMIT ^
SET TERM ;^

Inserting some records (which could have been done by an exception handler or a fan of
Shakespeare):

Chapter 5. Data Definition (DDL) Statements

128

insert into ext_log (message)
values('Shall I compare thee to a summer''s day?');
insert into ext_log (message)
values('Thou art more lovely and more temperate');

The output:

2015-10-07 15:19:03.4110Shall I compare thee to a summer's day?
2015-10-07 15:19:58.7600Thou art more lovely and more temperate

5.4.2. ALTER TABLE

Used for

Altering the structure of a table.

Available in

DSQL, ESQL

Syntax

ALTER TABLE tablename
 <operation> [, <operation> ...]

<operation> ::=
 ADD <col_def>
 | ADD <tconstraint>
 | DROP colname
 | DROP CONSTRAINT constr_name
 | ALTER [COLUMN] colname <col_mod>

<col_def> ::=
 <regular_col_def>
 | <computed_col_def>
 | <identity_col_def>

<regular_col_def> ::=
 colname {<datatype> | domainname}
 [DEFAULT {<literal> | NULL | <context_var>}]
 [<col_constraint> ...]
 [COLLATE collation_name]

<computed_col_def> ::=
 colname [{<datatype> | domainname}]
 {COMPUTED [BY] | GENERATED ALWAYS AS} (<expression>)

<identity_col_def> ::=
 colname {<datatype> | domainname}
 GENERATED BY DEFAULT AS IDENTITY [(START WITH startvalue)]

Chapter 5. Data Definition (DDL) Statements

129

 [<col_constraint> ...]

<col_mod> ::=
 TO newname
 | POSITION newpos
 | <regular_col_mod>
 | <computed_col_mod>
 | <identity_col_mod>

<regular_col_mod> ::=
 TYPE {<datatype> | domainname}
 | SET DEFAULT {<literal> | NULL | <context_var>}
 | DROP DEFAULT
 | {SET | DROP} NOT NULL

<computed_col_mod> ::=
 [TYPE <datatype>] {COMPUTED [BY] | GENERATED ALWAYS AS} (<expression>)

<identity_col_mod> ::=
 RESTART [WITH startvalue]

!! See CREATE TABLE syntax` for further rules !!

Table 27. ALTER TABLE Statement Parameters

Parameter Description

tablename Name (identifier) of the table

operation One of the available operations altering the structure of the table

colname Name (identifier) for a column in the table, max. 31 characters. Must be
unique in the table.

domain_name Domain name

newname New name (identifier) for the column, max. 31 characters. Must be
unique in the table.

newpos The new column position (an integer between 1 and the number of
columns in the table)

start_value The first value of the identity column after restart

other_table The name of the table referenced by the foreign key constraint

literal A literal value that is allowed in the given context

context_var A context variable whose type is allowed in the given context

check_condition The condition of a CHECK constraint that will be satisfied if it evaluates to
TRUE or UNKNOWN/NULL

collation Name of a collation sequence that is valid for charset_name, if it is
supplied with datatype or, otherwise, is valid for the default character set
of the database

Chapter 5. Data Definition (DDL) Statements

130

The ALTER TABLE statement changes the structure of an existing table. With one ALTER TABLE
statement it is possible to perform multiple operations, adding/dropping columns and constraints
and also altering column specifications.

Multiple operations in an ALTER TABLE statement are separated with commas.

Version Count Increments

Some changes in the structure of a table increment the metadata change counter (“version count”)
assigned to every table. The number of metadata changes is limited to 255 for each table. Once the
counter reaches the 255 limit, you will not be able to make any further changes to the structure of
the table without resetting the counter.

To reset the metadata change counter

You need to back up and restore the database using the gbak utility.

The ADD Clause

With the ADD clause you can add a new column or a new table constraint. The syntax for defining
the column and the syntax of defining the table constraint correspond with those described for
CREATE TABLE statement.

Effect on Version Count

• Each time a new column is added, the metadata change counter is increased by one

• Adding a new table constraint does not increase the metadata change counter

Points to Be Aware of

1. Adding a column with a NOT NULL constraint without a DEFAULT value
will — since Firebird 3.0 — fail if the table has existing rows. When adding a
non-nullable column, it is recommended either to set a default value for it, or
to create it as nullable, update the column in existing rows with a non-null
value, and then add a NOT NULL constraint.

2. When a new CHECK constraint is added, existing data is not tested for
compliance. Prior testing of existing data against the new CHECK expression is
recommended.

3. Although adding an identity column is supported, this will only succeed if the
table is empty. Adding an identity column will fail if the table has one or more
rows.

The DROP Clause

The DROP colname clause deletes the specified column from the table. An attempt to drop a column
will fail if anything references it. Consider the following items as sources of potential dependencies:

• column or table constraints

Chapter 5. Data Definition (DDL) Statements

131

• indexes

• stored procedures and triggers

• views

Effect on Version Count

• Each time a column is dropped, the table’s metadata change counter is increased by one.

The DROP CONSTRAINT Clause

The DROP CONSTRAINT clause deletes the specified column-level or table-level constraint.

A PRIMARY KEY or UNIQUE key constraint cannot be deleted if it is referenced by a FOREIGN KEY
constraint in another table. It will be necessary to drop that FOREIGN KEY constraint before
attempting to drop the PRIMARY KEY or UNIQUE key constraint it references.

Effect on Version Count

• Deleting a column constraint or a table constraint does not increase the metadata change
counter.

The ALTER [COLUMN] Clause

With the ALTER [COLUMN] clause, attributes of existing columns can be modified without the need to
drop and re-add the column. Permitted modifications are:

• change the name (does not affect the metadata change counter)

• change the data type (increases the metadata change counter by one)

• change the column position in the column list of the table (does not affect the metadata change
counter)

• delete the default column value (does not affect the metadata change counter)

• set a default column value or change the existing default (does not affect the metadata change
counter)

• change the type and expression for a computed column (does not affect the metadata change
counter)

• set the NOT NULL constraint (does not affect the metadata change counter)

• drop the NOT NULL constraint (does not affect the metadata change counter)

Renaming a Column: the TO Clause

The TO keyword with a new identifier renames an existing column. The table must not have an
existing column that has the same identifier.

It will not be possible to change the name of a column that is included in any constraint: PRIMARY
KEY, UNIQUE key, FOREIGN KEY, column constraint or the CHECK constraint of the table.

Renaming a column will also be disallowed if the column is used in any trigger, stored procedure or
view.

Chapter 5. Data Definition (DDL) Statements

132

Changing the Data Type of a Column: the TYPE Clause

The keyword TYPE changes the data type of an existing column to another, allowable type. A type
change that might result in data loss will be disallowed. As an example, the number of characters in
the new type for a CHAR or VARCHAR column cannot be smaller than the existing specification for it.

If the column was declared as an array, no change to its type or its number of dimensions is
permitted.

The data type of a column that is involved in a foreign key, primary key or unique constraint cannot
be changed at all.

Changing the Position of a Column: the POSITION Clause

The POSITION keyword changes the position of an existing column in the notional “left-to-right”
layout of the record.

Numbering of column positions starts at 1.

• If a position less than 1 is specified, an error message will be returned

• If a position number is greater than the number of columns in the table, its new position will be
adjusted silently to match the number of columns.

The DROP DEFAULT and SET DEFAULT Clauses

The optional DROP DEFAULT clause deletes the default value for the column if it was put there
previously by a CREATE TABLE or ALTER TABLE statement.

• If the column is based on a domain with a default value, the default value will revert to the
domain default

• An execution error will be raised if an attempt is made to delete the default value of a column
which has no default value or whose default value is domain-based

The optional SET DEFAULT clause sets a default value for the column. If the column already has a
default value, it will be replaced with the new one. The default value applied to a column always
overrides one inherited from a domain.

The SET NOT NULL and DROP NOT NULL Clauses

The SET NOT NULL clause adds a NOT NULL constraint on an existing table column. Contrary to
definition in CREATE TABLE, it is not possible to specify a constraint name.

The successful addition of the NOT NULL constraint is subject to a full data validation
on the table, so ensure that the column has no nulls before attempting the change.

An explicit NOT NULL constraint on domain-based column overrides domain
settings. In this scenario, changing the domain to be nullable does not extend to a
table column.

Dropping the NOT NULL constraint from the column if its type is a domain that also has a NOT NULL

Chapter 5. Data Definition (DDL) Statements

133

constraint, has no observable effect until the NOT NULL constraint is dropped from the domain as
well.

The COMPUTED [BY] or GENERATED ALWAYS AS Clauses

The data type and expression underlying a computed column can be modified using a COMPUTED
[BY] or GENERATED ALWAYS AS clause in the ALTER TABLE ALTER [COLUMN] statement. Converting a
regular column to a computed one and vice versa are not permitted.

Changing Identity Columns

For identity columns (GENERATED BY DEFAULT AS IDENTITY), it is possible to restart the sequence used
for generating identity values. If only the RESTART clause is specified, then the sequence resets to the
initial value specified during CREATE TABLE. If the optional WITH start_value clause is specified, the
sequence will restart with the specified value.

It is not possible to convert an existing column to an identity column, or to convert an identity
column to a normal column. Firebird 4 will introduce the ability to convert an identity column to a
normal column.

Restarting is currently subject to a bug: the first value generated after a restart is 1
(one) higher than the configured initial value (or the value specified through WITH)
. See also Identity Columns (autoincrement).

Attributes that Cannot Be Altered

The following alterations are not supported:

• Changing the collation of a character type column

Who Can Alter a Table?

The ALTER TABLE statement can be executed by:

• Administrators

• The owner of the table

• Users with the ALTER ANY TABLE privilege

Examples Using ALTER TABLE

1. Adding the CAPITAL column to the COUNTRY table.

ALTER TABLE COUNTRY
 ADD CAPITAL VARCHAR(25);

2. Adding the CAPITAL column with the NOT NULL and UNIQUE constraint and deleting the CURRENCY
column.

Chapter 5. Data Definition (DDL) Statements

134

ALTER TABLE COUNTRY
 ADD CAPITAL VARCHAR(25) NOT NULL UNIQUE,
 DROP CURRENCY;

3. Adding the CHK_SALARY check constraint and a foreign key to the JOB table.

ALTER TABLE JOB
 ADD CONSTRAINT CHK_SALARY CHECK (MIN_SALARY < MAX_SALARY),
 ADD FOREIGN KEY (JOB_COUNTRY) REFERENCES COUNTRY (COUNTRY);

4. Setting default value for the MODEL field, changing the type of the ITEMID column and renaming
the MODELNAME column.

ALTER TABLE STOCK
 ALTER COLUMN MODEL SET DEFAULT 1,
 ALTER COLUMN ITEMID TYPE BIGINT,
 ALTER COLUMN MODELNAME TO NAME;

5. Restarting the sequence of an identity column.

ALTER TABLE objects
 ALTER ID RESTART WITH 100;

6. Changing the computed columns NEW_SALARY and SALARY_CHANGE.

ALTER TABLE SALARY_HISTORY
 ALTER NEW_SALARY GENERATED ALWAYS AS
 (OLD_SALARY + OLD_SALARY * PERCENT_CHANGE / 100),
 ALTER SALARY_CHANGE COMPUTED BY
 (OLD_SALARY * PERCENT_CHANGE / 100);

See also

CREATE TABLE, DROP TABLE, CREATE DOMAIN

5.4.3. DROP TABLE

Used for

Dropping (deleting) a table

Available in

DSQL, ESQL

Chapter 5. Data Definition (DDL) Statements

135

Syntax

DROP TABLE tablename

Table 28. DROP TABLE Statement Parameter

Parameter Description

tablename Name (identifier) of the table

The DROP TABLE statement drops (deletes) an existing table. If the table has dependencies, the DROP
TABLE statement will fail with an execution error.

When a table is dropped, all its triggers and indexes will be deleted as well.

Who Can Drop a Table?

The DROP TABLE statement can be executed by:

• Administrators

• The owner of the table

• Users with the DROP ANY TABLE privilege

Example of DROP TABLE

Dropping the COUNTRY table.

DROP TABLE COUNTRY;

See also

CREATE TABLE, ALTER TABLE, RECREATE TABLE

5.4.4. RECREATE TABLE

Used for

Creating a new table (relation) or recreating an existing one

Available in

DSQL

Syntax

RECREATE [GLOBAL TEMPORARY] TABLE tablename
 [EXTERNAL [FILE] 'filespec']
 (<col_def> [, {<col_def> | <tconstraint>} ...])
 [ON COMMIT {DELETE | PRESERVE} ROWS]

See the CREATE TABLE section for the full syntax of CREATE TABLE and descriptions of defining tables,
columns and constraints.

Chapter 5. Data Definition (DDL) Statements

136

RECREATE TABLE creates or recreates a table. If a table with this name already exists, the RECREATE
TABLE statement will try to drop it and create a new one. Existing dependencies will prevent the
statement from executing.

Example of RECREATE TABLE

Creating or recreating the COUNTRY table.

RECREATE TABLE COUNTRY (
 COUNTRY COUNTRYNAME NOT NULL PRIMARY KEY,
 CURRENCY VARCHAR(10) NOT NULL
);

See also

CREATE TABLE, DROP TABLE

5.5. INDEX
An index is a database object used for faster data retrieval from a table or for speeding up the
sorting in a query. Indexes are used also to enforce the refererential integrity constraints PRIMARY
KEY, FOREIGN KEY and UNIQUE.

This section describes how to create indexes, activate and deactivate them, delete them and collect
statistics (recalculate selectivity) for them.

5.5.1. CREATE INDEX

Used for

Creating an index for a table

Available in

DSQL, ESQL

Syntax

CREATE [UNIQUE] [ASC[ENDING] | DESC[ENDING]]
 INDEX indexname ON tablename
 {(col [, col …]) | COMPUTED BY (<expression>)}

Table 29. CREATE INDEX Statement Parameters

Parameter Description

indexname Index name. It may consist of up to 31 characters

tablename The name of the table for which the index is to be built

col Name of a column in the table. Columns of the types BLOB and ARRAY and
computed fields cannot be used in an index

Chapter 5. Data Definition (DDL) Statements

137

Parameter Description

expression The expression that will compute the values for a computed index, also
known as an “expression index”

The CREATE INDEX statement creates an index for a table that can be used to speed up searching,
sorting and grouping. Indexes are created automatically in the process of defining constraints, such
as primary key, foreign key or unique constraints.

An index can be built on the content of columns of any data type except for BLOB and arrays. The
name (identifier) of an index must be unique among all index names.

Key Indexes

When a primary key, foreign key or unique constraint is added to a table or
column, an index with the same name is created automatically, without an explicit
directive from the designer. For example, the PK_COUNTRY index will be created
automatically when you execute and commit the following statement:

ALTER TABLE COUNTRY ADD CONSTRAINT PK_COUNTRY
 PRIMARY KEY (ID);

Who Can Create an Index?

The CREATE INDEX statement can be executed by:

• Administrators

• The owner of the table

• Users with the ALTER ANY TABLE privilege

Unique Indexes

Specifying the keyword UNIQUE in the index creation statement creates an index in which
uniqueness will be enforced throughout the table. The index is referred to as a “unique index”. A
unique index is not a constraint.

Unique indexes cannot contain duplicate key values (or duplicate key value combinations, in the
case of compound, or multi-column, or multi-segment) indexes. Duplicated NULLs are permitted, in
accordance with the SQL:99 standard, in both single-segment and multi-segment indexes.

Index Direction

All indexes in Firebird are uni-directional. An index may be constructed from the lowest value to
the highest (ascending order) or from the highest value to the lowest (descending order). The
keywords ASC[ENDING] and DESC[ENDING] are used to specify the direction of the index. The default
index order is ASC[ENDING]. It is quite valid to define both an ascending and a descending index on
the same column or key set.

 A descending index can be useful on a column that will be subjected to searches on

Chapter 5. Data Definition (DDL) Statements

138

the high values (“newest”, maximum, etc.)

Firebird uses B-tree indexes, which are bidirectional. However, due to technical
limitations, Firebird uses an index in one direction only.

See also Firebird for the Database Expert: Episode 3 - On disk consistency

Computed (Expression) Indexes

In creating an index, you can use the COMPUTED BY clause to specify an expression instead of one or
more columns. Computed indexes are used in queries where the condition in a WHERE, ORDER BY or
GROUP BY clause exactly matches the expression in the index definition. The expression in a
computed index may involve several columns in the table.

Expression indexes can also be used as a workaround for indexing computed
columns: use the name of the computed column as the expression.

Limits on Indexes

Certain limits apply to indexes.

The maximum length of a key in an index is limited to ¼ of the page size.

Maximum Indexes per Table

The number of indexes that can be accommodated for each table is limited. The actual maximum
for a specific table depends on the page size and the number of columns in the indexes.

Table 30. Maximum Indexes per Table

Page Size Number of Indexes Depending on Column Count

Single 2-Column 3-Column

4096 203 145 113

8192 408 291 227

16384 818 584 454

Character Index Limits

The maximum indexed string length is 9 bytes less than the maximum key length. The maximum
indexable string length depends on the page size and the character set.

Table 31. Maximum indexable (VAR)CHAR length

Page Size Maximum Indexable String Length by Charset Type

1 byte/char 2 byte/char 3 byte/char 4 byte/char

4096 1015 507 338 253

8192 2039 1019 679 509

Chapter 5. Data Definition (DDL) Statements

139

https://www.ibphoenix.com/resources/documents/design/doc_20

16384 4087 2043 1362 1021

Examples Using CREATE INDEX

1. Creating an index for the UPDATER_ID column in the SALARY_HISTORY table

CREATE INDEX IDX_UPDATER
 ON SALARY_HISTORY (UPDATER_ID);

2. Creating an index with keys sorted in the descending order for the CHANGE_DATE column in the
SALARY_HISTORY table

CREATE DESCENDING INDEX IDX_CHANGE
 ON SALARY_HISTORY (CHANGE_DATE);

3. Creating a multi-segment index for the ORDER_STATUS, PAID columns in the SALES table

CREATE INDEX IDX_SALESTAT
 ON SALES (ORDER_STATUS, PAID);

4. Creating an index that does not permit duplicate values for the NAME column in the COUNTRY table

CREATE UNIQUE INDEX UNQ_COUNTRY_NAME
 ON COUNTRY (NAME);

5. Creating a computed index for the PERSONS table

CREATE INDEX IDX_NAME_UPPER ON PERSONS
 COMPUTED BY (UPPER (NAME));

An index like this can be used for a case-insensitive search:

SELECT *
FROM PERSONS
WHERE UPPER(NAME) STARTING WITH UPPER('Iv');

See also

ALTER INDEX, DROP INDEX

5.5.2. ALTER INDEX

Used for

Activating or deactivating an index; rebuilding an index

Chapter 5. Data Definition (DDL) Statements

140

Available in

DSQL, ESQL

Syntax

ALTER INDEX indexname {ACTIVE | INACTIVE}

Table 32. ALTER INDEX Statement Parameter

Parameter Description

indexname Index name

The ALTER INDEX statement activates or deactivates an index. There is no facility on this statement
for altering any attributes of the index.

INACTIVE

With the INACTIVE option, the index is switched from the active to inactive state. The effect is
similar to the DROP INDEX statement except that the index definition remains in the database.
Altering a constraint index to the inactive state is not permitted.

An active index can be deactivated if there are no queries prepared using that index; otherwise,
an “object in use” error is returned.

Activating an inactive index is also safe. However, if there are active transactions modifying the
table, the transaction containing the ALTER INDEX statement will fail if it has the NOWAIT attribute.
If the transaction is in WAIT mode, it will wait for completion of concurrent transactions.

On the other side of the coin, if our ALTER INDEX succeeds and starts to rebuild the index at
COMMIT, other transactions modifying that table will fail or wait, according to their WAIT/NO WAIT
attributes. The situation is exactly the same for CREATE INDEX.

How is it Useful?

It might be useful to switch an index to the inactive state whilst inserting,
updating or deleting a large batch of records in the table that owns the index.

ACTIVE

With the ACTIVE option, if the index is in the inactive state, it will be switched to active state and
the system rebuilds the index.

How is it Useful?

Even if the index is active when ALTER INDEX … ACTIVE is executed, the index
will be rebuilt. Rebuilding indexes can be a useful piece of houskeeping to do,
occasionally, on the indexes of a large table in a database that has frequent
inserts, updates or deletes but is infrequently restored.

Who Can Alter an Index?

The ALTER INDEX statement can be executed by:

Chapter 5. Data Definition (DDL) Statements

141

• Administrators

• The owner of the table

• Users with the ALTER ANY TABLE privilege

Use of ALTER INDEX on a Constraint Index

Altering the index of a PRIMARY KEY, FOREIGN KEY or UNIQUE constraint to INACTIVE is not permitted.
However, ALTER INDEX … ACTIVE works just as well with constraint indexes as it does with others, as
an index rebuilding tool.

ALTER INDEX Examples

1. Deactivating the IDX_UPDATER index

ALTER INDEX IDX_UPDATER INACTIVE;

2. Switching the IDX_UPDATER index back to the active state and rebuilding it

ALTER INDEX IDX_UPDATER ACTIVE;

See also

CREATE INDEX, DROP INDEX, SET STATISTICS

5.5.3. DROP INDEX

Used for

Dropping (deleting) an index

Available in

DSQL, ESQL

Syntax

DROP INDEX indexname

Table 33. DROP INDEX Statement Parameter

Parameter Description

indexname Index name

The DROP INDEX statement drops (deletes) the named index from the database.

A constraint index cannot dropped using DROP INDEX. Constraint indexes are
dropped during the process of executing the command ALTER TABLE … DROP
CONSTRAINT ….

Chapter 5. Data Definition (DDL) Statements

142

Who Can Drop an Index?

The DROP INDEX statement can be executed by:

• Administrators

• The owner of the table

• Users with the ALTER ANY TABLE privilege

DROP INDEX Example

Dropping the IDX_UPDATER index

DROP INDEX IDX_UPDATER;

See also

CREATE INDEX, ALTER INDEX

5.5.4. SET STATISTICS

Used for

Recalculating the selectivity of an index

Available in

DSQL, ESQL

Syntax

SET STATISTICS INDEX indexname

Table 34. SET STATISTICS Statement Parameter

Parameter Description

indexname Index name

The SET STATISTICS statement recalculates the selectivity of the specified index.

Who Can Update Index Statistics?

The SET STATISTICS statement can be executed by:

• Administrators

• The owner of the table

• Users with the ALTER ANY TABLE privilege

Index Selectivity

The selectivity of an index is the result of evaluating the number of rows that can be selected in a
search on every index value. A unique index has the maximum selectivity because it is impossible

Chapter 5. Data Definition (DDL) Statements

143

to select more than one row for each value of an index key if it is used. Keeping the selectivity of an
index up to date is important for the optimizer’s choices in seeking the most optimal query plan.

Index statistics in Firebird are not automatically recalculated in response to large batches of
inserts, updates or deletions. It may be beneficial to recalculate the selectivity of an index after such
operations because the selectivity tends to become outdated.

The statements CREATE INDEX and ALTER INDEX ACTIVE both store index statistics that
completely correspond to the contents of the newly-[re]built index.

It can be performed under concurrent load without risk of corruption. However, be aware that,
under concurrent load, the newly calculated statistics could become outdated as soon as SET
STATISTICS finishes.

Example Using SET STATISTICS

Recalculating the selectivity of the index IDX_UPDATER

SET STATISTICS INDEX IDX_UPDATER;

See also

CREATE INDEX, ALTER INDEX

5.6. VIEW
A view is a virtual table that is actually a stored and named SELECT query for retrieving data of any
complexity. Data can be retrieved from one or more tables, from other views and also from
selectable stored procedures.

Unlike regular tables in relational databases, a view is not an independent data set stored in the
database. The result is dynamically created as a data set when the view is selected.

The metadata of a view are available to the process that generates the binary code for stored
procedures and triggers, just as though they were concrete tables storing persistent data.

5.6.1. CREATE VIEW

Used for

Creating a view

Available in

DSQL

Syntax

CREATE VIEW viewname [<full_column_list>]
 AS <select_statement>
 [WITH CHECK OPTION]

Chapter 5. Data Definition (DDL) Statements

144

<full_column_list> ::= (colname [, colname ...])

Table 35. CREATE VIEW Statement Parameters

Parameter Description

viewname View name, maximum 31 characters

select_statement SELECT statement

full_column_list The list of columns in the view

colname View column name. Duplicate column names are not allowed.

The CREATE VIEW statement creates a new view. The identifier (name) of a view must be unique
among the names of all views, tables and stored procedures in the database.

The name of the new view can be followed by the list of column names that should be returned to
the caller when the view is invoked. Names in the list do not have to be related to the names of the
columns in the base tables from which they derive.

If the view column list is omitted, the system will use the column names and/or aliases from the
SELECT statement. If duplicate names or non-aliased expression-derived columns make it impossible
to obtain a valid list, creation of the view fails with an error.

The number of columns in the view’s list must exactly match the number of columns in the
selection list of the underlying SELECT statement in the view definition.

Additional Points

• If the full list of columns is specified, it makes no sense to specify aliases in the
SELECT statement because the names in the column list will override them

• The column list is optional if all the columns in the SELECT are explicitly named
and are unique in the selection list

Updatable Views

A view can be updatable or read-only. If a view is updatable, the data retrieved when this view is
called can be changed by the DML statements INSERT, UPDATE, DELETE, UPDATE OR INSERT or MERGE.
Changes made in an updatable view are applied to the underlying table(s).

A read-only view can be made updateable with the use of triggers. Once triggers have been defined
on a view, changes posted to it will never be written automatically to the underlying table, even if
the view was updateable to begin with. It is the responsibility of the programmer to ensure that the
triggers update (or delete from, or insert into) the base tables as needed.

A view will be automatically updatable if all the following conditions are met:

• the SELECT statement queries only one table or one updatable view

• the SELECT statement does not call any stored procedures

• each base table (or base view) column not present in the view definition meets one of the

Chapter 5. Data Definition (DDL) Statements

145

following conditions:

◦ it is nullable

◦ it has a non-NULL default value

◦ it has a trigger that supplies a permitted value

• the SELECT statement contains no fields derived from subqueries or other expressions

• the SELECT statement does not contain fields defined through aggregate functions (MIN, MAX, AVG,
SUM, COUNT, LIST, etc.), statistical functions (CORR, COVAR_POP, COVAR_SAMP, etc.), linear regression
functions (REGR_AVGX, REGR_AVGY, etc.) or any type of window function

• the SELECT statement contains no ORDER BY, GROUP BY or HAVING clause

• the SELECT statement does not include the keyword DISTINCT or row-restrictive keywords such as
ROWS, FIRST, SKIP, OFFSET or FETCH

WITH CHECK OPTION

The optional WITH CHECK OPTION clause requires an updatable view to check whether new or
updated data meet the condition specified in the WHERE clause of the SELECT statement. Every attempt
to insert a new record or to update an existing one is checked whether the new or updated record
would meet the WHERE criteria. If they fail the check, the operation is not performed and an
appropriate error message is returned.

WITH CHECK OPTION can be specified only in a CREATE VIEW statement in which a WHERE clause is
present to restrict the output of the main SELECT statement. An error message is returned otherwise.

Please note:

If WITH CHECK OPTION is used, the engine checks the input against the WHERE clause
before passing anything to the base relation. Therefore, if the check on the input
fails, any default clauses or triggers on the base relation that might have been
designed to correct the input will never come into action.

Furthermore, view fields omitted from the INSERT statement are passed as NULLs to
the base relation, regardless of their presence or absence in the WHERE clause. As a
result, base table defaults defined on such fields will not be applied. Triggers, on
the other hand, will fire and work as expected.

For views that do not have WITH CHECK OPTION, fields omitted from the INSERT
statement are not passed to the base relation at all, so any defaults will be applied.

Who Can Create a View?

The CREATE VIEW statement can be executed by:

• Administrators

• Users with the CREATE VIEW privilege

The creator of a view becomes its owner.

Chapter 5. Data Definition (DDL) Statements

146

To create a view, a non-admin user also needs at least SELECT access to the underlying table(s)
and/or view(s), and the EXECUTE privilege on any selectable stored procedures involved.

To enable insertions, updates and deletions through the view, the creator/owner must also possess
the corresponding INSERT, UPDATE and DELETE rights on the underlying object(s).

Granting other users privileges on the view is only possible if the view owner has these privileges
on the underlying objects WITH GRANT OPTION. It will always be the case if the view owner is also the
owner of the underlying objects.

Examples of Creating Views

1. Creating view returning the JOB_CODE and JOB_TITLE columns only for those jobs where
MAX_SALARY is less than $15,000.

CREATE VIEW ENTRY_LEVEL_JOBS AS
SELECT JOB_CODE, JOB_TITLE
FROM JOB
WHERE MAX_SALARY < 15000;

2. Creating a view returning the JOB_CODE and JOB_TITLE columns only for those jobs where
MAX_SALARY is less than $15,000. Whenever a new record is inserted or an existing record is
updated, the MAX_SALARY < 15000 condition will be checked. If the condition is not true, the
insert/update operation will be rejected.

CREATE VIEW ENTRY_LEVEL_JOBS AS
SELECT JOB_CODE, JOB_TITLE
FROM JOB
WHERE MAX_SALARY < 15000
WITH CHECK OPTION;

3. Creating a view with an explicit column list.

CREATE VIEW PRICE_WITH_MARKUP (
 CODE_PRICE,
 COST,
 COST_WITH_MARKUP
) AS
SELECT
 CODE_PRICE,
 COST,
 COST * 1.1
FROM PRICE;

4. Creating a view with the help of aliases for fields in the SELECT statement (the same result as in
Example 3).

Chapter 5. Data Definition (DDL) Statements

147

CREATE VIEW PRICE_WITH_MARKUP AS
SELECT
 CODE_PRICE,
 COST,
 COST * 1.1 AS COST_WITH_MARKUP
FROM PRICE;

5. Creating a read-only view based on two tables and a stored procedure.

CREATE VIEW GOODS_PRICE AS
SELECT
 goods.name AS goodsname,
 price.cost AS cost,
 b.quantity AS quantity
FROM
 goods
 JOIN price ON goods.code_goods = price.code_goods
 LEFT JOIN sp_get_balance(goods.code_goods) b ON 1 = 1;

See also

ALTER VIEW, CREATE OR ALTER VIEW, RECREATE VIEW, DROP VIEW

5.6.2. ALTER VIEW

Used for

Modifying an existing view

Available in

DSQL

Syntax

ALTER VIEW viewname [<full_column_list>]
 AS <select_statement>
 [WITH CHECK OPTION]

<full_column_list> ::= (colname [, colname ...])

Table 36. ALTER VIEW Statement Parameters

Parameter Description

viewname Name of an existing view

select_statement SELECT statement

full_column_list The list of columns in the view

colname View column name. Duplicate column names are not allowed.

Chapter 5. Data Definition (DDL) Statements

148

Use the ALTER VIEW statement for changing the definition of an existing view. Privileges for views
remain intact and dependencies are not affected.

The syntax of the ALTER VIEW statement corresponds completely with that of CREATE VIEW.

Be careful when you change the number of columns in a view. Existing application
code and PSQL modules that access the view may become invalid. For information
on how to detect this kind of problem in stored procedures and trigger, see The
RDB$VALID_BLR Field in the Appendix.

Who Can Alter a View?

The ALTER VIEW statement can be executed by:

• Administrators

• The owner of the view

• Users with the ALTER ANY VIEW privilege

Example using ALTER VIEW

Altering the view PRICE_WITH_MARKUP

ALTER VIEW PRICE_WITH_MARKUP (
 CODE_PRICE,
 COST,
 COST_WITH_MARKUP
) AS
SELECT
 CODE_PRICE,
 COST,
 COST * 1.15
FROM PRICE;

See also

CREATE VIEW, CREATE OR ALTER VIEW, RECREATE VIEW

5.6.3. CREATE OR ALTER VIEW

Used for

Creating a new view or altering an existing view.

Available in

DSQL

Syntax

CREATE OR ALTER VIEW viewname [<full_column_list>]
 AS <select_statement>

Chapter 5. Data Definition (DDL) Statements

149

 [WITH CHECK OPTION]

<full_column_list> ::= (colname [, colname ...])

Table 37. CREATE OR ALTER VIEW Statement Parameters

Parameter Description

viewname Name of a view which may or may not exist

select_statement SELECT statement

full_column_list The list of columns in the view

colname View column name. Duplicate column names are not allowed.

Use the CREATE OR ALTER VIEW statement for changing the definition of an existing view or creating it
if it does not exist. Privileges for an existing view remain intact and dependencies are not affected.

The syntax of the CREATE OR ALTER VIEW statement corresponds completely with that of CREATE VIEW.

Example of CREATE OR ALTER VIEW

Creating the new view PRICE_WITH_MARKUP view or altering it if it already exists

CREATE OR ALTER VIEW PRICE_WITH_MARKUP (
 CODE_PRICE,
 COST,
 COST_WITH_MARKUP
) AS
SELECT
 CODE_PRICE,
 COST,
 COST * 1.15
FROM PRICE;

See also

CREATE VIEW, ALTER VIEW, RECREATE VIEW

5.6.4. DROP VIEW

Used for

Deleting (dropping) a view

Available in

DSQL

Syntax

DROP VIEW viewname

Chapter 5. Data Definition (DDL) Statements

150

Table 38. DROP VIEW Statement Parameter

Parameter Description

viewname View name

The DROP VIEW statement drops (deletes) an existing view. The statement will fail if the view has
dependencies.

Who Can Drop a View?

The DROP VIEW statement can be executed by:

• Administrators

• The owner of the view

• Users with the DROP ANY VIEW privilege

Example

Deleting the PRICE_WITH_MARKUP view

DROP VIEW PRICE_WITH_MARKUP;

See also

CREATE VIEW, RECREATE VIEW, CREATE OR ALTER VIEW

5.6.5. RECREATE VIEW

Used for

Creating a new view or recreating an existing view

Available in

DSQL

Syntax

RECREATE VIEW viewname [<full_column_list>]
 AS <select_statement>
 [WITH CHECK OPTION]

<full_column_list> ::= (colname [, colname ...])

Table 39. RECREATE VIEW Statement Parameters

Parameter Description

viewname View name, maximum 31 characters

select_statement SELECT statement

full_column_list The list of columns in the view

Chapter 5. Data Definition (DDL) Statements

151

Parameter Description

colname View column name. Duplicate column names are not allowed.

Creates or recreates a view. If there is a view with this name already, the engine will try to drop it
before creating the new instance. If the existing view cannot be dropped, because of dependencies
or insufficient rights, for example, RECREATE VIEW fails with an error.

Example of RECREATE VIEW

Creating the new view PRICE_WITH_MARKUP view or recreating it, if it already exists

RECREATE VIEW PRICE_WITH_MARKUP (
 CODE_PRICE,
 COST,
 COST_WITH_MARKUP
) AS
SELECT
 CODE_PRICE,
 COST,
 COST * 1.15
FROM PRICE;

See also

CREATE VIEW, DROP VIEW, CREATE OR ALTER VIEW

5.7. TRIGGER
A trigger is a special type of stored procedure that is not called directly, instead being executed
when a specified event occurs in the associated table or view. A DML trigger is specific to one and
only one relation (table or view) and one phase in the timing of the event (BEFORE or AFTER). It
can be specified to execute for one specific event (insert, update, delete) or for some combination of
two or three of those events.

Two other forms of trigger exist:

1. a “database trigger” can be specified to fire at the start or end of a user session (connection) or a
user transaction.

2. a “DDL trigger” can be specified to fire at the before or after execution of one or more types of
DDL statements.

5.7.1. CREATE TRIGGER

Used for

Creating a new trigger

Available in

DSQL, ESQL

Chapter 5. Data Definition (DDL) Statements

152

Syntax

CREATE TRIGGER trigname
 { <relation_trigger_legacy>
 | <relation_trigger_sql2003>
 | <database_trigger>
 | <ddl_trigger> }
 <module-body>

<module-body> ::=
 !! See Syntax of Module Body !!

<relation_trigger_legacy> ::=
 FOR {tablename | viewname}
 [ACTIVE | INACTIVE]
 {BEFORE | AFTER} <mutation_list>
 [POSITION number]

<relation_trigger_sql2003> ::=
 [ACTIVE | INACTIVE]
 {BEFORE | AFTER} <mutation_list>
 [POSITION number]
 ON {tablename | viewname}

<database_trigger> ::=
 [ACTIVE | INACTIVE] ON <db_event>
 [POSITION number]

<ddl_trigger> ::=
 [ACTIVE | INACTIVE]
 {BEFORE | AFTER} <ddl_event>
 [POSITION number]

<mutation_list> ::=
 <mutation> [OR <mutation> [OR <mutation>]]

<mutation> ::= INSERT | UPDATE | DELETE

<db_event> ::=
 CONNECT | DISCONNECT
 | TRANSACTION {START | COMMIT | ROLLBACK}

<ddl_event> ::=
 ANY DDL STATEMENT
 | <ddl_event_item> [{OR <ddl_event_item>} ...]

<ddl_event_item> ::=
 {CREATE | ALTER | DROP} TABLE
 | {CREATE | ALTER | DROP} PROCEDURE
 | {CREATE | ALTER | DROP} FUNCTION
 | {CREATE | ALTER | DROP} TRIGGER

Chapter 5. Data Definition (DDL) Statements

153

 | {CREATE | ALTER | DROP} EXCEPTION
 | {CREATE | ALTER | DROP} VIEW
 | {CREATE | ALTER | DROP} DOMAIN
 | {CREATE | ALTER | DROP} ROLE
 | {CREATE | ALTER | DROP} SEQUENCE
 | {CREATE | ALTER | DROP} USER
 | {CREATE | ALTER | DROP} INDEX
 | {CREATE | DROP} COLLATION
 | ALTER CHARACTER SET
 | {CREATE | ALTER | DROP} PACKAGE
 | {CREATE | DROP} PACKAGE BODY
 | {CREATE | ALTER | DROP} MAPPING

Table 40. CREATE TRIGGER Statement Parameters

Parameter Description

trigname Trigger name consisting of up to 31 characters. It must be unique among
all trigger names in the database.

relation_trigger_legacy Legacy style of trigger declaration for a relation trigger

relation_trigger_sql200
3

Relation trigger declaration compliant with the SQL:2003 standard

database_trigger Database trigger declaration

tablename Name of the table with which the relation trigger is associated

viewname Name of the view with which the relation trigger is associated

mutation_list List of relation (table | view) events

number Position of the trigger in the firing order. From 0 to 32,767

db_event Connection or transaction event

ddl_event List of metadata change events

ddl_event_item One of the metadata change events

The CREATE TRIGGER statement is used for creating a new trigger. A trigger can be created either for a
relation (table | view) event (or a combination of events), for a database event, or for a DDL event.

CREATE TRIGGER, along with its associates ALTER TRIGGER, CREATE OR ALTER TRIGGER and RECREATE
TRIGGER, is a compound statement, consisting of a header and a body. The header specifies the name
of the trigger, the name of the relation (for a DML trigger), the phase of the trigger, the event(s) it
applies to, and the position to determine an order between triggers.

The trigger body consists of optional declarations of local variables and named cursors followed by
one or more statements, or blocks of statements, all enclosed in an outer block that begins with the
keyword BEGIN and ends with the keyword END. Declarations and embedded statements are
terminated with semi-colons (‘;’).

The name of the trigger must be unique among all trigger names.

Chapter 5. Data Definition (DDL) Statements

154

Statement Terminators

Some SQL statement editors — specifically the isql utility that comes with Firebird and possibly
some third-party editors — employ an internal convention that requires all statements to be
terminated with a semi-colon. This creates a conflict with PSQL syntax when coding in these
environments. If you are unacquainted with this problem and its solution, please study the details
in the PSQL chapter in the section entitled Switching the Terminator in isql.

External UDR Triggers

A trigger can also be located in an external module. In this case, instead of a trigger body, the CREATE
TRIGGER specifies the location of the trigger in the external module using the EXTERNAL clause. The
optional NAME clause specifies the name of the external module, the name of the trigger inside the
module, and — optionally — user-defined information. The required ENGINE clause specifies the
name of the UDR engine that handles communication between Firebird and the external module.
The optional AS clause accepts a string literal “body”, which can be used by the engine or module
for various purposes.

DML Triggers (on Tables or Views)

DML — or “relation” — triggers are executed at the row (record) level, every time the row image
changes. A trigger can be either ACTIVE or INACTIVE. Only active triggers are executed. Triggers are
created ACTIVE by default.

Who Can Create a DML Trigger?

DML triggers can be created by:

• Administrators

• The owner of the table (or view)

• Users with the ALTER ANY TABLE or — for a view — ALTER ANY VIEW privilege

Forms of Declaration

Firebird supports two forms of declaration for relation triggers:

• The original, legacy syntax

• The SQL:2003 standard-compliant form (recommended)

The SQL:2003 standard-compliant form is the recommended one.

A relation trigger specifies — among other things — a phase and one or more events.

Phase

Phase concerns the timing of the trigger with regard to the change-of-state event in the row of data:

• A BEFORE trigger is fired before the specified database operation (insert, update or delete) is
carried out

• An AFTER trigger is fired after the database operation has been completed

Chapter 5. Data Definition (DDL) Statements

155

Row Events

A relation trigger definition specifies at least one of the DML operations INSERT, UPDATE and DELETE,
to indicate one or more events on which the trigger should fire. If multiple operations are specified,
they must be separated by the keyword OR. No operation may occur more than once.

Within the statement block, the Boolean context variables INSERTING, UPDATING and DELETING can be
used to test which operation is currently executing.

Firing Order of Triggers

The keyword POSITION allows an optional execution order (“firing order”) to be specified for a series
of triggers that have the same phase and event as their target. The default position is 0. If no
positions are specified, or if several triggers have a single position number, the triggers will be
executed in the alphabetical order of their names.

Variable Declarations

The optional declarations section beneath the keyword AS in the header of the trigger is for defining
variables and named cursors that are local to the trigger. For more details, see DECLARE VARIABLE and
DECLARE CURSOR in the Procedural SQL chapter.

The Trigger Body

The local declarations (if any) are the final part of a trigger’s header section. The trigger body
follows, where one or more blocks of PSQL statements are enclosed in a structure that starts with
the keyword BEGIN and terminates with the keyword END.

Only the owner of the view or table and administrators have the authority to use CREATE TRIGGER.

Examples of CREATE TRIGGER for Tables and Views

1. Creating a trigger in the “legacy” form, firing before the event of inserting a new record into the
CUSTOMER table occurs.

CREATE TRIGGER SET_CUST_NO FOR CUSTOMER
ACTIVE BEFORE INSERT POSITION 0
AS
BEGIN
 IF (NEW.CUST_NO IS NULL) THEN
 NEW.CUST_NO = GEN_ID(CUST_NO_GEN, 1);
END

2. Creating a trigger firing before the event of inserting a new record into the CUSTOMER table in the
SQL:2003 standard-compliant form.

CREATE TRIGGER set_cust_no
ACTIVE BEFORE INSERT POSITION 0 ON customer
AS
BEGIN

Chapter 5. Data Definition (DDL) Statements

156

 IF (NEW.cust_no IS NULL) THEN
 NEW.cust_no = GEN_ID(cust_no_gen, 1);
END

3. Creating a trigger that will file after either inserting, updating or deleting a record in the
CUSTOMER table.

CREATE TRIGGER TR_CUST_LOG
ACTIVE AFTER INSERT OR UPDATE OR DELETE POSITION 10
ON CUSTOMER
AS
BEGIN
 INSERT INTO CHANGE_LOG (LOG_ID,
 ID_TABLE,
 TABLE_NAME,
 MUTATION)
 VALUES (NEXT VALUE FOR SEQ_CHANGE_LOG,
 OLD.CUST_NO,
 'CUSTOMER',
 CASE
 WHEN INSERTING THEN 'INSERT'
 WHEN UPDATING THEN 'UPDATE'
 WHEN DELETING THEN 'DELETE'
 END);
END

Database Triggers

Triggers can be defined to fire upon “database events”, which really refers to a mixture of events
that act across the scope of a session (connection) and events that act across the scope of an
individual transaction:

• CONNECT

• DISCONNECT

• TRANSACTION START

• TRANSACTION COMMIT

• TRANSACTION ROLLBACK

DDL Triggers are a sub-type of database triggers, covered in a separate section.

Who Can Create a Database Trigger?

Database triggers can be created by:

• Administrators

• Users with the ALTER DATABASE privilege

Chapter 5. Data Definition (DDL) Statements

157

Execution of Database Triggers and Exception Handling

CONNECT and DISCONNECT triggers are executed in a transaction created specifically for this purpose.
This transaction uses the default isolation level, i.e. snapshot (concurrency), write and wait. If all
goes well, the transaction is committed. Uncaught exceptions cause the transaction to roll back, and

• for a CONNECT trigger, the connection is then broken and the exception is returned to the client

• for a DISCONNECT trigger, exceptions are not reported. The connection is broken as intended

TRANSACTION triggers are executed within the transaction whose start, commit or rollback evokes
them. The action taken after an uncaught exception depends on the event:

• In a TRANSACTION START trigger, the exception is reported to the client and the transaction is
rolled back

• In a TRANSACTION COMMIT trigger, the exception is reported, the trigger’s actions so far are undone
and the commit is cancelled

• In a TRANSACTION ROLLBACK trigger, the exception is not reported and the transaction is rolled
back as intended.

Traps

Obviously there is no direct way of knowing if a DISCONNECT or TRANSACTION ROLLBACK trigger caused
an exception. It also follows that the connection to the database cannot happen if a CONNECT trigger
causes an exception and a transaction cannot start if a TRANSACTION START trigger causes one, either.
Both phenomena effectively lock you out of your database until you get in there with database
triggers suppressed and fix the bad code.

Suppressing Database Triggers

Some Firebird command-line tools have been supplied with switches that an administrator can use
to suppress the automatic firing of database triggers. So far, they are:

gbak -nodbtriggers
isql -nodbtriggers
nbackup -T

Two-phase Commit

In a two-phase commit scenario, TRANSACTION COMMIT triggers fire in the prepare phase, not at the
commit.

Some Caveats

1. The use of the IN AUTONOMOUS TRANSACTION DO statement in the database event triggers related to
transactions (TRANSACTION START, TRANSACTION ROLLBACK, TRANSACTION COMMIT) may cause the
autonomous transaction to enter an infinite loop

2. The DISCONNECT and TRANSACTION ROLLBACK event triggers will not be executed when clients are
disconnected via monitoring tables (DELETE FROM MON$ATTACHMENTS)

Chapter 5. Data Definition (DDL) Statements

158

Only the database owner and administrators have the authority to create database triggers.

Examples of CREATE TRIGGER for “Database Triggers”

1. Creating a trigger for the event of connecting to the database that logs users logging into the
system. The trigger is created as inactive.

CREATE TRIGGER tr_log_connect
INACTIVE ON CONNECT POSITION 0
AS
BEGIN
 INSERT INTO LOG_CONNECT (ID,
 USERNAME,
 ATIME)
 VALUES (NEXT VALUE FOR SEQ_LOG_CONNECT,
 CURRENT_USER,
 CURRENT_TIMESTAMP);
END

2. Creating a trigger for the event of connecting to the database that does not permit any users,
except for SYSDBA, to log in during off hours.

CREATE EXCEPTION E_INCORRECT_WORKTIME 'The working day has not started yet.';

CREATE TRIGGER TR_LIMIT_WORKTIME ACTIVE
ON CONNECT POSITION 1
AS
BEGIN
 IF ((CURRENT_USER <> 'SYSDBA') AND
 NOT (CURRENT_TIME BETWEEN time '9:00' AND time '17:00')) THEN
 EXCEPTION E_INCORRECT_WORKTIME;
END

DDL Triggers

DDL triggers allow restrictions to be placed on users who attempt to create, alter or drop a DDL
object. Their other purposes is to keep a metadata change log.

DDL triggers fire on specified metadata changes events in a specified phase. BEFORE triggers run
before changes to system tables. AFTER triggers run after changes in system tables.

 The event type [BEFORE | AFTER] of a DDL trigger cannot be changed.

In some sense, DDL triggers are a sub-type of database triggers.

Who Can Create a DDL Trigger?

DDL triggers can be created by:

Chapter 5. Data Definition (DDL) Statements

159

• Administrators

• Users with the ALTER DATABASE privilege

Suppressing DDL Triggers

A DDL trigger is a type of database trigger. See Suppressing Database Triggers how to suppress
database — and DDL — triggers.

Examples of DDL Triggers

1. Here is how you might use a DDL trigger to enforce a consistent naming scheme, in this case,
stored procedure names should begin with the prefix “SP_”:

set auto on;
create exception e_invalid_sp_name 'Invalid SP name (should start with SP_)';

set term !;

create trigger trig_ddl_sp before CREATE PROCEDURE
as
begin
 if (rdb$get_context('DDL_TRIGGER', 'OBJECT_NAME') not starting 'SP_') then
 exception e_invalid_sp_name;
end!

Test

create procedure sp_test
as
begin
end!

create procedure test
as
begin
end!

-- The last command raises this exception and procedure TEST is not created
-- Statement failed, SQLSTATE = 42000
-- exception 1
-- -E_INVALID_SP_NAME
-- -Invalid SP name (should start with SP_)
-- -At trigger 'TRIG_DDL_SP' line: 4, col: 5

set term ;!

2. Implement custom DDL security, in this case restricting the running of DDL commands to
certain users:

Chapter 5. Data Definition (DDL) Statements

160

create exception e_access_denied 'Access denied';

set term !;

create trigger trig_ddl before any ddl statement
as
begin
 if (current_user <> 'SUPER_USER') then
 exception e_access_denied;
end!

Test

create procedure sp_test
as
begin
end!

-- The last command raises this exception and procedure SP_TEST is not created
-- Statement failed, SQLSTATE = 42000
-- exception 1
-- -E_ACCESS_DENIED
-- -Access denied
-- -At trigger 'TRIG_DDL' line: 4, col: 5

set term ;!

Firebird has privileges for executing DDL statements, so writing a DDL trigger
for this should be a last resort, if the same effect cannot be achieved using
privileges.

3. Use a trigger to log DDL actions and attempts:

create sequence ddl_seq;

create table ddl_log (
 id bigint not null primary key,
 moment timestamp not null,
 user_name varchar(31) not null,
 event_type varchar(25) not null,
 object_type varchar(25) not null,
 ddl_event varchar(25) not null,
 object_name varchar(31) not null,
 sql_text blob sub_type text not null,
 ok char(1) not null
);

Chapter 5. Data Definition (DDL) Statements

161

set term !;

create trigger trig_ddl_log_before before any ddl statement
as
 declare id type of column ddl_log.id;
begin
 -- We do the changes in an AUTONOMOUS TRANSACTION, so if an exception happens
 -- and the command didn't run, the log will survive.
 in autonomous transaction do
 begin
 insert into ddl_log (id, moment, user_name, event_type, object_type,
 ddl_event, object_name, sql_text, ok)
 values (next value for ddl_seq, current_timestamp, current_user,
 rdb$get_context('DDL_TRIGGER', 'EVENT_TYPE'),
 rdb$get_context('DDL_TRIGGER', 'OBJECT_TYPE'),
 rdb$get_context('DDL_TRIGGER', 'DDL_EVENT'),
 rdb$get_context('DDL_TRIGGER', 'OBJECT_NAME'),
 rdb$get_context('DDL_TRIGGER', 'SQL_TEXT'),
 'N')
 returning id into id;
 rdb$set_context('USER_SESSION', 'trig_ddl_log_id', id);
 end
end!

The above trigger will fire for this DDL command. It’s a good idea to use -nodbtriggers when
working with them!

create trigger trig_ddl_log_after after any ddl statement
as
begin
 -- Here we need an AUTONOMOUS TRANSACTION because the original transaction
 -- will not see the record inserted on the BEFORE trigger autonomous
 -- transaction if user transaction is not READ COMMITTED.
 in autonomous transaction do
 update ddl_log set ok = 'Y'
 where id = rdb$get_context('USER_SESSION', 'trig_ddl_log_id');
end!

commit!

set term ;!

-- Delete the record about trig_ddl_log_after creation.
delete from ddl_log;
commit;

Test

-- This will be logged one time

Chapter 5. Data Definition (DDL) Statements

162

-- (as T1 did not exist, RECREATE acts as CREATE) with OK = Y.
recreate table t1 (
 n1 integer,
 n2 integer
);

-- This will fail as T1 already exists, so OK will be N.
create table t1 (
 n1 integer,
 n2 integer
);

-- T2 does not exist. There will be no log.
drop table t2;

-- This will be logged twice
-- (as T1 exists, RECREATE acts as DROP and CREATE) with OK = Y.
recreate table t1 (
 n integer
);

commit;

select id, ddl_event, object_name, sql_text, ok
 from ddl_log order by id;

 ID DDL_EVENT OBJECT_NAME SQL_TEXT OK
=== ========================= ======================= ================= ======
 2 CREATE TABLE T1 80:3 Y
==
SQL_TEXT:
recreate table t1 (
 n1 integer,
 n2 integer
)
==
 3 CREATE TABLE T1 80:2 N
==
SQL_TEXT:
create table t1 (
 n1 integer,
 n2 integer
)
==
 4 DROP TABLE T1 80:6 Y
==
SQL_TEXT:
recreate table t1 (
 n integer
)

Chapter 5. Data Definition (DDL) Statements

163

==
 5 CREATE TABLE T1 80:9 Y
==
SQL_TEXT:
recreate table t1 (
 n integer
)
==

See also

ALTER TRIGGER, CREATE OR ALTER TRIGGER, RECREATE TRIGGER, DROP TRIGGER, DDL Triggers in Chapter
Procedural SQL (PSQL) Statements

5.7.2. ALTER TRIGGER

Used for

Modifying and deactivating an existing trigger

Available in

DSQL, ESQL

Syntax

ALTER TRIGGER trigname
 [ACTIVE | INACTIVE]
 [{BEFORE | AFTER} <mutation_list>]
 [POSITION number]
 [<module-body>]

!! See syntax of CREATE TRIGGER for further rules !!

The ALTER TRIGGER statement only allows certain changes to the header and body of a trigger.

Permitted Changes to Triggers

• Status (ACTIVE | INACTIVE)

• Phase (BEFORE | AFTER) (of DML triggers)

• Events (of DML triggers)

• Position in the firing order

• Modifications to code in the trigger body

If an element is not specified, it remains unchanged.

A DML trigger cannot be changed to a database (or DDL) trigger.

It is not possible to change the event(s) or phase of a database (or DDL) trigger.

Chapter 5. Data Definition (DDL) Statements

164

Reminders

The BEFORE keyword directs that the trigger be executed before the associated
event occurs; the AFTER keyword directs that it be executed after the event.

More than one DML event — INSERT, UPDATE, DELETE — can be covered in a single
trigger. The events should be separated with the keyword OR. No event should be
mentioned more than once.

The keyword POSITION allows an optional execution order (“firing order”) to be
specified for a series of triggers that have the same phase and event as their target.
The default position is 0. If no positions are specified, or if several triggers have a
single position number, the triggers will be executed in the alphabetical order of
their names.

Who Can Alter a Trigger?

DML triggers can be altered by:

• Administrators

• The owner of the table (or view)

• Users with the ALTER ANY TABLE or — for a view — ALTER ANY VIEW privilege

Database and DDL triggers can be altered by:

• Administrators

• Users with the ALTER DATABASE privilege

Examples using ALTER TRIGGER

1. Deactivating the set_cust_no trigger (switching it to the inactive status).

ALTER TRIGGER set_cust_no INACTIVE;

2. Changing the firing order position of the set_cust_no trigger.

ALTER TRIGGER set_cust_no POSITION 14;

3. Switching the TR_CUST_LOG trigger to the inactive status and modifying the list of events.

ALTER TRIGGER TR_CUST_LOG
INACTIVE AFTER INSERT OR UPDATE;

4. Switching the tr_log_connect trigger to the active status, changing its position and body.

ALTER TRIGGER tr_log_connect

Chapter 5. Data Definition (DDL) Statements

165

ACTIVE POSITION 1
AS
BEGIN
 INSERT INTO LOG_CONNECT (ID,
 USERNAME,
 ROLENAME,
 ATIME)
 VALUES (NEXT VALUE FOR SEQ_LOG_CONNECT,
 CURRENT_USER,
 CURRENT_ROLE,
 CURRENT_TIMESTAMP);
END

See also

CREATE TRIGGER, CREATE OR ALTER TRIGGER, RECREATE TRIGGER, DROP TRIGGER

5.7.3. CREATE OR ALTER TRIGGER

Used for

Creating a new trigger or altering an existing trigger

Available in

DSQL

Syntax

CREATE OR ALTER TRIGGER trigname
 { <relation_trigger_legacy>
 | <relation_trigger_sql2003>
 | <database_trigger>
 | <ddl_trigger> }
 <module-body>

!! See syntax of CREATE TRIGGER for further rules !!

The CREATE OR ALTER TRIGGER statement creates a new trigger if it does not exist; otherwise it alters
and recompiles it with the privileges intact and dependencies unaffected.

Example of CREATE OR ALTER TRIGGER

Creating a new trigger if it does not exist or altering it if it does exist

CREATE OR ALTER TRIGGER set_cust_no
ACTIVE BEFORE INSERT POSITION 0 ON customer
AS
BEGIN
 IF (NEW.cust_no IS NULL) THEN
 NEW.cust_no = GEN_ID(cust_no_gen, 1);

Chapter 5. Data Definition (DDL) Statements

166

END

See also

CREATE TRIGGER, ALTER TRIGGER, RECREATE TRIGGER

5.7.4. DROP TRIGGER

Used for

Dropping (deleting) an existing trigger

Available in

DSQL, ESQL

Syntax

DROP TRIGGER trigname

Table 41. DROP TRIGGER Statement Parameter

Parameter Description

trigname Trigger name

The DROP TRIGGER statement drops (deletes) an existing trigger.

Who Can Drop a Trigger?

DML triggers can be dropped by:

• Administrators

• The owner of the table (or view)

• Users with the ALTER ANY TABLE or — for a view — ALTER ANY VIEW privilege

Database and DDL triggers can be dropped by:

• Administrators

• Users with the ALTER DATABASE privilege

Example of DROP TRIGGER

Deleting the set_cust_no trigger

DROP TRIGGER set_cust_no;

See also

CREATE TRIGGER, RECREATE TRIGGER

Chapter 5. Data Definition (DDL) Statements

167

5.7.5. RECREATE TRIGGER

Used for

Creating a new trigger or recreating an existing trigger

Available in

DSQL

Syntax

RECREATE TRIGGER trigname
 { <relation_trigger_legacy>
 | <relation_trigger_sql2003>
 | <database_trigger>
 | <ddl_trigger> }
 <module-body>

!! See syntax of CREATE TRIGGER for further rules !!

The RECREATE TRIGGER statement creates a new trigger if no trigger with the specified name exists;
otherwise the RECREATE TRIGGER statement tries to drop the existing trigger and create a new one.
The operation will fail on COMMIT if the trigger is in use.

Be aware that dependency errors are not detected until the COMMIT phase of this
operation.

Example of RECREATE TRIGGER

Creating or recreating the set_cust_no trigger.

RECREATE TRIGGER set_cust_no
ACTIVE BEFORE INSERT POSITION 0 ON customer
AS
BEGIN
 IF (NEW.cust_no IS NULL) THEN
 NEW.cust_no = GEN_ID(cust_no_gen, 1);
END

See also

CREATE TRIGGER, DROP TRIGGER, CREATE OR ALTER TRIGGER

5.8. PROCEDURE
A stored procedure is a software module that can be called from a client, another procedure,
function, executable block or trigger. Stored procedures, stored functions, executable blocks and
triggers are written in procedural SQL (PSQL). Most SQL statements are available in PSQL as well,
sometimes with some limitations or extensions, notable limitations are DDL and transaction control

Chapter 5. Data Definition (DDL) Statements

168

statements.

Stored procedures can have many input and output parameters.

5.8.1. CREATE PROCEDURE

Used for

Creating a new stored procedure

Available in

DSQL, ESQL

Syntax

CREATE PROCEDURE procname [([<in_params>])]
 [RETURNS (<out_params>)]
 <module-body>

<module-body> ::=
 !! See Syntax of Module Body !!

<in_params> ::= <inparam> [, <inparam> ...]

<inparam> ::= <param_decl> [{= | DEFAULT} <value>]

<out_params> ::= <outparam> [, <outparam> ...]

<outparam> ::= <param_decl>

<value> ::= {<literal> | NULL | <context_var>}

<param_decl> ::= paramname <domain_or_non_array_type> [NOT NULL]
 [COLLATE collation]

<type> ::=
 <datatype>
 | [TYPE OF] domain
 | TYPE OF COLUMN rel.col

<domain_or_non_array_type> ::=
 !! See Scalar Data Types Syntax !!

Table 42. CREATE PROCEDURE Statement Parameters

Parameter Description

procname Stored procedure name consisting of up to 31 characters. Must be unique
among all table, view and procedure names in the database

inparam Input parameter description

outparam Output parameter description

Chapter 5. Data Definition (DDL) Statements

169

Parameter Description

literal A literal value that is assignment-compatible with the data type of the
parameter

context_var Any context variable whose type is compatible with the data type of the
parameter

paramname The name of an input or output parameter of the procedure. It may
consist of up to 31 characters. The name of the parameter must be unique
among input and output parameters of the procedure and its local
variables

collation Collation sequence

The CREATE PROCEDURE statement creates a new stored procedure. The name of the procedure must
be unique among the names of all stored procedures, tables and views in the database.

CREATE PROCEDURE is a compound statement, consisting of a header and a body. The header specifies
the name of the procedure and declares input parameters and the output parameters, if any, that
are to be returned by the procedure.

The procedure body consists of declarations for any local variables and named cursors that will be
used by the procedure, followed by one or more statements, or blocks of statements, all enclosed in
an outer block that begins with the keyword BEGIN and ends with the keyword END. Declarations and
embedded statements are terminated with semi-colons (‘;’).

Statement Terminators

Some SQL statement editors — specifically the isql utility that comes with Firebird and possibly
some third-party editors — employ an internal convention that requires all statements to be
terminated with a semi-colon. This creates a conflict with PSQL syntax when coding in these
environments. If you are unacquainted with this problem and its solution, please study the details
in the PSQL chapter in the section entitled Switching the Terminator in isql.

Parameters

Each parameter has a data type. The NOT NULL constraint can also be specified for any parameter, to
prevent NULL being passed or assigned to it.

A collation sequence can be specified for string-type parameters, using the COLLATE clause.

Input Parameters

Input parameters are presented as a parenthesized list following the name of the function. They
are passed by value into the procedure, so any changes inside the procedure has no effect on the
parameters in the caller. Input parameters may have default values. Parameters with default
values specified must be added at the end of the list of parameters.

Output Parameters

The optional RETURNS clause is for specifying a parenthesised list of output parameters for the
stored procedure.

Chapter 5. Data Definition (DDL) Statements

170

Variable, Cursor and Sub-Routine Declarations

The optional declarations section, located at the start of the body of the procedure definition,
defines variables (including cursors) and sub-routines local to the procedure. Local variable
declarations follow the same rules as parameters regarding specification of the data type. See
details in the PSQL chapter for DECLARE VARIABLE, DECLARE CURSOR, DECLARE FUNCTION, and DECLARE
PROCEDURE.

External UDR Procedures

A stored procedure can also be located in an external module. In this case, instead of a procedure
body, the CREATE PROCEDURE specifies the location of the procedure in the external module using the
EXTERNAL clause. The optional NAME clause specifies the name of the external module, the name of the
procedure inside the module, and — optionally — user-defined information. The required ENGINE
clause specifies the name of the UDR engine that handles communication between Firebird and the
external module. The optional AS clause accepts a string literal “body”, which can be used by the
engine or module for various purposes.

Who Can Create a Procedure

The CREATE PROCEDURE statement can be executed by:

• Administrators

• Users with the CREATE PROCEDURE privilege

The user executing the CREATE PROCEDURE statement becomes the owner of the table.

Examples

1. Creating a stored procedure that inserts a record into the BREED table and returns the code of the
inserted record:

CREATE PROCEDURE ADD_BREED (
 NAME D_BREEDNAME, /* Domain attributes are inherited */
 NAME_EN TYPE OF D_BREEDNAME, /* Only the domain type is inherited */
 SHORTNAME TYPE OF COLUMN BREED.SHORTNAME,
 /* The table column type is inherited */
 REMARK VARCHAR(120) CHARACTER SET WIN1251 COLLATE PXW_CYRL,
 CODE_ANIMAL INT NOT NULL DEFAULT 1
)
RETURNS (
 CODE_BREED INT
)
AS
BEGIN
 INSERT INTO BREED (
 CODE_ANIMAL, NAME, NAME_EN, SHORTNAME, REMARK)
 VALUES (
 :CODE_ANIMAL, :NAME, :NAME_EN, :SHORTNAME, :REMARK)
 RETURNING CODE_BREED INTO CODE_BREED;

Chapter 5. Data Definition (DDL) Statements

171

END

2. Creating a selectable stored procedure that generates data for mailing labels (from
employee.fdb):

CREATE PROCEDURE mail_label (cust_no INTEGER)
RETURNS (line1 CHAR(40), line2 CHAR(40), line3 CHAR(40),
 line4 CHAR(40), line5 CHAR(40), line6 CHAR(40))
AS
 DECLARE VARIABLE customer VARCHAR(25);
 DECLARE VARIABLE first_name VARCHAR(15);
 DECLARE VARIABLE last_name VARCHAR(20);
 DECLARE VARIABLE addr1 VARCHAR(30);
 DECLARE VARIABLE addr2 VARCHAR(30);
 DECLARE VARIABLE city VARCHAR(25);
 DECLARE VARIABLE state VARCHAR(15);
 DECLARE VARIABLE country VARCHAR(15);
 DECLARE VARIABLE postcode VARCHAR(12);
 DECLARE VARIABLE cnt INTEGER;
BEGIN
 line1 = '';
 line2 = '';
 line3 = '';
 line4 = '';
 line5 = '';
 line6 = '';

 SELECT customer, contact_first, contact_last, address_line1,
 address_line2, city, state_province, country, postal_code
 FROM CUSTOMER
 WHERE cust_no = :cust_no
 INTO :customer, :first_name, :last_name, :addr1, :addr2,
 :city, :state, :country, :postcode;

 IF (customer IS NOT NULL) THEN
 line1 = customer;
 IF (first_name IS NOT NULL) THEN
 line2 = first_name || ' ' || last_name;
 ELSE
 line2 = last_name;
 IF (addr1 IS NOT NULL) THEN
 line3 = addr1;
 IF (addr2 IS NOT NULL) THEN
 line4 = addr2;

 IF (country = 'USA') THEN
 BEGIN
 IF (city IS NOT NULL) THEN
 line5 = city || ', ' || state || ' ' || postcode;
 ELSE

Chapter 5. Data Definition (DDL) Statements

172

 line5 = state || ' ' || postcode;
 END
 ELSE
 BEGIN
 IF (city IS NOT NULL) THEN
 line5 = city || ', ' || state;
 ELSE
 line5 = state;
 line6 = country || ' ' || postcode;
 END

 SUSPEND; -- the statement that sends an output row to the buffer
 -- and makes the procedure "selectable"
END

See also

CREATE OR ALTER PROCEDURE, ALTER PROCEDURE, RECREATE PROCEDURE, DROP PROCEDURE

5.8.2. ALTER PROCEDURE

Used for

Modifying an existing stored procedure

Available in

DSQL, ESQL

Syntax

ALTER PROCEDURE procname [([<in_params>])]
 [RETURNS (<out_params>)]
 <module-body>

!! See syntax of CREATE PROCEDURE for further rules !!

The ALTER PROCEDURE statement allows the following changes to a stored procedure definition:

• the set and characteristics of input and output parameters

• local variables

• code in the body of the stored procedure

After ALTER PROCEDURE executes, existing privileges remain intact and dependencies are not affected.

Take care about changing the number and type of input and output parameters in
stored procedures. Existing application code and procedures and triggers that call
it could become invalid because the new description of the parameters is
incompatible with the old calling format. For information on how to troubleshoot
such a situation, see the article The RDB$VALID_BLR Field in the Appendix.

Chapter 5. Data Definition (DDL) Statements

173

Who Can Alter a Procedure

The ALTER PROCEDURE statement can be executed by:

• Administrators

• The owner of the stored procedure

• Users with the ALTER ANY PROCEDURE privilege

ALTER PROCEDURE Example

Altering the GET_EMP_PROJ stored procedure.

ALTER PROCEDURE GET_EMP_PROJ (
 EMP_NO SMALLINT)
RETURNS (
 PROJ_ID VARCHAR(20))
AS
BEGIN
 FOR SELECT
 PROJ_ID
 FROM
 EMPLOYEE_PROJECT
 WHERE
 EMP_NO = :emp_no
 INTO :proj_id
 DO
 SUSPEND;
END

See also

CREATE PROCEDURE, CREATE OR ALTER PROCEDURE, RECREATE PROCEDURE, DROP PROCEDURE

5.8.3. CREATE OR ALTER PROCEDURE

Used for

Creating a new stored procedure or altering an existing one

Available in

DSQL

Syntax

CREATE OR ALTER PROCEDURE procname [([<in_params>])]
 [RETURNS (<out_params>)]
 <module-body>

!! See syntax of CREATE PROCEDURE for further rules !!

Chapter 5. Data Definition (DDL) Statements

174

The CREATE OR ALTER PROCEDURE statement creates a new stored procedure or alters an existing one.
If the stored procedure does not exist, it will be created by invoking a CREATE PROCEDURE statement
transparently. If the procedure already exists, it will be altered and compiled without affecting its
existing privileges and dependencies.

CREATE OR ALTER PROCEDURE Example

Creating or altering the GET_EMP_PROJ procedure.

CREATE OR ALTER PROCEDURE GET_EMP_PROJ (
 EMP_NO SMALLINT)
RETURNS (
 PROJ_ID VARCHAR(20))
AS
BEGIN
 FOR SELECT
 PROJ_ID
 FROM
 EMPLOYEE_PROJECT
 WHERE
 EMP_NO = :emp_no
 INTO :proj_id
 DO
 SUSPEND;
END

See also

CREATE PROCEDURE, ALTER PROCEDURE, RECREATE PROCEDURE

5.8.4. DROP PROCEDURE

Used for

Deleting a stored procedure

Available in

DSQL, ESQL

Syntax

DROP PROCEDURE procname

Table 43. DROP PROCEDURE Statement Parameter

Parameter Description

procname Name of an existing stored procedure

The DROP PROCEDURE statement deletes an existing stored procedure. If the stored procedure has any
dependencies, the attempt to delete it will fail and the appropriate error will be raised.

Chapter 5. Data Definition (DDL) Statements

175

Who Can Drop a Procedure

The ALTER PROCEDURE statement can be executed by:

• Administrators

• The owner of the stored procedure

• Users with the DROP ANY PROCEDURE privilege

DROP PROCEDURE Example

Deleting the GET_EMP_PROJ stored procedure.

DROP PROCEDURE GET_EMP_PROJ;

See also

CREATE PROCEDURE, RECREATE PROCEDURE

5.8.5. RECREATE PROCEDURE

Used for

Creating a new stored procedure or recreating an existing one

Available in

DSQL

Syntax

RECREATE PROCEDURE procname [([<in_params>])]
 [RETURNS (<out_params>)]
 <module-body>

!! See syntax of CREATE PROCEDURE for further rules !!

The RECREATE PROCEDURE statement creates a new stored procedure or recreates an existing one. If
there is a procedure with this name already, the engine will try to delete it and create a new one.
Recreating an existing procedure will fail at the COMMIT request if the procedure has dependencies.

Be aware that dependency errors are not detected until the COMMIT phase of this
operation.

After a procedure is successfully recreated, privileges to execute the stored procedure, and the
privileges of the stored procedure itself are dropped.

RECREATE PROCEDURE Example

Creating the new GET_EMP_PROJ stored procedure or recreating the existing GET_EMP_PROJ stored procedure.

RECREATE PROCEDURE GET_EMP_PROJ (

Chapter 5. Data Definition (DDL) Statements

176

 EMP_NO SMALLINT)
RETURNS (
 PROJ_ID VARCHAR(20))
AS
BEGIN
 FOR SELECT
 PROJ_ID
 FROM
 EMPLOYEE_PROJECT
 WHERE
 EMP_NO = :emp_no
 INTO :proj_id
 DO
 SUSPEND;
END

See also

CREATE PROCEDURE, DROP PROCEDURE, CREATE OR ALTER PROCEDURE

5.9. FUNCTION
A stored function is a user-defined function stored in the metadata of a database, and running on
the server. Stored functions can be called by stored procedures, stored functions (including the
function itself), triggers and client programs. When a stored function calls itself, such a stored
function is called a recursive function.

Unlike stored procedures, stored functions always return a single scalar value. To return a value
from a stored functions, use the RETURN statement, which immediately ends the function.

See also

EXTERNAL FUNCTION

5.9.1. CREATE FUNCTION

Used for

Creating a new stored function

Available in

DSQL

Syntax

CREATE FUNCTION funcname [([<in_params>])]
 RETURNS <domain_or_non_array_type> [COLLATE collation]
 [DETERMINISTIC]
 <module-body>

<module-body> ::=
 !! See Syntax of Module Body !!

Chapter 5. Data Definition (DDL) Statements

177

<in_params> ::= <inparam> [, <inparam> ...]

<inparam> ::= <param-decl> [{ = | DEFAULT } <value>]

<value> ::= { <literal> | NULL | <context-var> }

<param-decl> ::= paramname <domain_or_non_array_type> [NOT NULL]
 [COLLATE collation]

<domain_or_non_array_type> ::=
 !! See Scalar Data Types Syntax !!

Table 44. CREATE FUNCTION Statement Parameters

Parameter Description

funcname Stored function name consisting of up to 31 characters. Must be unique
among all function names in the database.

inparam Input parameter description

collation Collation sequence

literal A literal value that is assignment-compatible with the data type of the
parameter

context-var Any context variable whose type is compatible with the data type of the
parameter

paramname The name of an input parameter of the function. It may consist of up to 31
characters. The name of the parameter must be unique among input
parameters of the function and its local variables.

The CREATE FUNCTION statement creates a new stored function. The stored function name must be
unique among the names of all stored and external (legacy) functions, excluding sub-functions or
functions in packages. For sub-functions or functions in packages, the name must be unique within
its module (package, stored procedure, stored function, trigger).

It is advisable to not reuse function names between global stored functions and
stored functions in packages, although this is legal. At the moment, it is not
possible to call a function or procedure from the global namespace from inside a
package, if that package defines a function or procedure with the same name. In
that situation, the function or procedure of the package will be called.

CREATE FUNCTION is a compound statement with a header and a body. The header defines the name
of the stored function, and declares input parameters and return type.

The function body consists of optional declarations of local variables, named cursors, and
subroutines (sub-functions and sub-procedures), and one or more statements or statement blocks,
enclosed in an outer block that starts with the keyword BEGIN and ends with the keyword END.
Declarations and statements inside the function body must be terminated with a semicolon (‘;’).

Chapter 5. Data Definition (DDL) Statements

178

Statement Terminators

Some SQL statement editors — specifically the isql utility that comes with Firebird and possibly
some third-party editors — employ an internal convention that requires all statements to be
terminated with a semi-colon. This creates a conflict with PSQL syntax when coding in these
environments. If you are unacquainted with this problem and its solution, please study the details
in the PSQL chapter in the section entitled Switching the Terminator in isql.

Parameters

Each parameter has a data type.

A collation sequence can be specified for string-type parameters, using the COLLATE clause.

Input Parameters

Input parameters are presented as a parenthesized list following the name of the function. They
are passed by value into the function, so any changes inside the function has no effect on the
parameters in the caller. The NOT NULL constraint can also be specified for any input parameter,
to prevent NULL being passed or assigned to it. Input parameters may have default values.
Parameters with default values specified must be added at the end of the list of parameters.

Output Parameter

The RETURNS clause specifies the return type of the stored function. If a function returns a string
value, then it is possible to specify the collation using the COLLATE clause. As a return type, you
can specify a data type, a domain name, the type of a domain (using TYPE OF), or the type of a
column of a table or view (using TYPE OF COLUMN).

Deterministic functions

The optional DETERMINISTIC clause indicates that the function is deterministic. Deterministic
functions always return the same result for the same set of inputs. Non-deterministic functions can
return different results for each invocation, even for the same set of inputs. If a function is specified
as deterministic, then such a function might not be called again if it has already been called once
with the given set of inputs, and instead takes the result from a metadata cache.

Current versions of Firebird do not actually cache results of deterministic
functions.

Specifying the DETERMINISTIC clause is actually something like a “promise” that the
function will return the same thing for equal inputs. At the moment, a
deterministic function is considered an invariant, and works like other invariants.
That is, they are computed and cached at the current execution level of a given
statement.

This is easily demonstrated with an example:

CREATE FUNCTION FN_T
RETURNS DOUBLE PRECISION DETERMINISTIC
AS

Chapter 5. Data Definition (DDL) Statements

179

BEGIN
 RETURN rand();
END;

-- the function will be evaluated twice and will return 2 different
values
SELECT fn_t() FROM rdb$database
UNION ALL
SELECT fn_t() FROM rdb$database;

-- the function will be evaluated once and will return 2 identical
values
WITH t (n) AS (
 SELECT 1 FROM rdb$database
 UNION ALL
 SELECT 2 FROM rdb$database
)
SELECT n, fn_t() FROM t;

Variable, Cursor and Sub-Routine Declarations

The optional declarations section, located at the start of the body of the function definition, defines
variables (including cursors) and sub-routines local to the function. Local variable declarations
follow the same rules as parameters regarding specification of the data type. See details in the PSQL
chapter for DECLARE VARIABLE, DECLARE CURSOR, DECLARE FUNCTION, and DECLARE PROCEDURE.

Function Body

The header section is followed by the function body, consisting of one or more PSQL statements
enclosed between the outer keywords BEGIN and END. Multiple BEGIN … END blocks of terminated
statements may be embedded inside the procedure body.

External UDR Functions

A stored function can also be located in an external module. In this case, instead of a function body,
the CREATE FUNCTION specifies the location of the function in the external module using the EXTERNAL
clause. The optional NAME clause specifies the name of the external module, the name of the function
inside the module, and — optionally — user-defined information. The required ENGINE clause
specifies the name of the UDR engine that handles communication between Firebird and the
external module. The optional AS clause accepts a string literal “body”, which can be used by the
engine or module for various purposes.

External UDR (User Defined Routine) functions created using CREATE FUNCTION …
EXTERNAL … should not be confused with legacy UDFs (User Defined Functions)
declared using DECLARE EXTERNAL FUNCTION.

UDFs are deprecated, and a legacy from previous Firebird functions. Their
capabilities are significantly inferior to the capabilities to the new type of external
UDR functions.

Chapter 5. Data Definition (DDL) Statements

180

Who Can Create a Function

The CREATE FUNCTION statement can be executed by:

• Administrators

• Users with the CREATE FUNCTION privilege

The user who created the stored function becomes its owner.

CREATE FUNCTION Examples

1. Creating a stored function

CREATE FUNCTION ADD_INT (A INT, B INT DEFAULT 0)
RETURNS INT
AS
BEGIN
 RETURN A + B;
END

Calling in a select:

SELECT ADD_INT(2, 3) AS R FROM RDB$DATABASE

Call inside PSQL code, the second optional parameter is not specified:

MY_VAR = ADD_INT(A);

2. Creating a deterministic stored function

CREATE FUNCTION FN_E()
RETURNS DOUBLE PRECISION DETERMINISTIC
AS
BEGIN
 RETURN EXP(1);
END

3. Creating a stored function with table column type parameters

Returns the name of a type by field name and value

CREATE FUNCTION GET_MNEMONIC (
 AFIELD_NAME TYPE OF COLUMN RDB$TYPES.RDB$FIELD_NAME,
 ATYPE TYPE OF COLUMN RDB$TYPES.RDB$TYPE)
RETURNS TYPE OF COLUMN RDB$TYPES.RDB$TYPE_NAME
AS

Chapter 5. Data Definition (DDL) Statements

181

BEGIN
 RETURN (SELECT RDB$TYPE_NAME
 FROM RDB$TYPES
 WHERE RDB$FIELD_NAME = :AFIELD_NAME
 AND RDB$TYPE = :ATYPE);
END

4. Creating an external stored function

Create a function located in an external module (UDR). Function implementation is located in
the external module udrcpp_example. The name of the function inside the module is wait_event.

CREATE FUNCTION wait_event (
 event_name varchar (31) CHARACTER SET ascii
) RETURNS INTEGER
EXTERNAL NAME 'udrcpp_example!Wait_event'
ENGINE udr

5. Creating a stored function containing a sub-function

Creating a function to convert a number to hexadecimal format.

CREATE FUNCTION INT_TO_HEX (
 ANumber BIGINT ,
 AByte_Per_Number SMALLINT = 8)
RETURNS CHAR (66)
AS
DECLARE VARIABLE xMod SMALLINT ;
DECLARE VARIABLE xResult VARCHAR (64);
DECLARE FUNCTION TO_HEX (ANum SMALLINT) RETURNS CHAR
 AS
 BEGIN
 RETURN CASE ANum
 WHEN 0 THEN '0'
 WHEN 1 THEN '1'
 WHEN 2 THEN '2'
 WHEN 3 THEN '3'
 WHEN 4 THEN '4'
 WHEN 5 THEN '5'
 WHEN 6 THEN '6'
 WHEN 7 THEN '7'
 WHEN 8 THEN '8'
 WHEN 9 THEN '9'
 WHEN 10 THEN 'A'
 WHEN 11 THEN 'B'
 WHEN 12 THEN 'C'
 WHEN 13 THEN 'D'
 WHEN 14 THEN 'E'
 WHEN 15 THEN 'F'

Chapter 5. Data Definition (DDL) Statements

182

 ELSE NULL
 END;
 END
BEGIN
 xMod = MOD (ANumber, 16);
 ANumber = ANumber / 16;
 xResult = TO_HEX (xMod);
 WHILE (ANUMBER> 0) DO
 BEGIN
 xMod = MOD (ANumber, 16);
 ANumber = ANumber / 16;
 xResult = TO_HEX (xMod) || xResult;
 END
 RETURN '0x' || LPAD (xResult, AByte_Per_Number * 2, '0');
END

See also

CREATE OR ALTER FUNCTION, ALTER FUNCTION, RECREATE FUNCTION, DROP FUNCTION, DECLARE EXTERNAL
FUNCTION

5.9.2. ALTER FUNCTION

Used for

Modifying an existing stored function

Available in

DSQL

Syntax

ALTER FUNCTION funcname
 [([<in_params>])]
 RETURNS <domain_or_non_array_type> [COLLATE collation]
 [DETERMINISTIC]
 <module-body>

!! See syntax of CREATE FUNCTION for further rules !!

The ALTER FUNCTION statement allows the following changes to a stored function definition:

• the set and characteristics of input and output type

• local variables, named cursors, and sub-routines

• code in the body of the stored procedure

For external functions (UDR), you can change the entry point and engine name. For legacy external
functions declared using DECLARE EXTERNAL FUNCTION — also known as UDFs — it is not possible to
convert to PSQL and vice versa.

Chapter 5. Data Definition (DDL) Statements

183

After ALTER FUNCTION executes, existing privileges remain intact and dependencies are not affected.

Take care about changing the number and type of input parameters and the
output type of a stored function. Existing application code and procedures,
functions and triggers that call it could become invalid because the new
description of the parameters is incompatible with the old calling format. For
information on how to troubleshoot such a situation, see the article The
RDB$VALID_BLR Field in the Appendix.

Who Can Alter a Function

The ALTER FUNCTION statement can be executed by:

• Administrators

• Owner of the stored function

• Users with the ALTER ANY FUNCTION privilege

Examples of ALTER FUNCTION

Altering a stored function

ALTER FUNCTION ADD_INT(A INT, B INT, C INT)
RETURNS INT
AS
BEGIN
 RETURN A + B + C;
END

See also

CREATE FUNCTION, CREATE OR ALTER FUNCTION, RECREATE FUNCTION, DROP FUNCTION

5.9.3. CREATE OR ALTER FUNCTION

Used for

Creating a new or modifying an existing stored function

Available in

DSQL

Syntax

CREATE OR ALTER FUNCTION funcname
 [([<in_params>])]
 RETURNS <domain_or_non_array_type> [COLLATE collation]
 [DETERMINISTIC]
 <module-body>

Chapter 5. Data Definition (DDL) Statements

184

!! See syntax of CREATE FUNCTION for further rules !!

The CREATE OR ALTER FUNCTION statement creates a new stored function or alters an existing one. If
the stored function does not exist, it will be created by invoking a CREATE FUNCTION statement
transparently. If the function already exists, it will be altered and compiled (through ALTER
FUNCTION) without affecting its existing privileges and dependencies.

Examples of CREATE OR ALTER FUNCTION

Create a new or alter an existing stored function

CREATE OR ALTER FUNCTION ADD_INT(A INT, B INT DEFAULT 0)
RETURNS INT
AS
BEGIN
 RETURN A + B;
END

See also

CREATE FUNCTION, ALTER FUNCTION, DROP FUNCTION

5.9.4. DROP FUNCTION

Used for

Dropping a stored function

Available in

DSQL

Syntax

DROP FUNCTION funcname

Table 45. DROP FUNCTION Statement Parameters

Parameter Description

funcname Stored function name consisting of up to 31 characters. Must be unique
among all function names in the database.

The DROP FUNCTION statement deletes an existing stored function. If the stored function has any
dependencies, the attempt to delete it will fail and the appropriate error will be raised.

Who Can Drop a Function

The DROP FUNCTION statement can be executed by:

• Administrators

• Owner of the stored function

Chapter 5. Data Definition (DDL) Statements

185

• Users with the DROP ANY FUNCTION privilege

Examples of DROP FUNCTION

DROP FUNCTION ADD_INT;

See also

CREATE FUNCTION, CREATE OR ALTER FUNCTION, RECREATE FUNCTION

5.9.5. RECREATE FUNCTION

Used for

Creating a new stored function or recreating an existing one

Available in

DSQL

Syntax

RECREATE FUNCTION funcname
 [([<in_params>])]
 RETURNS <domain_or_non_array_type> [COLLATE collation]
 [DETERMINISTIC]
 <module-body>

!! See syntax of CREATE FUNCTION for further rules !!

The RECREATE FUNCTION statement creates a new stored function or recreates an existing one. If there
is a function with this name already, the engine will try to drop it and then create a new one.
Recreating an existing function will fail at COMMIT if the function has dependencies.

Be aware that dependency errors are not detected until the COMMIT phase of this
operation.

After a procedure is successfully recreated, existing privileges to execute the stored function and
the privileges of the stored function itself are dropped.

Examples of RECREATE FUNCTION

Creating or recreating a stored function

RECREATE FUNCTION ADD_INT(A INT, B INT DEFAULT 0)
RETURNS INT
AS
BEGIN
 RETURN A + B;
EN

Chapter 5. Data Definition (DDL) Statements

186

See also

CREATE FUNCTION, DROP FUNCTION

5.10. EXTERNAL FUNCTION
External functions, also known as “User-Defined Functions” (UDFs) are programs written in an
external programming language and stored in dynamically loaded libraries. Once declared in a
database, they become available in dynamic and procedural statements as though they were
implemented in the SQL language.

External functions extend the possibilities for processing data with SQL considerably. To make a
function available to a database, it is declared using the statement DECLARE EXTERNAL FUNCTION.

The library containing a function is loaded when any function included in it is called.

External functions declared as DECLARE EXTERNAL FUNCTION are a legacy from
previous versions of Firebird. Their capabilities are inferior to the capabilities of
the new type of external functions, UDR (User-Defined Routine). Such functions are
declared as CREATE FUNCTION … EXTERNAL …. See CREATE FUNCTION for details.

External functions may be contained in more than one library — or “module”, as it
is referred to in the syntax.

UDFs are fundamentally insecure. We recommend avoiding their use whenever
possible, and disabling UDFs in your database configuration (UdfAccess = None in
firebird.conf). If you do need to call native code from your database, use a UDR
external engine instead.

See also

FUNCTION

5.10.1. DECLARE EXTERNAL FUNCTION

Used for

Declaring a user-defined function (UDF) to the database

Available in

DSQL, ESQL

Syntax

DECLARE EXTERNAL FUNCTION funcname
 [{ <arg_desc_list> | (<arg_desc_list>) }]
 RETURNS { <return_value> | (<return_value>) }
 ENTRY_POINT 'entry_point' MODULE_NAME 'library_name'

<arg_desc_list> ::=
 <arg_type_decl> [, <arg_type_decl> ...]

Chapter 5. Data Definition (DDL) Statements

187

<arg_type_decl> ::=
 <udf_data_type> [BY {DESCRIPTOR | SCALAR_ARRAY} | NULL]

<udf_data_type> ::=
 <scalar_datatype>
 | BLOB
 | CSTRING(length) [CHARACTER SET charset]

<scalar_datatype> ::=
 !! See Scalar Data Types Syntax !!

<return_value> ::=
 { <udf_data_type> | PARAMETER param_num }
 [{ BY VALUE | BY DESCRIPTOR [FREE_IT] | FREE_IT }]

Table 46. DECLARE EXTERNAL FUNCTION Statement Parameters

Parameter Description

funcname Function name in the database. It may consist of up to 31 characters. It
should be unique among all internal and external function names in the
database and need not be the same name as the name exported from the
UDF library via ENTRY_POINT.

entry_point The exported name of the function

library_name The name of the module (MODULE_NAME) from which the function is
exported. This will be the name of the file, without the “.dll” or “.so” file
extension.

length The maximum length of a null-terminated string, specified in bytes

charset Character set of the CSTRING

param_num The number of the input parameter, numbered from 1 in the list of input
parameters in the declaration, describing the data type that will be
returned by the function

The DECLARE EXTERNAL FUNCTION statement makes a user-defined function available in the database.
UDF declarations must be made in each database that is going to use them. There is no need to
declare UDFs that will never be used.

The name of the external function must be unique among all function names. It may be different
from the exported name of the function, as specified in the ENTRY_POINT argument.

DECLARE EXTERNAL FUNCTION Input Parameters

The input parameters of the function follow the name of the function and are separated with
commas. Each parameter has an SQL data type specified for it. Arrays cannot be used as function
parameters. In addition to the SQL types, the CSTRING type is available for specifying a null-
terminated string with a maximum length of LENGTH bytes. There are several mechanisms for
passing a parameter from the Firebird engine to an external function, each of these mechanisms

Chapter 5. Data Definition (DDL) Statements

188

will be discussed below.

By default, input parameters are passed by reference. There is no separate clause to explicitly
indicate that parameters are passed by reference.

When passing a NULL value by reference, it is converted to the equivalent of zero, for example, a
number ‘0’ or an empty string (“''”). If the keyword NULL is specified after a parameter, then with
passing a NULL values, the null pointer will be passed to the external function.

Declaring a function with the NULL keyword does not guarantee that the function
will correctly handle a NULL input parameter. Any function must be written or
rewritten to correctly handle NULL values. Always use the function declaration as
provided by its developer.

If BY DESCRIPTOR is specified, then the input parameter is passed by descriptor. In this case, the UDF
parameter will receive a pointer to an internal structure known as a descriptor. The descriptor
contains information about the datatype, subtype, precision, character set and collation, scale, a
pointer to the data itself and some flags, including the NULL indicator. This declaration only works if
the external function is written using a handle.

When passing a function parameter by descriptor, the passed value is not cast to
the declared data type.

The BY SCALAR_ARRAY clause is used when passing arrays as input parameters. Unlike other types,
you cannot return an array from a UDF.

Clauses and Keywords

RETURNS clause

(Required) specifies the output parameter returned by the function. A function is scalar, it
returns one value (output parameter). The output parameter can be of any SQL type (except an
array or an array element) or a null-terminated string (CSTRING). The output parameter can be
passed by reference (the default), by descriptor or by value. If the BY DESCRIPTOR clause is
specified, the output parameter is passed by descriptor. If the BY VALUE clause is specified, the
output parameter is passed by value.

PARAMETER keyword

specifies that the function returns the value from the parameter under number param_num. It is
necessary if you need to return a value of data type BLOB.

FREE_IT keyword

means that the memory allocated for storing the return value will be freed after the function is
executed. It is used only if the memory was allocated dynamically in the UDF. In such a UDF, the
memory must be allocated with the help of the ib_util_malloc function from the ib_util module,
a requirement for compatibility with the functions used in Firebird code and in the code of the
shipped UDF modules, for allocating and freeing memory.

Chapter 5. Data Definition (DDL) Statements

189

ENTRY_POINT clause

specifies the name of the entry point (the name of the imported function), as exported from the
module.

MODULE_NAME clause

defines the name of the module where the exported function is located. The link to the module
should not be the full path and extension of the file, if that can be avoided. If the module is
located in the default location (in the ../UDF subdirectory of the Firebird server root) or in a
location explicitly configured in firebird.conf, it makes it easier to move the database between
different platforms. The UDFAccess parameter in the firebird.conf file allows access restrictions to
external functions modules to be configured.

Any user connected to the database can declare an external function (UDF).

Who Can Create an External Function

The DECLARE EXTERNAL FUNCTION statement can be executed by:

• Administrators

• Users with the CREATE FUNCTION privilege

The user who created the function becomes its owner.

Examples using DECLARE EXTERNAL FUNCTION

1. Declaring the addDay external function located in the fbudf module. The input and output
parameters are passed by reference.

DECLARE EXTERNAL FUNCTION addDay
 TIMESTAMP, INT
 RETURNS TIMESTAMP
 ENTRY_POINT 'addDay' MODULE_NAME 'fbudf';

2. Declaring the invl external function located in the fbudf module. The input and output
parameters are passed by descriptor.

DECLARE EXTERNAL FUNCTION invl
 INT BY DESCRIPTOR, INT BY DESCRIPTOR
 RETURNS INT BY DESCRIPTOR
 ENTRY_POINT 'idNvl' MODULE_NAME 'fbudf';

3. Declaring the isLeapYear external function located in the fbudf module. The input parameter is
passed by reference, while the output parameter is passed by value.

DECLARE EXTERNAL FUNCTION isLeapYear
 TIMESTAMP
 RETURNS INT BY VALUE

Chapter 5. Data Definition (DDL) Statements

190

 ENTRY_POINT 'isLeapYear' MODULE_NAME 'fbudf';

4. Declaring the i64Truncate external function located in the fbudf module. The input and output
parameters are passed by descriptor. The second parameter of the function is used as the return
value.

DECLARE EXTERNAL FUNCTION i64Truncate
 NUMERIC(18) BY DESCRIPTOR, NUMERIC(18) BY DESCRIPTOR
 RETURNS PARAMETER 2
 ENTRY_POINT 'fbtruncate' MODULE_NAME 'fbudf';

See also

ALTER EXTERNAL FUNCTION, DROP EXTERNAL FUNCTION, CREATE FUNCTION

5.10.2. ALTER EXTERNAL FUNCTION

Used for

Changing the entry point and/or the module name for a user-defined function (UDF)

Available in

DSQL

Syntax

ALTER EXTERNAL FUNCTION funcname
 [ENTRY_POINT 'new_entry_point']
 [MODULE_NAME 'new_library_name']

Table 47. ALTER EXTERNAL FUNCTION Statement Parameters

Parameter Description

funcname Function name in the database

new_entry_point The new exported name of the function

new_library_name The new name of the module (MODULE_NAME from which the function is
exported). This will be the name of the file, without the “.dll” or “.so” file
extension.

The ALTER EXTERNAL FUNCTION statement changes the entry point and/or the module name for a user-
defined function (UDF). Existing dependencies remain intact after the statement containing the
change(s) is executed.

The ENTRY_POINT clause

is for specifying the new entry point (the name of the function as exported from the module).

The MODULE_NAME clause

is for specifying the new name of the module where the exported function is located.

Chapter 5. Data Definition (DDL) Statements

191

Any user connected to the database can change the entry point and the module name.

Who Can Alter an External Function

The ALTER EXTERNAL FUNCTION statement can be executed by:

• Administrators

• Owner of the external function

• Users with the ALTER ANY FUNCTION privilege

Examples using ALTER EXTERNAL FUNCTION

Changing the entry point for an external function

ALTER EXTERNAL FUNCTION invl ENTRY_POINT 'intNvl';

Changing the module name for an external function

ALTER EXTERNAL FUNCTION invl MODULE_NAME 'fbudf2';

See also

DECLARE EXTERNAL FUNCTION, DROP EXTERNAL FUNCTION

5.10.3. DROP EXTERNAL FUNCTION

Used for

Removing a user-defined function (UDF) from a database

Available in

DSQL, ESQL

Syntax

DROP EXTERNAL FUNCTION funcname

Table 48. DROP EXTERNAL FUNCTION Statement Parameter

Parameter Description

funcname Function name in the database

The DROP EXTERNAL FUNCTION statement deletes the declaration of a user-defined function from the
database. If there are any dependencies on the external function, the statement will fail and the
appropriate error will be raised.

Any user connected to the database can delete the declaration of an internal function.

Chapter 5. Data Definition (DDL) Statements

192

Who Can Drop an External Function

The DROP EXTERNAL FUNCTION statement can be executed by:

• Administrators

• Owner of the external function

• Users with the DROP ANY FUNCTION privilege

Example using DROP EXTERNAL FUNCTION

Deleting the declaration of the addDay function.

DROP EXTERNAL FUNCTION addDay;

See also

DECLARE EXTERNAL FUNCTION

5.11. PACKAGE
A package is a group of procedures and functions managed as one entity.

5.11.1. CREATE PACKAGE

Used for

Declaring the package header

Available in

DSQL

Syntax

CREATE PACKAGE package_name
AS
BEGIN
 [<package_item> ...]
END

<package_item> ::=
 <function_decl>;
 | <procedure_decl>;

<function_decl> ::=
 FUNCTION funcname [([<in_params>])]
 RETURNS <domain_or_non_array_type> [COLLATE collation]
 [DETERMINISTIC]

<procedure_decl> ::=
 PROCEDURE procname [([<in_params>])]
 [RETURNS (<out_params>)]

Chapter 5. Data Definition (DDL) Statements

193

<in_params> ::= <inparam> [, <inparam> ...]

<inparam> ::= <param_decl> [{ = | DEFAULT } <value>]

<out_params> ::= <outparam> [, <outparam> ...]

<outparam> ::= <param_decl>

<value> ::= { literal | NULL | context_var }

<param-decl> ::= paramname <domain_or_non_array_type> [NOT NULL]
 [COLLATE collation]

<domain_or_non_array_type> ::=
 !! See Scalar Data Types Syntax !!

Table 49. CREATE PACKAGE Statement Parameters

Parameter Description

package_name Package name consisting of up to 31 characters. The package name must
be unique among all package names.

function_decl Function declaration

procedure_decl Procedure declaration

func_name Function name consisting of up to 31 characters. The function name must
be unique within the package.

proc_name Procedure name consisting of up to 31 characters. The function name
must be unique within the package.

collation Collation sequence

inparam Input parameter declaration

outparam Output parameter declaration

literal A literal value that is assignment-compatible with the data type of the
parameter

context_var Any context variable that is assignment-compatible with the data type of
the parameter

paramname The name of an input parameter of a procedure or function, or an output
parameter of a procedure. It may consist of up to 31 characters. The name
of the parameter must be unique among input and output parameters of
the procedure or function.

The CREATE PACKAGE statement creates a new package header. Routines (procedures and functions)
declared in the package header are available outside the package using the full identifier
(package_name.proc_name or package_name.func_name). Routines defined only in the package
body — but not in the package header — are not visible outside the package.

Chapter 5. Data Definition (DDL) Statements

194

Package procedure and function names may shadow global routines

If a package header or package body declares a procedure or function with the
same name as a stored procedure or function in the global namespace, it is not
possible to call that global procedure or function from the package body. In this
case, the procedure or function of the package will always be called.

For this reason, it is recommended that the names of stored procedures and
functions in packages do not overlap with names of stored procedures and
functions in the global namespace.

Statement Terminators

Some SQL statement editors — specifically the isql utility that comes with Firebird and possibly
some third-party editors — employ an internal convention that requires all statements to be
terminated with a semicolon. This creates a conflict with PSQL syntax when coding in these
environments. If you are unacquainted with this problem and its solution, please study the details
in the PSQL chapter in the section entitled Switching the Terminator in isql.

Procedure and Function Parameters

For details on stored procedure parameters, see Parameters in CREATE PROCEDURE.

For details on function parameters, see Parameters in CREATE FUNCTION.

Who Can Create a Package

The CREATE PACKAGE statement can be executed by:

• Administrators

• Users with the CREATE PACKAGE privilege

The user who created the package header becomes its owner.

Examples of CREATE PACKAGE

Create a package header

CREATE PACKAGE APP_VAR
AS
BEGIN
 FUNCTION GET_DATEBEGIN() RETURNS DATE DETERMINISTIC;
 FUNCTION GET_DATEEND() RETURNS DATE DETERMINISTIC;
 PROCEDURE SET_DATERANGE(ADATEBEGIN DATE,
 ADATEEND DATE DEFAULT CURRENT_DATE);
END

See also

CREATE PACKAGE BODY, RECREATE PACKAGE BODY, ALTER PACKAGE, DROP PACKAGE, RECREATE PACKAGE

Chapter 5. Data Definition (DDL) Statements

195

5.11.2. ALTER PACKAGE

Used for

Altering the package header

Available in

DSQL

Syntax

ALTER PACKAGE package_name
AS
BEGIN
 [<package_item> ...]
END

!! See syntax of CREATE PACKAGE for further rules!!

The ALTER PACKAGE statement modifies the package header. It can be used to change the number and
definition of procedures and functions, including their input and output parameters. However, the
source and compiled form of the package body is retained, though the body might be incompatible
after the change to the package header. The validity of a package body for the defined header is
stored in the column RDB$PACKAGES.RDB$VALID_BODY_FLAG.

Who Can Alter a Package

The ALTER PACKAGE statement can be executed by:

• Administrators

• The owner of the package

• Users with the ALTER ANY PACKAGE privilege

Examples of ALTER PACKAGE

Modifying a package header

ALTER PACKAGE APP_VAR
AS
BEGIN
 FUNCTION GET_DATEBEGIN() RETURNS DATE DETERMINISTIC;
 FUNCTION GET_DATEEND() RETURNS DATE DETERMINISTIC;
 PROCEDURE SET_DATERANGE(ADATEBEGIN DATE,
 ADATEEND DATE DEFAULT CURRENT_DATE);
END

See also

CREATE PACKAGE, DROP PACKAGE, RECREATE PACKAGE BODY

Chapter 5. Data Definition (DDL) Statements

196

5.11.3. CREATE OR ALTER PACKAGE

Used for

Creating a new or altering an existing package header

Available in

DSQL

Syntax

CREATE OR ALTER PACKAGE package_name
AS
BEGIN
 [<package_item> ...]
END

!! See syntax of CREATE PACKAGE for further rules!!

The CREATE OR ALTER PACKAGE statement creates a new package or modifies an existing package
header. If the package header does not exist, it will be created using CREATE PACKAGE. If it already
exists, then it will be modified using ALTER PACKAGE while retaining existing privileges and
dependencies.

Examples of CREATE OR ALTER PACKAGE

Creating a new or modifying an existing package header

CREATE OR ALTER PACKAGE APP_VAR
AS
BEGIN
 FUNCTION GET_DATEBEGIN() RETURNS DATE DETERMINISTIC;
 FUNCTION GET_DATEEND() RETURNS DATE DETERMINISTIC;
 PROCEDURE SET_DATERANGE(ADATEBEGIN DATE,
 ADATEEND DATE DEFAULT CURRENT_DATE);
END

See also

CREATE PACKAGE, ALTER PACKAGE, RECREATE PACKAGE, RECREATE PACKAGE BODY

5.11.4. DROP PACKAGE

Used for

Dropping a package header

Available in

DSQL

Chapter 5. Data Definition (DDL) Statements

197

Syntax

DROP PACKAGE package_name

Table 50. DROP PACKAGE Statement Parameters

Parameter Description

package_name Package name

The DROP PACKAGE statement deletes an existing package header. If a package body exists, it will be
dropped together with the package header. If there are still dependencies on the package, an error
will be raised.

Who Can Drop a Package

The DROP PACKAGE statement can be executed by:

• Administrators

• The owner of the package

• Users with the DROP ANY PACKAGE privilege

Examples of DROP PACKAGE

Dropping a package header

DROP PACKAGE APP_VAR

See also

CREATE PACKAGE, DROP PACKAGE BODY

5.11.5. RECREATE PACKAGE

Used for

Creating a new or recreating an existing package header

Available in

DSQL

Syntax

RECREATE PACKAGE package_name
AS
BEGIN
 [<package_item> ...]
END

!! See syntax of CREATE PACKAGE for further rules!!

Chapter 5. Data Definition (DDL) Statements

198

The RECREATE PACKAGE statement creates a new package or recreates an existing package header. If a
package header with the same name already exists, then this statement will first drop it and then
create a new package header. It is not possible to recreate the package header if there are still
dependencies on the existing package, or if the body of the package exists. Existing privileges of the
package itself are not preserved, nor are privileges to execute the procedures or functions of the
package.

Examples of RECREATE PACKAGE

Creating a new or recreating an existing package header

RECREATE PACKAGE APP_VAR
AS
BEGIN
 FUNCTION GET_DATEBEGIN() RETURNS DATE DETERMINISTIC;
 FUNCTION GET_DATEEND() RETURNS DATE DETERMINISTIC;
 PROCEDURE SET_DATERANGE(ADATEBEGIN DATE,
 ADATEEND DATE DEFAULT CURRENT_DATE);
END

See also

CREATE PACKAGE, DROP PACKAGE, CREATE PACKAGE BODY, RECREATE PACKAGE BODY

5.12. PACKAGE BODY

5.12.1. CREATE PACKAGE BODY

Used for

Creating the package body

Available in

DSQL

Syntax

CREATE PACKAGE BODY name
AS
BEGIN
 [<package_item> ...]
 [<package_body_item> ...]
END

<package_item> ::=
 !! See CREATE PACKAGE syntax !!

<package_body_item> ::=
 <function_impl> |
 <procedure_impl>

Chapter 5. Data Definition (DDL) Statements

199

<function_impl> ::=
 FUNCTION funcname [([<in_params>])]
 RETURNS <domain_or_non_array_type> [COLLATE collation]
 [DETERMINISTIC]
 <module-body>

<procedure_impl> ::=
 PROCEDURE procname [([<in_params>])]
 [RETURNS (<out_params>)]
 <module-body>

<module-body> ::=
 !! See Syntax of Module Body !!

<in_params> ::=
 !! See CREATE PACKAGE syntax !!
 !! See also Rules below !!

<out_params> ::=
 !! See CREATE PACKAGE syntax !!

<domain_or_non_array_type> ::=
 !! See Scalar Data Types Syntax !!

Table 51. CREATE PACKAGE BODY Statement Parameters

Parameter Description

package_name Package name consisting of up to 31 characters. The package name must
be unique among all package names.

function_impl Function implementation. Essentially a CREATE FUNCTION statement
without CREATE.

procedure_impl Procedure implementation Essentially a CREATE PROCEDURE statement
without CREATE.

func_name Function name consisting of up to 31 characters. The function name must
be unique within the package.

collation Collation sequence

proc_name Procedure name consisting of up to 31 characters. The function name
must be unique within the package.

The CREATE PACKAGE BODY statement creates a new package body. The package body can only be
created after the package header has been created. If there is no package header with name
package_name, an appropriate error will be raised.

All procedures and functions declared in the package header must be implemented in the package
body. Additional procedures and functions may be defined and implemented in the package body
only. Procedure and functions defined in the package body, but not defined in the package header
are not visible outside the package body.

Chapter 5. Data Definition (DDL) Statements

200

The names of procedures and functions defined in the package body must be unique among the
names of procedures and functions defined in the package header and implemented in the package
body.

Package procedure and function names may shadow global routines

If a package header or package body declares a procedure or function with the
same name as a stored procedure or function in the global namespace, it is not
possible to call that global procedure or function from the package body. In this
case, the procedure or function of the package will always be called.

For this reason, it is recommended that the names of stored procedures and
functions in packages do not overlap with names of stored procedures and
functions in the global namespace.

Rules

• In the package body, all procedures and functions must be implemented with the same
signature as declared in the header and at the beginning of the package body

• The default values for procedure or function parameters cannot be overridden (as specified in
the package header or in <package_item>). This means default values can only be defined in
<package_body_item> for procedures or functions that have not been defined in the package
header or earlier in the package body.

UDF declarations (DECLARE EXTERNAL FUNCTION) is not supported for packages. Use
UDR instead.

Who Can Create a Package Body

The CREATE PACKAGE BODY statement can be executed by:

• Administrators

• The owner of the package

• Users with the ALTER ANY PACKAGE privilege

Examples of CREATE PACKAGE BODY

Creating the package body

CREATE PACKAGE BODY APP_VAR
AS
BEGIN
 -- Returns the start date of the period
 FUNCTION GET_DATEBEGIN() RETURNS DATE DETERMINISTIC
 AS
 BEGIN
 RETURN RDB$GET_CONTEXT('USER_SESSION', 'DATEBEGIN');
 END
 -- Returns the end date of the period
 FUNCTION GET_DATEEND() RETURNS DATE DETERMINISTIC

Chapter 5. Data Definition (DDL) Statements

201

 AS
 BEGIN
 RETURN RDB$GET_CONTEXT('USER_SESSION', 'DATEEND');
 END
 -- Sets the date range of the working period
 PROCEDURE SET_DATERANGE(ADATEBEGIN DATE, ADATEEND DATE)
 AS
 BEGIN
 RDB$SET_CONTEXT('USER_SESSION', 'DATEBEGIN', ADATEBEGIN);
 RDB$SET_CONTEXT('USER_SESSION', 'DATEEND', ADATEEND);
 END
END

See also

DROP PACKAGE BODY, RECREATE PACKAGE BODY, CREATE PACKAGE

5.12.2. DROP PACKAGE BODY

Used for

Dropping a package body

Available in

DSQL

Syntax

DROP PACKAGE package_name

Table 52. DROP PACKAGE BODY Statement Parameters

Parameter Description

package_name Package name

The DROP PACKAGE BODY statement deletes the package body.

Who Can Drop a Package Body

The DROP PACKAGE BODY statement can be executed by:

• Administrators

• The owner of the package

• Users with the ALTER ANY PACKAGE privilege

Examples of DROP PACKAGE BODY

Dropping the package body

DROP PACKAGE BODY APP_VAR;

Chapter 5. Data Definition (DDL) Statements

202

See also

CREATE PACKAGE BODY, RECREATE PACKAGE BODY, DROP PACKAGE

5.12.3. RECREATE PACKAGE BODY

Used for

Creating a new or recreating an existing package body

Available in

DSQL

Syntax

RECREATE PACKAGE BODY name
AS
BEGIN
 [<package_item> ...]
 [<package_body_item> ...]
END

!! See syntax of CREATE PACKAGE BODY for further rules !!

The RECREATE PACKAGE BODY statement creates a new or recreates an existing package body. If a
package body with the same name already exists, the statement will try to drop it and then create a
new package body. After recreating the package body, privileges of the package and its routines are
preserved.

See CREATE PACKAGE BODY for more details.

Examples of RECREATE PACKAGE BODY

Recreating the package body

RECREATE PACKAGE BODY APP_VAR
AS
BEGIN
 -- Returns the start date of the period
 FUNCTION GET_DATEBEGIN() RETURNS DATE DETERMINISTIC
 AS
 BEGIN
 RETURN RDB$GET_CONTEXT('USER_SESSION', 'DATEBEGIN');
 END
 -- Returns the end date of the period
 FUNCTION GET_DATEEND() RETURNS DATE DETERMINISTIC
 AS
 BEGIN
 RETURN RDB$GET_CONTEXT('USER_SESSION', 'DATEEND');
 END
 -- Sets the date range of the working period
 PROCEDURE SET_DATERANGE(ADATEBEGIN DATE, ADATEEND DATE)

Chapter 5. Data Definition (DDL) Statements

203

 AS
 BEGIN
 RDB$SET_CONTEXT('USER_SESSION', 'DATEBEGIN', ADATEBEGIN);
 RDB$SET_CONTEXT('USER_SESSION', 'DATEEND', ADATEEND);
 END
END

See also

CREATE PACKAGE BODY, DROP PACKAGE BODY, RECREATE PACKAGE BODY, ALTER PACKAGE

5.13. FILTER
A BLOB FILTER is a database object that is a special type of external function, with the sole purpose
of taking a BLOB object in one format and converting it to a BLOB object in another format. The
formats of the BLOB objects are specified with user-defined BLOB subtypes.

External functions for converting BLOB types are stored in dynamic libraries and loaded when
necessary.

For more details on BLOB subtypes, see Binary Data Types.

5.13.1. DECLARE FILTER

Used for

Declaring a BLOB filter to the database

Available in

DSQL, ESQL

Syntax

DECLARE FILTER filtername
 INPUT_TYPE <sub_type> OUTPUT_TYPE <sub_type>
 ENTRY_POINT 'function_name' MODULE_NAME 'library_name'

<sub_type> ::= number | <mnemonic>

<mnemonic> ::=
 BINARY | TEXT | BLR | ACL | RANGES
 | SUMMARY | FORMAT | TRANSACTION_DESCRIPTION
 | EXTERNAL_FILE_DESCRIPTION | user_defined

Table 53. DECLARE FILTER Statement Parameters

Parameter Description

filtername Filter name in the database. It may consist of up to 31 characters. It need
not be the same name as the name exported from the filter library via
ENTRY_POINT.

Chapter 5. Data Definition (DDL) Statements

204

Parameter Description

sub_type BLOB subtype

number BLOB subtype number (must be negative)

mnemonic BLOB subtype mnemonic name

function_name The exported name (entry point) of the function

library_name The name of the module where the filter is located

user_defined User-defined BLOB subtype mnemonic name

The DECLARE FILTER statement makes a BLOB filter available to the database. The name of the BLOB
filter must be unique among the names of BLOB filters.

Specifying the Subtypes

The subtypes can be specified as the subtype number or as the subtype mnemonic name. Custom
subtypes must be represented by negative numbers (from -1 to -32,768). An attempt to declare more
than one BLOB filter with the same combination of the input and output types will fail with an error.

INPUT_TYPE

clause defining the BLOB subtype of the object to be converted

OUTPUT_TYPE

clause defining the BLOB subtype of the object to be created.

Mnemonic names can be defined for custom BLOB subtypes and inserted manually
into the system table RDB$TYPES system table:

INSERT INTO RDB$TYPES (RDB$FIELD_NAME, RDB$TYPE, RDB$TYPE_NAME)
VALUES ('RDB$FIELD_SUB_TYPE', -33, 'MIDI');

After the transaction is committed, the mnemonic names can be used in
declarations when you create new filters.

The value of the column RDB$FIELD_NAME must always be 'RDB$FIELD_SUB_TYPE'. If a
mnemonic names was defined in upper case, they can be used case-insensitively
and without quotation marks when a filter is declared, following the rules for
other object names.

Warning

From Firebird 3.0 onward, the system tables will no longer be writable by users.
However, inserting custom types into RDB$TYPES is still possible. Firebird 4 will
introduce a system privilege CREATE_USER_TYPES for creating custom subtypes.

Parameters

Chapter 5. Data Definition (DDL) Statements

205

ENTRY_POINT

clause defining the name of the entry point (the name of the imported function) in the module.

MODULE_NAME

The clause defining the name of the module where the exported function is located. By default,
modules must be located in the UDF folder of the root directory on the server. The UDFAccess
parameter in firebird.conf allows editing of access restrictions to filter libraries.

Any user connected to the database can declare a BLOB filter.

Who Can Create a BLOB Filter?

The DECLARE FILTER statement can be executed by:

• Administrators

• Users with the CREATE FILTER privilege

The user executing the DECLARE FILTER statement becomes the owner of the filter.

Examples of DECLARE FILTER

1. Creating a BLOB filter using subtype numbers.

DECLARE FILTER DESC_FILTER
 INPUT_TYPE 1
 OUTPUT_TYPE -4
 ENTRY_POINT 'desc_filter'
 MODULE_NAME 'FILTERLIB';

2. Creating a BLOB filter using subtype mnemonic names.

DECLARE FILTER FUNNEL
 INPUT_TYPE blr OUTPUT_TYPE text
 ENTRY_POINT 'blr2asc' MODULE_NAME 'myfilterlib';

See also

DROP FILTER

5.13.2. DROP FILTER

Used for

Removing a BLOB filter declaration from the database

Available in

DSQL, ESQL

Chapter 5. Data Definition (DDL) Statements

206

Syntax

DROP FILTER filtername

Table 54. DROP FILTER Statement Parameter

Parameter Description

filtername Filter name in the database

The DROP FILTER statement removes the declaration of a BLOB filter from the database. Removing a
BLOB filter from a database makes it unavailable for use from that database. The dynamic library
where the conversion function is located remains intact and the removal from one database does
not affect other databases in which the same BLOB filter is still declared.

Who Can Drop a BLOB Filter?

The DROP FILTER statement can be executed by:

• Administrators

• The owner of the filter

• Users with the DROP ANY FILTER privilege

DROP FILTER Example

Dropping a BLOB filter.

DROP FILTER DESC_FILTER;

See also

DECLARE FILTER

5.14. SEQUENCE (GENERATOR)
A sequence or a generator is a database object used to get unique number values to fill a series.
“Sequence” is the SQL-compliant term for the same thing which, in Firebird, has traditionally been
known as “generator”. Firebird has syntax for both terms.

Sequences (or generators) are always stored as 64-bit integers, regardless of the SQL dialect of the
database.

If a client is connected using Dialect 1, the server sends sequence values to it as 32-
bit integers. Passing a sequence value to a 32-bit field or variable will not cause
errors as long as the current value of the sequence does not exceed the limits of a
32-bit number. However, as soon as the sequence value exceeds this limit, a
database in Dialect 3 will produce an error. A database in Dialect 1 will keep
truncating the values, which will compromise the uniqueness of the series.

Chapter 5. Data Definition (DDL) Statements

207

This section describes how to create, alter, set and drop sequences.

5.14.1. CREATE SEQUENCE

Used for

Creating a new SEQUENCE (GENERATOR)

Available in

DSQL, ESQL

Syntax

CREATE {SEQUENCE | GENERATOR} seq_name
 [START WITH start_value]
 [INCREMENT [BY] increment]

Table 55. CREATE SEQUENCE Statement Parameters

Parameter Description

seq_name Sequence (generator) name. It may consist of up to 31 characters

start_value Initial value of the sequence

increment Increment of the sequence (when using NEXT VALUE FOR seq_name); cannot
be 0

The statements CREATE SEQUENCE and CREATE GENERATOR are synonymous — both create a new
sequence. Either can be used, but CREATE SEQUENCE is recommended as that is the syntax defined in
the SQL standard.

When a sequence is created, its value is set to the value specified in the option START WITH clause. If
there is no START WITH clause, then the sequence is set to 0.

The optional INCREMENT [BY] clause allows you to specify an increment for the NEXT VALUE FOR
seq_name expression. By default, the increment is 1 (one). The increment cannot be set to 0 (zero).
The GEN_ID(seq_name, <step>) function can be called instead, to “step” the series by a different
integer number. The increment specified through INCREMENT [BY] is not used for GEN_ID.

Bug with START WITH and INCREMENT [BY]

The SQL standard specifies that the START WITH clause should specify the initial
value generated on the first call to NEXT VALUE FOR seq_name, but instead Firebird
uses it to set the current value of the sequence. As a result the first call to NEXT
VALUE FOR seq_name incorrectly generates the value start_value + increment.

Creating a sequence without a START WITH clause is currently equivalent to
specifying START WITH 0, while it should be equivalent to START WITH 1.

This will be fixed in Firebird 4, see also CORE-6084

 Non-standard behaviour for negative increments

Chapter 5. Data Definition (DDL) Statements

208

http://tracker.firebirdsql.org/browse/CORE-6084

The SQL standard specifies that sequences with a negative increment should start
at the maximum value of the sequence (263 - 1) and count down. Firebird does not
do that, and instead starts at 0 + increment.

This may change in a future Firebird version.

Who Can Create a Sequence?

The CREATE SEQUENCE (CREATE GENERATOR) statement can be executed by:

• Administrators

• Users with the CREATE SEQUENCE (CREATE GENERATOR) privilege

The user executing the CREATE SEQUENCE (CREATE GENERATOR) statement becomes its owner.

Examples of CREATE SEQUENCE

1. Creating the EMP_NO_GEN sequence using CREATE SEQUENCE.

CREATE SEQUENCE EMP_NO_GEN;

2. Creating the EMP_NO_GEN sequence using CREATE GENERATOR.

CREATE GENERATOR EMP_NO_GEN;

3. Creating the EMP_NO_GEN sequence with an initial value of 5 and an increment of 1. See note Bug
with START WITH and INCREMENT [BY].

CREATE SEQUENCE EMP_NO_GEN START WITH 5;

4. Creating the EMP_NO_GEN sequence with an initial value of 1 and an increment of 10. See note Bug
with START WITH and INCREMENT [BY].

CREATE SEQUENCE EMP_NO_GEN INCREMENT BY 10;

5. Creating the EMP_NO_GEN sequence with an initial value of 5 and an increment of 10. See note Bug
with START WITH and INCREMENT [BY].

CREATE SEQUENCE EMP_NO_GEN START WITH 5 INCREMENT BY 10;

See also

ALTER SEQUENCE, CREATE OR ALTER SEQUENCE, DROP SEQUENCE, RECREATE SEQUENCE, SET GENERATOR, NEXT
VALUE FOR, GEN_ID() function

Chapter 5. Data Definition (DDL) Statements

209

5.14.2. ALTER SEQUENCE

Used for

Setting the value of a sequence or generator to a specified value

Available in

DSQL

Syntax

ALTER {SEQUENCE | GENERATOR} seq_name
 [RESTART [WITH newvalue]]
 [INCREMENT [BY] increment]

Table 56. ALTER SEQUENCE Statement Parameters

Parameter Description

seq_name Sequence (generator) name

newvalue New sequence (generator) value. A 64-bit integer from -2-63 to 263-1.

increment Increment of the sequence (when using NEXT VALUE FOR seq_name); cannot
be 0

The ALTER SEQUENCE statement sets the current value of a sequence or generator to the specified
value and/or changes the increment of the sequence.

The RESTART WITH newvalue clause allows you to set the value of a sequence. The RESTART clause
(without WITH) restarts the sequence with the initial value configured using the START WITH clause
when the sequence was created.

Bugs with RESTART

The initial value (either saved in the metadata or specified in the WITH clause) is
used to set the current value of the sequence, instead of the next value generated
as required by the SQL standard. See note Bug with START WITH and INCREMENT [BY]
for more information.

In addition, RESTART WITH newvalue will not only restart the sequence with the
specified value, but also store newvalue as the new initial value of the sequence.
This means that a subsequent ALTER SEQUENCE RESTART will also use newvalue. This
behaviour does not match the behaviour specified in the SQL standard.

This bug will be fixed in Firebird 4, see also CORE-6386

Incorrect use of the ALTER SEQUENCE statement (changing the current value of the
sequence or generator) is likely to break the logical integrity of data.

INCREMENT [BY] allows you to change the sequence increment for the NEXT VALUE FOR expression.

Chapter 5. Data Definition (DDL) Statements

210

http://tracker.firebirdsql.org/browse/CORE-6386

Changing the increment value takes effect for all queries that run after the
transaction commits. Procedures that are called for the first time after changing
the commit, will use the new value if they use NEXT VALUE FOR. Procedures that
were already used (and cached in the metadata cache) will continue to use the old
increment. You may need to close all connections to the database for the metadata
cache to clear, and the new increment to be used. Procedures using NEXT VALUE FOR
do not need to be recompiled to see the new increment. Procedures using
GEN_ID(gen, expression) are not affected when the increment is changed.

Who Can Alter a Sequence?

The ALTER SEQUENCE (ALTER GENERATOR) statement can be executed by:

• Administrators

• The owner of the sequence

• Users with the ALTER ANY SEQUENCE (ALTER ANY GENERATOR) privilege

Examples of ALTER SEQUENCE

1. Setting the value of the EMP_NO_GEN sequence to 145.

ALTER SEQUENCE EMP_NO_GEN RESTART WITH 145;

2. Resetting the base value of the sequence EMP_NO_GEN to the initial value stored in the metadata

ALTER SEQUENCE EMP_NO_GEN RESTART;

3. Changing the increment of sequence EMP_NO_GEN to 10

ALTER SEQUENCE EMP_NO_GEN INCREMENT BY 10;

See also

SET GENERATOR, CREATE SEQUENCE, CREATE OR ALTER SEQUENCE, DROP SEQUENCE, RECREATE SEQUENCE, NEXT
VALUE FOR, GEN_ID() function

5.14.3. CREATE OR ALTER SEQUENCE

Used for

Creating a new or modifying an existing sequence

Available in

DSQL, ESQL

Chapter 5. Data Definition (DDL) Statements

211

Syntax

CREATE OR ALTER {SEQUENCE | GENERATOR} seq_name
 {RESTART | START WITH start_value}
 [INCREMENT [BY] increment]

Table 57. CREATE OR ALTER SEQUENCE Statement Parameters

Parameter Description

seq_name Sequence (generator) name. It may consist of up to 31 characters

start_value Initial value of the sequence

increment Increment of the sequence (when using NEXT VALUE FOR seq_name); cannot
be 0

If the sequence does not exist, it will be created. An existing sequence will be changed:

• If RESTART is specified, the sequence will restarted with the initial value stored in the metadata

• If the START WITH clause is specified, start_value is stored as the initial value in the metadata, and
the sequence is restarted

• If the INCREMENT [BY] clause is specified, increment is stored as the increment in the metadata,
and used for subsequent calls to NEXT VALUE FOR

Example of CREATE OR ALTER SEQUENCE

Create a new or modify an existing sequence EMP_NO_GEN

CREATE OR ALTER SEQUENCE EMP_NO_GEN
 START WITH 10
 INCREMENT BY 1

See also

CREATE SEQUENCE, ALTER SEQUENCE, DROP SEQUENCE, RECREATE SEQUENCE, SET GENERATOR, NEXT VALUE FOR,
GEN_ID() function

5.14.4. DROP SEQUENCE

Used for

Dropping (deleting) a SEQUENCE (GENERATOR)

Available in

DSQL, ESQL

Syntax

DROP {SEQUENCE | GENERATOR} seq_name

Table 58. DROP SEQUENCE Statement Parameter

Chapter 5. Data Definition (DDL) Statements

212

Parameter Description

seq_name Sequence (generator) name. It may consist of up to 31 characters

The statements DROP SEQUENCE and DROP GENERATOR statements are equivalent: both drop (delete) an
existing sequence (generator). Either is valid but DROP SEQUENCE, being defined in the SQL standard,
is recommended.

The statements will fail if the sequence (generator) has dependencies.

Who Can Drop a Sequence?

The DROP SEQUENCE (DROP GENERATOR) statement can be executed by:

• Administrators

• The owner of the sequence

• Users with the DROP ANY SEQUENCE (DROP ANY GENERATOR) privilege

Example of DROP SEQUENCE

Dropping the EMP_NO_GEN series:

DROP SEQUENCE EMP_NO_GEN;

See also

CREATE SEQUENCE, CREATE OR ALTER SEQUENCE, RECREATE SEQUENCE

5.14.5. RECREATE SEQUENCE

Used for

Creating or recreating a sequence (generator)

Available in

DSQL, ESQL

Syntax

RECREATE {SEQUENCE | GENERATOR} seq_name
 [START WITH start_value]
 [INCREMENT [BY] increment]

Table 59. RECREATE SEQUENCE Statement Parameters

Parameter Description

seq_name Sequence (generator) name. It may consist of up to 31 characters

start_value Initial value of the sequence

Chapter 5. Data Definition (DDL) Statements

213

Parameter Description

increment Increment of the sequence (when using NEXT VALUE FOR seq_name); cannot
be 0

See CREATE SEQUENCE for the full syntax of CREATE SEQUENCE and descriptions of defining a sequences
and its options.

RECREATE SEQUENCE creates or recreates a sequence. If a sequence with this name already exists, the
RECREATE SEQUENCE statement will try to drop it and create a new one. Existing dependencies will
prevent the statement from executing.

Example of RECREATE SEQUENCE

Recreating sequence EMP_NO_GEN

RECREATE SEQUENCE EMP_NO_GEN
 START WITH 10
 INCREMENT BY 2;

See also

CREATE SEQUENCE, ALTER SEQUENCE, CREATE OR ALTER SEQUENCE, DROP SEQUENCE, SET GENERATOR, NEXT VALUE
FOR, GEN_ID() function

5.14.6. SET GENERATOR

Used for

Setting the value of a sequence or generator to a specified value

Available in

DSQL, ESQL

Syntax

SET GENERATOR seq_name TO new_val

Table 60. SET GENERATOR Statement Parameters

Parameter Description

seq_name Generator (sequence) name

new_val New sequence (generator) value. A 64-bit integer from -2-63 to 263-1.

The SET GENERATOR statement sets the current value of a sequence or generator to the specified
value.

Although SET GENERATOR is considered outdated, it is retained for backward
compatibility. Use of the standards-compliant ALTER SEQUENCE is recommended.

Chapter 5. Data Definition (DDL) Statements

214

Who Can Use a SET GENERATOR?

The SET GENERATOR statement can be executed by:

• Administrators

• The owner of the sequence (generator)

• Users with the ALTER ANY SEQUENCE (ALTER ANY GENERATOR) privilege

Example of SET GENERATOR

Setting the value of the EMP_NO_GEN sequence to 145:

SET GENERATOR EMP_NO_GEN TO 145;

The same can be done with ALTER SEQUENCE:

ALTER SEQUENCE EMP_NO_GEN RESTART WITH 145;

See also

ALTER SEQUENCE, CREATE SEQUENCE, CREATE OR ALTER SEQUENCE, DROP SEQUENCE, NEXT VALUE FOR, GEN_ID()
function

5.15. EXCEPTION
This section describes how to create, modify and delete custom exceptions for use in error handlers
in PSQL modules.

5.15.1. CREATE EXCEPTION

Used for

Creating a new exception for use in PSQL modules

Available in

DSQL, ESQL

Syntax

CREATE EXCEPTION exception_name '<message>'

<message> ::= <message-part> [<message-part> ...]

<message-part> ::=
 <text>
 | @<slot>

<slot> ::= one of 1..9

Chapter 5. Data Definition (DDL) Statements

215

Table 61. CREATE EXCEPTION Statement Parameters

Parameter Description

exception_name Exception name. The maximum length is 31 characters

message Default error message. The maximum length is 1,021 characters

text Text of any character

slot Slot number of a parameter. Numbering starts at 1. Maximum slot
number is 9.

The statement CREATE EXCEPTION creates a new exception for use in PSQL modules. If an exception
with the same name exists, the statement will fail with an appropriate error message.

The exception name is a standard identifier. In a Dialect 3 database, it can be enclosed in double
quotes to make it case-sensitive and, if required, to use characters that are not valid in regular
identifiers. See Identifiers for more information.

The default message is stored in character set NONE, i.e. in characters of any single-byte character set.
The text can be overridden in the PSQL code when the exception is thrown.

The error message may contain “parameter slots” that can be filled when raising the exception.

If the message contains a parameter slot number that is greater than 9, the second
and subsequent digits will be treated as literal text. For example @10 will be
interpreted as slot 1 followed by a literal ‘0’.

 Custom exceptions are stored in the system table RDB$EXCEPTIONS.

Who Can Create an Exception

The CREATE EXCEPTION statement can be executed by:

• Administrators

• Users with the CREATE EXCEPTION privilege

The user executing the CREATE EXCEPTION statement becomes the owner of the exception.

CREATE EXCEPTION Examples

Creating an exception named E_LARGE_VALUE

CREATE EXCEPTION E_LARGE_VALUE
 'The value is out of range';

Creating a parameterized exception E_INVALID_VALUE

CREATE EXCEPTION E_INVALID_VALUE
 'Invalid value @1 for field @2';

Chapter 5. Data Definition (DDL) Statements

216

Tips

Grouping CREATE EXCEPTION statements together in system update scripts will
simplify working with them and documenting them. A system of prefixes for
naming and categorising groups of exceptions is recommended.

See also

ALTER EXCEPTION, CREATE OR ALTER EXCEPTION, DROP EXCEPTION, RECREATE EXCEPTION

5.15.2. ALTER EXCEPTION

Used for

Modifying the message returned from a custom exception

Available in

DSQL, ESQL

Syntax

ALTER EXCEPTION exception_name '<message>'

!! See syntax of CREATE EXCEPTION for further rules !!

The statement ALTER EXCEPTION can be used at any time, to modify the default text of the message.

Who Can Alter an Exception

The ALTER EXCEPTION statement can be executed by:

• Administrators

• The owner of the exception

• Users with the ALTER ANY EXCEPTION privilege

ALTER EXCEPTION Examples

Changing the default message for the exception E_LARGE_VALUE

ALTER EXCEPTION E_LARGE_VALUE
 'The value exceeds the prescribed limit of 32,765 bytes';

See also

CREATE EXCEPTION, CREATE OR ALTER EXCEPTION, DROP EXCEPTION, RECREATE EXCEPTION

5.15.3. CREATE OR ALTER EXCEPTION

Used for

Modifying the message returned from a custom exception, if the exception exists; otherwise,
creating a new exception

Chapter 5. Data Definition (DDL) Statements

217

Available in

DSQL

Syntax

CREATE OR ALTER EXCEPTION exception_name '<message>'

!! See syntax of CREATE EXCEPTION for further rules !!

The statement CREATE OR ALTER EXCEPTION is used to create the specified exception if it does not
exist, or to modify the text of the error message returned from it if it exists already. If an existing
exception is altered by this statement, any existing dependencies will remain intact.

CREATE OR ALTER EXCEPTION Example

Changing the message for the exception E_LARGE_VALUE

CREATE OR ALTER EXCEPTION E_LARGE_VALUE
 'The value is higher than the permitted range 0 to 32,765';

See also

CREATE EXCEPTION, ALTER EXCEPTION, RECREATE EXCEPTION

5.15.4. DROP EXCEPTION

Used for

Deleting a custom exception

Available in

DSQL, ESQL

Syntax

DROP EXCEPTION exception_name

Table 62. DROP EXCEPTION Statement Parameter

Parameter Description

exception_name Exception name

The statement DROP EXCEPTION is used to delete an exception. Any dependencies on the exception
will cause the statement to fail, and the exception will not be deleted.

Who Can Drop an Exception

The DROP EXCEPTION statement can be executed by:

• Administrators

Chapter 5. Data Definition (DDL) Statements

218

• The owner of the exception

• Users with the DROP ANY EXCEPTION privilege

DROP EXCEPTION Examples

Dropping exception E_LARGE_VALUE

DROP EXCEPTION E_LARGE_VALUE;

See also

CREATE EXCEPTION, RECREATE EXCEPTION

5.15.5. RECREATE EXCEPTION

Used for

Creating a new custom exception or recreating an existing one

Available in

DSQL

Syntax

RECREATE EXCEPTION exception_name '<message>'

!! See syntax of CREATE EXCEPTION for further rules !!

The statement RECREATE EXCEPTION creates a new exception for use in PSQL modules. If an exception
with the same name exists already, the RECREATE EXCEPTION statement will try to drop it and create a
new one. If there are any dependencies on the existing exception, the attempted deletion fails and
RECREATE EXCEPTION is not executed.

RECREATE EXCEPTION Example

Recreating the E_LARGE_VALUE exception

RECREATE EXCEPTION E_LARGE_VALUE
 'The value exceeds its limit';

See also

CREATE EXCEPTION, DROP EXCEPTION, CREATE OR ALTER EXCEPTION

5.16. COLLATION
In SQL, text strings are sortable objects. This means that they obey ordering rules, such as
alphabetical order. Comparison operations can be applied to such text strings (for example, “less
than” or “greater than”), where the comparison must apply a certain sort order or collation. For
example, the expression “'a' < 'b'” means that ‘'a'’ precedes ‘'b'’ in the collation. The expression

Chapter 5. Data Definition (DDL) Statements

219

“'c' > 'b'” means that ‘'c'’ follows ‘'b'’ in the collation. Text strings of more than one character
are sorted using sequential character comparisons: first the first characters of the two strings are
compared, then the second characters, and so on, until a difference is found between the two
strings. This difference defines the sort order.

A COLLATION is the schema object that defines a collation (or sort order).

5.16.1. CREATE COLLATION

Used for

Creating a new collation for a supported character set available to the database

Available in

DSQL

Syntax

CREATE COLLATION collname
 FOR charset
 [FROM {basecoll | EXTERNAL ('extname')}]
 [NO PAD | PAD SPACE]
 [CASE [IN]SENSITIVE]
 [ACCENT [IN]SENSITIVE]
 ['<specific-attributes>']

<specific-attributes> ::= <attribute> [; <attribute> ...]

<attribute> ::= attrname=attrvalue

Table 63. CREATE COLLATION Statement Parameters

Parameter Description

collname The name to use for the new collation. The maximum length is 31
characters

charset A character set present in the database

basecoll A collation already present in the database

extname The collation name used in the .conf file

The CREATE COLLATION statement does not “create” anything, its purpose is to make a collation
known to a database. The collation must already be present on the system, typically in a library file,
and must be properly registered in a .conf file in the intl subdirectory of the Firebird installation.

The collation may alternatively be based on one that is already present in the database.

How the Engine Detects the Collation

The optional FROM clause specifies the base collation that is used to derive a new collation. This
collation must already be present in the database. If the keyword EXTERNAL is specified, then

Chapter 5. Data Definition (DDL) Statements

220

Firebird will scan the .conf files in $fbroot/intl/, where extname must exactly match the name in
the configuration file (case-sensitive).

If no FROM clause is present, Firebird will scan the .conf file(s) in the intl subdirectory for a collation
with the collation name specified in CREATE COLLATION. In other words, omitting the FROM basecoll
clause is equivalent to specifying FROM EXTERNAL ('collname').

The — single-quoted — extname is case-sensitive and must correspond exactly with the collation
name in the .conf file. The collname, charset and basecoll parameters are case-insensitive unless
enclosed in double-quotes.

When creating a collation, you can specify whether trailing spaces are included in the comparison.
If the NO PAD clause is specified, trailing spaces are taken into account in the comparison. If the PAD
SPACE clause is specified, trailing spaces are ignored in the comparison.

The optional CASE clause allows you to specify whether the comparison is case-sensitive or case-
insensitive.

The optional ACCENT clause allows you to specify whether the comparison is accent-sensitive or
accent-insensitive (e.g. if ‘'e'’ and ‘'é'’ are considered equal or unequal).

Specific Attributes

The CREATE COLLATION statement can also include specific attributes to configure the collation. The
available specific attributes are listed in the table below. Not all specific attributes apply to every
collation. If the attribute is not applicable to the collation, but is specified when creating it, it will
not cause an error.

 Specific attribute names are case sensitive.

In the table, “1 bpc” indicates that an attribute is valid for collations of character sets using 1 byte
per character (so-called narrow character sets), and “UNI” for “Unicode collations”.

Table 64. Specific Collation Attributes

Atrribute Values Valid for Comment

DISABLE-COMPRESSIONS 0, 1 1 bpc Disables compressions (a.k.a.
contractions). Compressions cause
certain character sequences to be sorted
as atomic units, e.g. Spanish c+h as a
single character ch

DISABLE-EXPANSIONS 0, 1 1 bpc Disables expansions. Expansions cause
certain characters (e.g. ligatures or
umlauted vowels) to be treated as
character sequences and sorted
accordingly

Chapter 5. Data Definition (DDL) Statements

221

Atrribute Values Valid for Comment

ICU-VERSION default or
M.m

UNI Specifies the ICU library version to use.
Valid values are the ones defined in the
applicable <intl_module> element in
intl/fbintl.conf. Format: either the
string literal “default” or a major+minor
version number like “3.0” (both
unquoted).

LOCALE xx_YY UNI Specifies the collation locale. Requires
complete version of ICU libraries.
Format: a locale string like “du_NL”
(unquoted)

MULTI-LEVEL 0, 1 1 bpc Uses more than one ordering level

NUMERIC-SORT 0, 1 UNI Treats contiguous groups of decimal
digits in the string as atomic units and
sorts them numerically. (This is also
known as natural sorting)

SPECIALS-FIRST 0, 1 1 bpc Orders special characters (spaces,
symbols etc.) before alphanumeric
characters

If you want to add a new character set with its default collation into your database,
declare and run the stored procedure sp_register_character_set(name,
max_bytes_per_character), found in misc/intl.sql under the Firebird installation
directory.

In order for this to work, the character set must be present on the system and
registered in a .conf file in the intl subdirectory.

Who Can Create a Collation

The CREATE COLLATION statement can be executed by:

• Administrators

• Users with the CREATE COLLATION privilege

The user executing the CREATE COLLATION statement becomes the owner of the collation.

Examples using CREATE COLLATION

1. Creating a collation using the name found in the fbintl.conf file (case-sensitive)

CREATE COLLATION ISO8859_1_UNICODE FOR ISO8859_1;

2. Creating a collation using a special (user-defined) name (the “external” name must completely

Chapter 5. Data Definition (DDL) Statements

222

match the name in the fbintl.conf file)

CREATE COLLATION LAT_UNI
 FOR ISO8859_1
 FROM EXTERNAL ('ISO8859_1_UNICODE');

3. Creating a case-insensitive collation based on one already existing in the database

CREATE COLLATION ES_ES_NOPAD_CI
 FOR ISO8859_1
 FROM ES_ES
 NO PAD
 CASE INSENSITIVE;

4. Creating a case-insensitive collation based on one already existing in the database with specific
attributes

CREATE COLLATION ES_ES_CI_COMPR
 FOR ISO8859_1
 FROM ES_ES
 CASE INSENSITIVE
 'DISABLE-COMPRESSIONS=0';

5. Creating a case-insensitive collation by the value of numbers (the so-called natural collation)

CREATE COLLATION nums_coll FOR UTF8
 FROM UNICODE
 CASE INSENSITIVE 'NUMERIC-SORT=1';

CREATE DOMAIN dm_nums AS varchar(20)
 CHARACTER SET UTF8 COLLATE nums_coll; -- original (manufacturer) numbers

CREATE TABLE wares(id int primary key, articul dm_nums ...);

See also

DROP COLLATION

5.16.2. DROP COLLATION

Used for

Removing a collation from the database

Available in

DSQL

Chapter 5. Data Definition (DDL) Statements

223

Syntax

DROP COLLATION collname

Table 65. DROP COLLATION Statement Parameters

Parameter Description

collname The name of the collation

The DROP COLLATION statement removes the specified collation from the database, if it exists. An
error will be raised if the specified collation is not present.

If you want to remove an entire character set with all its collations from the
database, declare and execute the stored procedure
sp_unregister_character_set(name) from the misc/intl.sql subdirectory of the
Firebird installation.

Who Can Drop a Collation

The Drop COLLATION statement can be executed by:

• Administrators

• The owner of the collation

• Users with the DROP ANY COLLATION privilege

Example using DROP COLLATION

Deleting the ES_ES_NOPAD_CI collation.

DROP COLLATION ES_ES_NOPAD_CI;

See also

CREATE COLLATION

5.17. CHARACTER SET

5.17.1. ALTER CHARACTER SET

Used for

Setting the default collation for a character set

Available in

DSQL

Syntax

ALTER CHARACTER SET charset

Chapter 5. Data Definition (DDL) Statements

224

 SET DEFAULT COLLATION collation

Table 66. ALTER CHARACTER SET Statement Parameters

Parameter Description

charset Character set identifier

collation The name of the collation

The ALTER CHARACTER SET statement changes the default collation for the specified character set. It
will affect the future usage of the character set, except for cases where the COLLATE clause is
explicitly overridden. In that case, the collation sequence of existing domains, columns and PSQL
variables will remain intact after the change to the default collation of the underlying character set.

If you change the default collation for the database character set (the one defined
when the database was created), it will change the default collation for the
database.

If you change the default collation for the character set that was specified during
the connection, string constants will be interpreted according to the new collation
value, except in those cases where the character set and/or the collation have been
overridden.

Who Can Alter a Character Set

The ALTER CHARACTER SET statement can be executed by:

• Administrators

• Users with the ALTER ANY CHARACTER SET privilege

ALTER CHARACTER SET Example

Setting the default UNICODE_CI_AI collation for the UTF8 encoding

ALTER CHARACTER SET UTF8
 SET DEFAULT COLLATION UNICODE_CI_AI;

5.18. Comments
Database objects and a database itself may be annotated with comments. It is a convenient
mechanism for documenting the development and maintenance of a database. Comments created
with COMMENT ON will survive a gbak backup and restore.

5.18.1. COMMENT ON

Used for

Documenting metadata

Chapter 5. Data Definition (DDL) Statements

225

Available in

DSQL

Syntax

COMMENT ON <object> IS {'sometext' | NULL}

<object> ::=
 {DATABASE | SCHEMA}
 | <basic-type> objectname
 | COLUMN relationname.fieldname
 | [{PROCEDURE | FUNCTION}] PARAMETER
 [packagename.]routinename.paramname
 | {PROCEDURE | [EXTERNAL] FUNCTION}
 [package_name.]routinename

<basic-type> ::=
 CHARACTER SET | COLLATION | DOMAIN
 | EXCEPTION | FILTER | GENERATOR
 | INDEX | PACKAGE | ROLE
 | SEQUENCE | TABLE | TRIGGER
 | USER | VIEW

Table 67. COMMENT ON Statement Parameters

Parameter Description

sometext Comment text

basic-type Metadata object type

objectname Metadata object name

relationname Name of table or view

fieldname Name of the column

package_name Name of the package

routinename Name of stored procedure or function

paramname Name of a stored procedure or function parameter

The COMMENT ON statement adds comments for database objects (metadata). Comments are saved to
the RDB$DESCRIPTION column of the corresponding system tables. Client applications can view
comments from these fields.

1. If you add an empty comment (“''”), it will be saved as NULL in the database.

2. The COMMENT ON USER statement will only create comments on users managed by
the default usermanager (the first plugin listed in the UserManager config
option). See also CORE-6479.

3. Comments on users are stored in the security database.

4. SCHEMA is currently a synonym for DATABASE; this may change in a future

Chapter 5. Data Definition (DDL) Statements

226

http://tracker.firebirdsql.org/browse/CORE-6479

version, so we recommend to always use DATABASE

 Comments on users are visible to that user through the SEC$USERS virtual table.

Who Can Add a Comment

The COMMENT ON statement can be executed by:

• Administrators

• The owner of the object that is commented on

• Users with the ALTER ANY object_type privilege, where object_type is the type of object
commented on (e.g. PROCEDURE)

Examples using COMMENT ON

1. Adding a comment for the current database

COMMENT ON DATABASE IS 'It is a test (''my.fdb'') database';

2. Adding a comment for the METALS table

COMMENT ON TABLE METALS IS 'Metal directory';

3. Adding a comment for the ISALLOY field in the METALS table

COMMENT ON COLUMN METALS.ISALLOY IS '0 = fine metal, 1 = alloy';

4. Adding a comment for a parameter

COMMENT ON PARAMETER ADD_EMP_PROJ.EMP_NO IS 'Employee ID';

5. Adding a comment for a package, its procedures and functions, and their parameters

COMMENT ON PACKAGE APP_VAR IS 'Application Variables';

COMMENT ON FUNCTION APP_VAR.GET_DATEBEGIN
IS 'Returns the start date of the period';

COMMENT ON PROCEDURE APP_VAR.SET_DATERANGE
IS 'Set date range';

COMMENT ON
PROCEDURE PARAMETER APP_VAR.SET_DATERANGE.ADATEBEGIN

Chapter 5. Data Definition (DDL) Statements

227

IS 'Start Date';

Chapter 5. Data Definition (DDL) Statements

228

Chapter 6. Data Manipulation (DML)
Statements
DML — data manipulation language — is the subset of SQL that is used by applications and
procedural modules to extract and change data. Extraction, for the purpose of reading data, both
raw and manipulated, is achieved with the SELECT statement. INSERT is for adding new data and
DELETE is for erasing data that are no longer required. UPDATE, MERGE and UPDATE OR INSERT all modify
data in various ways.

6.1. SELECT
Used for

Retrieving data

Available in

DSQL, ESQL, PSQL

Global syntax

[WITH [RECURSIVE] <cte> [, <cte> ...]]
SELECT
 [FIRST m] [SKIP n]
 [{DISTINCT | ALL}] <columns>
FROM
 <source> [[AS] alias]
 [<joins>]
[WHERE <condition>]
[GROUP BY <grouping-list>
[HAVING <aggregate-condition>]]
[PLAN <plan-expr>]
[UNION [{DISTINCT | ALL}] <other-select>]
[ORDER BY <ordering-list>]
[{ ROWS <m> [TO <n>]
 | [OFFSET n {ROW | ROWS}]
 [FETCH {FIRST | NEXT} [m] {ROW | ROWS} ONLY]
}]
[FOR UPDATE [OF <columns>]]
[WITH LOCK]
[INTO <variables>]

<variables> ::= [:]varname [, [:]varname ...]

The SELECT statement retrieves data from the database and hands them to the application or the
enclosing SQL statement. Data are returned in zero or more rows, each containing one or more
columns or fields. The total of rows returned is the result set of the statement.

The only mandatory parts of the SELECT statement are:

Chapter 6. Data Manipulation (DML) Statements

229

• The SELECT keyword, followed by a columns list. This part specifies what you want to retrieve.

• The FROM keyword, followed by a selectable object. This tells the engine where you want to get it
from.

In its most basic form, SELECT retrieves a number of columns from a single table or view, like this:

select id, name, address
 from contacts

Or, to retrieve all the columns:

select * from sales

In practice, a SELECT statement is usually executed with a WHERE clause, which limits the rows
returned. The result set may be sorted by an ORDER BY clause, and FIRST … SKIP, OFFSET … FETCH or
ROWS may further limit the number of returned rows, and can - for example - be used for pagination.

The column list may contain all kinds of expressions instead of just column names, and the source
need not be a table or view: it may also be a derived table, a common table expression (CTE) or a
selectable stored procedure (SP). Multiple sources may be combined in a JOIN, and multiple result
sets may be combined in a UNION.

The following sections discuss the available SELECT subclauses and their usage in detail.

6.1.1. FIRST, SKIP

Used for

Retrieving a slice of rows from an ordered set

Available in

DSQL, PSQL

Syntax

SELECT
 [FIRST <m>] [SKIP <n>]
 FROM ...
 ...

<m>, <n> ::=
 <integer-literal>
 | <query-parameter>
 | (<integer-expression>)

Table 68. Arguments for the FIRST and SKIP Clauses

Chapter 6. Data Manipulation (DML) Statements

230

Argument Description

integer-literal Integer literal

query-parameter Query parameter place-holder. ? in DSQL and :paramname in PSQL

integer-expression Expression returning an integer value

FIRST and SKIP are non-standard syntax

FIRST and SKIP are Firebird-specific clauses. Use the SQL-standard OFFSET, FETCH
syntax wherever possible.

FIRST limits the output of a query to the first m rows. SKIP will suppress the given n rows before
starting to return output.

FIRST and SKIP are both optional. When used together as in “FIRST m SKIP n”, the n topmost rows of
the output set are discarded, and the first m rows of the rest of the set are returned.

Characteristics of FIRST and SKIP

• Any argument to FIRST and SKIP that is not an integer literal or an SQL parameter must be
enclosed in parentheses. This implies that a subquery expression must be enclosed in two pairs
of parentheses.

• SKIP 0 is allowed but totally pointless.

• FIRST 0 is also allowed and returns an empty set.

• Negative SKIP and/or FIRST values result in an error.

• If a SKIP lands past the end of the dataset, an empty set is returned.

• If the number of rows in the dataset (or the remainder left after a SKIP) is less than the value of
the m argument supplied for FIRST, that smaller number of rows is returned. These are valid
results, not error conditions.

Examples of FIRST/SKIP

1. The following query will return the first 10 names from the People table:

select first 10 id, name from People
 order by name asc

2. The following query will return everything but the first 10 names:

select skip 10 id, name from People
 order by name asc

3. And this one returns the last 10 rows. Notice the double parentheses:

select skip ((select count(*) - 10 from People))

Chapter 6. Data Manipulation (DML) Statements

231

 id, name from People
 order by name asc

4. This query returns rows 81 to 100 of the People table:

select first 20 skip 80 id, name from People
 order by name asc

See also

OFFSET, FETCH, ROWS

6.1.2. The SELECT Columns List

The columns list contains one or more comma-separated value expressions. Each expression
provides a value for one output column. Alternatively, * (“select star” or “select all”) can be used to
stand for all the columns in a relation (i.e. a table, view or selectable stored procedure).

Syntax

SELECT
 [...]
 [{DISTINCT | ALL}] <output-column> [, <output-column> ...]
 [...]
 FROM ...

<output-column> ::=
 { [<qualifier>.]*
 | <value-expression> [COLLATE collation] [[AS] alias] }

<value-expression> ::=
 { [<qualifier>.]table-column
 | [<qualifier>.]view-column
 | [<qualifier>.]selectable-SP-outparm
 | <literal>
 | <context-variable>
 | <function-call>
 | <single-value-subselect>
 | <CASE-construct>
 | any other expression returning a single
 value of a Firebird data type or NULL }

<qualifier> ::= a relation name or alias

Table 69. Arguments for the SELECT Columns List

Argument Description

qualifier Name of relation (view, stored procedure, derived table); or an alias for it

Chapter 6. Data Manipulation (DML) Statements

232

Argument Description

collation Only for character-type columns: a collation name that exists and is valid
for the character set of the data

alias Column or field alias

table-column Name of a table column

view-column Name of a view column

selectable-SP-outparm Declared name of an output parameter of a selectable stored procedure

constant A constant

context-variable Context variable

function-call Scalar, aggregate, or window function expression

single-value-subselect A subquery returning one scalar value (singleton)

CASE-construct CASE construct setting conditions for a return value

other-single-value-expr Any other expression returning a single value of a Firebird data type; or
NULL

It is always valid to qualify a column name (or “*”) with the name or alias of the table, view or
selectable SP to which it belongs, followed by a dot (‘.’). For example, relationname.columnname,
relationname.*, alias.columnname, alias.*. Qualifying is required if the column name occurs in more
than one relation taking part in a join. Qualifying “*” is always mandatory if it is not the only item
in the column list.

Aliases hide the original relation name: once a table, view or procedure has been
aliased, only the alias can be used as its qualifier throughout the query. The
relation name itself becomes unavailable.

The column list may optionally be preceded by one of the keywords DISTINCT or ALL:

• DISTINCT filters out any duplicate rows. That is, if two or more rows have the same values in
every corresponding column, only one of them is included in the result set

• ALL is the default: it returns all of the rows, including duplicates. ALL is rarely used; it is
supported for compliance with the SQL standard.

A COLLATE clause will not change the appearance of the column as such. However, if the specified
collation changes the case or accent sensitivity of the column, it may influence:

• The ordering, if an ORDER BY clause is also present and it involves that column

• Grouping, if the column is part of a GROUP BY clause

• The rows retrieved (and hence the total number of rows in the result set), if DISTINCT is used

Examples of SELECT queries with different types of column lists

A simple SELECT using only column names:

Chapter 6. Data Manipulation (DML) Statements

233

select cust_id, cust_name, phone
 from customers
 where city = 'London'

A query featuring a concatenation expression and a function call in the columns list:

select 'Mr./Mrs. ' || lastname, street, zip, upper(city)
 from contacts
 where date_last_purchase(id) = current_date

A query with two subselects:

select p.fullname,
 (select name from classes c where c.id = p.class) as class,
 (select name from mentors m where m.id = p.mentor) as mentor
from pupils p

The following query accomplishes the same as the previous one using joins instead of subselects:

select p.fullname,
 c.name as class,
 m.name as mentor
 join classes c on c.id = p.class
from pupils p
 join mentors m on m.id = p.mentor

This query uses a CASE construct to determine the correct title, e.g. when sending mail to a person:

select case upper(sex)
 when 'F' then 'Mrs.'
 when 'M' then 'Mr.'
 else ''
 end as title,
 lastname,
 address
from employees

Query using a window function. Ranks employees by salary.

SELECT
 id,
 salary,
 name ,
 DENSE_RANK() OVER (ORDER BY salary) AS EMP_RANK

Chapter 6. Data Manipulation (DML) Statements

234

FROM employees
ORDER BY salary;

Querying a selectable stored procedure:

select * from interesting_transactions(2010, 3, 'S')
 order by amount

Selecting from columns of a derived table. A derived table is a parenthesized SELECT statement
whose result set is used in an enclosing query as if it were a regular table or view. The derived table
is shown in bold here:

select fieldcount,
 count(relation) as num_tables
from (select r.rdb$relation_name as relation,
 count(*) as fieldcount
 from rdb$relations r
 join rdb$relation_fields rf
 on rf.rdb$relation_name = r.rdb$relation_name
 group by relation)
group by fieldcount

Asking the time through a context variable (CURRENT_TIME):

select current_time from rdb$database

For those not familiar with RDB$DATABASE: this is a system table that is present in all Firebird
databases and is guaranteed to contain exactly one row. Although it wasn’t created for this purpose,
it has become standard practice among Firebird programmers to select from this table if you want
to select “from nothing”, i.e. if you need data that are not bound to a table or view, but can be
derived from the expressions in the output columns alone. Another example is:

select power(12, 2) as twelve_squared, power(12, 3) as twelve_cubed
 from rdb$database

Finally, an example where you select some meaningful information from RDB$DATABASE itself:

select rdb$character_set_name from rdb$database

As you may have guessed, this will give you the default character set of the database.

See also

Functions, Aggregate Functions, Window Functions, Context Variables, CASE, Subqueries

Chapter 6. Data Manipulation (DML) Statements

235

6.1.3. The FROM clause

The FROM clause specifies the source(s) from which the data are to be retrieved. In its simplest form,
this is just a single table or view. However, the source can also be a selectable stored procedure, a
derived table, or a common table expression. Multiple sources can be combined using various types
of joins.

This section focuses on single-source selects. Joins are discussed in a following section.

Syntax

SELECT
 ...
 FROM <source>
 [<joins>]
 [...]

<source> ::=
 table [[AS] alias]
 | selectable-stored-procedure [(<args>)] [[AS] alias]
 | <derived-table>

<derived-table> ::=
 (<select-statement>) [[AS] alias] [(<column-aliases>)]

<column-aliases> ::= column-alias [, column-alias ...]

Table 70. Arguments for the FROM Clause

Argument Description

table Name of a table, view or CTE

selectable-stored-
procedure

Name of a selectable stored procedure

args Selectable stored procedure arguments

derived-table Derived table query expression

select-statement Any SELECT statement

column-aliases Alias for a column in a relation, CTE or derived table

alias The alias of a data source (table, view, procedure, CTE, derived table)

Selecting FROM a table or view

When selecting from a single table or view, the FROM clause requires nothing more than the name.
An alias may be useful or even necessary if there are subqueries that refer to the main select
statement (as they often do — subqueries like this are called correlated subqueries).

Chapter 6. Data Manipulation (DML) Statements

236

Examples

select id, name, sex, age from actors
where state = 'Ohio'

select * from birds
where type = 'flightless'
order by family, genus, species

select firstname,
 middlename,
 lastname,
 date_of_birth,
 (select name from schools s where p.school = s.id) schoolname
from pupils p
where year_started = '2012'
order by schoolname, date_of_birth

Never mix column names with column aliases!

If you specify an alias for a table or a view, you must always use this alias in place
of the table name whenever you query the columns of the relation (and wherever
else you make a reference to columns, such as ORDER BY, GROUP BY and WHERE
clauses).

Correct use:

SELECT PEARS
FROM FRUIT;

SELECT FRUIT.PEARS
FROM FRUIT;

SELECT PEARS
FROM FRUIT F;

SELECT F.PEARS
FROM FRUIT F;

Incorrect use:

SELECT FRUIT.PEARS
FROM FRUIT F;

Chapter 6. Data Manipulation (DML) Statements

237

Selecting FROM a stored procedure

A selectable stored procedure is a procedure that:

• contains at least one output parameter, and

• utilizes the SUSPEND keyword so the caller can fetch the output rows one by one, just as when
selecting from a table or view.

The output parameters of a selectable stored procedure correspond to the columns of a regular
table.

Selecting from a stored procedure without input parameters is just like selecting from a table or
view:

select * from suspicious_transactions
 where assignee = 'John'

Any required input parameters must be specified after the procedure name, enclosed in
parentheses:

select name, az, alt from visible_stars('Brugge', current_date, '22:30')
 where alt >= 20
 order by az, alt

Values for optional parameters (that is, parameters for which default values have been defined)
may be omitted or provided. However, if you provide them only partly, the parameters you omit
must all be at the tail end.

Supposing that the procedure visible_stars from the previous example has two optional
parameters: min_magn (numeric(3,1)) and spectral_class (varchar(12)), the following queries are all
valid:

select name, az, alt
from visible_stars('Brugge', current_date, '22:30');

select name, az, alt
from visible_stars('Brugge', current_date, '22:30', 4.0);

select name, az, alt
from visible_stars('Brugge', current_date, '22:30', 4.0, 'G');

But this one isn’t, because there’s a “hole” in the parameter list:

select name, az, alt
from visible_stars('Brugge', current_date, '22:30', 'G');

Chapter 6. Data Manipulation (DML) Statements

238

An alias for a selectable stored procedure is specified after the parameter list:

select
 number,
 (select name from contestants c where c.number = gw.number)
from get_winners('#34517', 'AMS') gw

If you refer to an output parameter (“column”) by qualifying it with the full procedure name, the
procedure alias should be omitted:

select
 number,
 (select name from contestants c where c.number = get_winners.number)
from get_winners('#34517', 'AMS')

See also

Stored Procedures, CREATE PROCEDURE

Selecting FROM a derived table

A derived table is a valid SELECT statement enclosed in parentheses, optionally followed by a table
alias and/or column aliases. The result set of the statement acts as a virtual table which the
enclosing statement can query.

Syntax

(<select-query>)
 [[AS] derived-table-alias]
 [(<derived-column-aliases>)]

<derived-column-aliases> := column-alias [, column-alias ...]

The set returned data set by this “SELECT FROM (SELECT FROM..)” style of statement is a virtual table
that can be queried within the enclosing statement, as if it were a regular table or view.

Example using a derived table

The derived table in the query below returns the list of table names in the database, and the
number of columns in each table. A “drill-down” query on the derived table returns the counts of
fields and the counts of tables having each field count:

SELECT
 FIELDCOUNT,
 COUNT(RELATION) AS NUM_TABLES
FROM (SELECT
 R.RDB$RELATION_NAME RELATION,
 COUNT(*) AS FIELDCOUNT

Chapter 6. Data Manipulation (DML) Statements

239

 FROM RDB$RELATIONS R
 JOIN RDB$RELATION_FIELDS RF
 ON RF.RDB$RELATION_NAME = R.RDB$RELATION_NAME
 GROUP BY RELATION)
GROUP BY FIELDCOUNT

A trivial example demonstrating how the alias of a derived table and the list of column aliases (both
optional) can be used:

SELECT
 DBINFO.DESCR, DBINFO.DEF_CHARSET
FROM (SELECT *
 FROM RDB$DATABASE) DBINFO
 (DESCR, REL_ID, SEC_CLASS, DEF_CHARSET)

More about Derived Tables

Derived tables can

• be nested

• be unions, and can be used in unions

• contain aggregate functions, subqueries and joins

• be used in aggregate functions, subqueries and joins

• be calls to selectable stored procedures or queries to them

• have WHERE, ORDER BY and GROUP BY clauses, FIRST/SKIP or ROWS directives, et al.

Furthermore,

• Each column in a derived table must have a name. If it does not have a name,
such as when it is a constant or a run-time expression, it should be given an
alias, either in the regular way or by including it in the list of column aliases in
the derived table’s specification.

◦ The list of column aliases is optional but, if it exists, it must contain an alias
for every column in the derived table

• The optimizer can process derived tables very effectively. However, if a
derived table is included in an inner join and contains a subquery, the
optimizer will be unable to use any join order.

A more useful example

Suppose we have a table COEFFS which contains the coefficients of a number of quadratic equations
we have to solve. It has been defined like this:

create table coeffs (
 a double precision not null,

Chapter 6. Data Manipulation (DML) Statements

240

 b double precision not null,
 c double precision not null,
 constraint chk_a_not_zero check (a <> 0)
)

Depending on the values of a, b and c, each equation may have zero, one or two solutions. It is
possible to find these solutions with a single-level query on table COEFFS, but the code will look
rather messy and several values (like the discriminant) will have to be calculated multiple times
per row. A derived table can help keep things clean here:

select
 iif (D >= 0, (-b - sqrt(D)) / denom, null) sol_1,
 iif (D > 0, (-b + sqrt(D)) / denom, null) sol_2
 from
 (select b, b*b - 4*a*c, 2*a from coeffs) (b, D, denom)

If we want to show the coefficients next to the solutions (which may not be a bad idea), we can alter
the query like this:

select
 a, b, c,
 iif (D >= 0, (-b - sqrt(D)) / denom, null) sol_1,
 iif (D > 0, (-b + sqrt(D)) / denom, null) sol_2
 from
 (select a, b, c, b*b - 4*a*c as D, 2*a as denom
 from coeffs)

Notice that whereas the first query used a column aliases list for the derived table, the second adds
aliases internally where needed. Both methods work, as long as every column is guaranteed to have
a name.

All columns in the derived table will be evaluated as many times as they are
specified in the main query. This is important, as it can lead to unexpected results
when using non-deterministic functions. The following shows an example of this.

SELECT
 UUID_TO_CHAR(X) AS C1,
 UUID_TO_CHAR(X) AS C2,
 UUID_TO_CHAR(X) AS C3
FROM (SELECT GEN_UUID() AS X
 FROM RDB$DATABASE) T;

The result if this query produces three different values:

C1 80AAECED-65CD-4C2F-90AB-5D548C3C7279
C2 C1214CD3-423C-406D-B5BD-95BF432ED3E3

Chapter 6. Data Manipulation (DML) Statements

241

C3 EB176C10-F754-4689-8B84-64B666381154

To ensure a single result of the GEN_UUID function, you can use the following
method:

SELECT
 UUID_TO_CHAR(X) AS C1,
 UUID_TO_CHAR(X) AS C2,
 UUID_TO_CHAR(X) AS C3
FROM (SELECT GEN_UUID() AS X
 FROM RDB$DATABASE
 UNION ALL
 SELECT NULL FROM RDB$DATABASE WHERE 1 = 0) T;

This query produces a single result for all three columns:

C1 80AAECED-65CD-4C2F-90AB-5D548C3C7279
C2 80AAECED-65CD-4C2F-90AB-5D548C3C7279
C3 80AAECED-65CD-4C2F-90AB-5D548C3C7279

An alternative solution is to wrap the GEN_UUID query in a subquery:

SELECT
 UUID_TO_CHAR(X) AS C1,
 UUID_TO_CHAR(X) AS C2,
 UUID_TO_CHAR(X) AS C3
FROM (SELECT
 (SELECT GEN_UUID() FROM RDB$DATABASE) AS X
 FROM RDB$DATABASE) T;

This is an artifact of the current implementation. This behaviour may change in a
future Firebird version.

Selecting FROM a Common Table Expression (CTE)

A common table expression — or CTE — is a more complex variant of the derived table, but it is also
more powerful. A preamble, starting with the keyword WITH, defines one or more named CTE's, each
with an optional column aliases list. The main query, which follows the preamble, can then access
these CTE's as if they were regular tables or views. The CTE's go out of scope once the main query
has run to completion.

For a full discussion of CTE's, please refer to the section Common Table Expressions (“WITH … AS …
SELECT”).

The following is a rewrite of our derived table example as a CTE:

Chapter 6. Data Manipulation (DML) Statements

242

with vars (b, D, denom) as (
 select b, b*b - 4*a*c, 2*a from coeffs
)
select
 iif (D >= 0, (-b - sqrt(D)) / denom, null) sol_1,
 iif (D > 0, (-b + sqrt(D)) / denom, null) sol_2
from vars

Except for the fact that the calculations that have to be made first are now at the beginning, this
isn’t a great improvement over the derived table version. However, we can now also eliminate the
double calculation of sqrt(D) for every row:

with vars (b, D, denom) as (
 select b, b*b - 4*a*c, 2*a from coeffs
),
vars2 (b, D, denom, sqrtD) as (
 select b, D, denom, iif (D >= 0, sqrt(D), null) from vars
)
select
 iif (D >= 0, (-b - sqrtD) / denom, null) sol_1,
 iif (D > 0, (-b + sqrtD) / denom, null) sol_2
from vars2

The code is a little more complicated now, but it might execute more efficiently (depending on what
takes more time: executing the SQRT function or passing the values of b, D and denom through an
extra CTE). Incidentally, we could have done the same with derived tables, but that would involve
nesting.

All columns in the CTE will be evaluated as many times as they are specified in the
main query. This is important, as it can lead to unexpected results when using non-
deterministic functions. The following shows an example of this.

WITH T (X) AS (
 SELECT GEN_UUID()
 FROM RDB$DATABASE)
SELECT
 UUID_TO_CHAR(X) as c1,
 UUID_TO_CHAR(X) as c2,
 UUID_TO_CHAR(X) as c3
FROM T

The result if this query produces three different values:

C1 80AAECED-65CD-4C2F-90AB-5D548C3C7279
C2 C1214CD3-423C-406D-B5BD-95BF432ED3E3

Chapter 6. Data Manipulation (DML) Statements

243

C3 EB176C10-F754-4689-8B84-64B666381154

To ensure a single result of the GEN_UUID function, you can use the following
method:

WITH T (X) AS (
 SELECT GEN_UUID()
 FROM RDB$DATABASE
 UNION ALL
 SELECT NULL FROM RDB$DATABASE WHERE 1 = 0)
SELECT
 UUID_TO_CHAR(X) as c1,
 UUID_TO_CHAR(X) as c2,
 UUID_TO_CHAR(X) as c3
FROM T;

This query produces a single result for all three columns:

C1 80AAECED-65CD-4C2F-90AB-5D548C3C7279
C2 80AAECED-65CD-4C2F-90AB-5D548C3C7279
C3 80AAECED-65CD-4C2F-90AB-5D548C3C7279

An alternative solution is to wrap the GEN_UUID query in a subquery:

WITH T (X) AS (
 SELECT (SELECT GEN_UUID() FROM RDB$DATABASE)
 FROM RDB$DATABASE)
SELECT
 UUID_TO_CHAR(X) as c1,
 UUID_TO_CHAR(X) as c2,
 UUID_TO_CHAR(X) as c3
FROM T;

This is an artifact of the current implementation. This behaviour may change in a
future Firebird version.

See also

Common Table Expressions (“WITH … AS … SELECT”).

6.1.4. Joins

Joins combine data from two sources into a single set. This is done on a row-by-row basis and
usually involves checking a join condition in order to determine which rows should be merged and
appear in the resulting dataset. There are several types (INNER, OUTER) and classes (qualified, natural,
etc.) of joins, each with its own syntax and rules.

Chapter 6. Data Manipulation (DML) Statements

244

Since joins can be chained, the datasets involved in a join may themselves be joined sets.

Syntax

SELECT
 ...
 FROM <source>
 [<joins>]
 [...]

<source> ::=
 table [[AS] alias]
 | selectable-stored-procedure [(<args>)] [[AS] alias]
 | <derived-table>

<joins> ::= <join> [<join> ...]

<join> ::=
 [<join-type>] JOIN <source> <join-condition>
 | NATURAL [<join-type>] JOIN <source>
 | {CROSS JOIN | ,} <source>

<join-type> ::= INNER | {LEFT | RIGHT | FULL} [OUTER]

<join-condition> ::= ON <condition> | USING (<column-list>)

Table 71. Arguments for JOIN Clauses

Argument Description

table Name of a table, view or CTE

selectable-stored-
procedure

Name of a selectable stored procedure

args Selectable stored procedure input parameter(s)

derived-table Derived table query expression

alias An alias for a data source (table, view, procedure, CTE, derived table)

condition Join condition (criterion)

column-list The list of columns used for an equi-join

Inner vs. Outer Joins

A join always combines data rows from two sets (usually referred to as the left set and the right set).
By default, only rows that meet the join condition (i.e. that match at least one row in the other set
when the join condition is applied) make it into the result set. This default type of join is called an
inner join. Suppose we have the following two tables:

Table A

Chapter 6. Data Manipulation (DML) Statements

245

ID S

87 Just some text

235 Silence

Table B

CODE X

-23 56.7735

87 416.0

If we join these tables like this:

select *
 from A
 join B on A.id = B.code;

then the result set will be:

ID S CODE X

87 Just some text 87 416.0

The first row of A has been joined with the second row of B because together they met the condition
“A.id = B.code”. The other rows from the source tables have no match in the opposite set and are
therefore not included in the join. Remember, this is an INNER join. We can make that fact explicit by
writing:

select *
 from A
 inner join B on A.id = B.code;

However, since INNER is the default, it is usually ommitted.

It is perfectly possible that a row in the left set matches several rows from the right set or vice
versa. In that case, all those combinations are included, and we can get results like:

ID S CODE X

87 Just some text 87 416.0

87 Just some text 87 -1.0

-23 Don’t know -23 56.7735

-23 Still don’t know -23 56.7735

-23 I give up -23 56.7735

Sometimes we want (or need) all the rows of one or both of the sources to appear in the joined set,

Chapter 6. Data Manipulation (DML) Statements

246

regardless of whether they match a record in the other source. This is where outer joins come in. A
LEFT outer join includes all the records from the left set, but only matching records from the right
set. In a RIGHT outer join it’s the other way around. FULL outer joins include all the records from both
sets. In all outer joins, the “holes” (the places where an included source record doesn’t have a
match in the other set) are filled up with NULLs.

In order to make an outer join, you must specify LEFT, RIGHT or FULL, optionally followed by the
keyword OUTER.

Below are the results of the various outer joins when applied to our original tables A and B:

select *
 from A
 left [outer] join B on A.id = B.code;

ID S CODE X

87 Just some text 87 416.0

235 Silence <null> <null>

select *
 from A
 right [outer] join B on A.id = B.code

ID S CODE X

<null> <null> -23 56.7735

87 Just some text 87 416.0

select *
 from A
 full [outer] join B on A.id = B.code

ID S CODE X

<null> <null> -23 56.7735

87 Just some text 87 416.0

235 Silence <null> <null>

Qualified joins

Qualified joins specify conditions for the combining of rows. This happens either explicitly in an ON
clause or implicitly in a USING clause.

Chapter 6. Data Manipulation (DML) Statements

247

Syntax

<qualified-join> ::= [<join-type>] JOIN <source> <join-condition>

<join-type> ::= INNER | {LEFT | RIGHT | FULL} [OUTER]

<join-condition> ::= ON <condition> | USING (<column-list>)

Explicit-condition joins

Most qualified joins have an ON clause, with an explicit condition that can be any valid Boolean
expression, but usually involves some comparison between the two sources involved.

Quite often, the condition is an equality test (or a number of ANDed equality tests) using the “=”
operator. Joins like these are called equi-joins. (The examples in the section on inner and outer joins
were al equi-joins.)

Examples of joins with an explicit condition:

/* Select all Detroit customers who made a purchase
 in 2013, along with the purchase details: */
select * from customers c
 join sales s on s.cust_id = c.id
 where c.city = 'Detroit' and s.year = 2013;

/* Same as above, but include non-buying customers: */
select * from customers c
 left join sales s on s.cust_id = c.id
 where c.city = 'Detroit' and s.year = 2013;

/* For each man, select the women who are taller than he.
 Men for whom no such woman exists are not included. */
select m.fullname as man, f.fullname as woman
 from males m
 join females f on f.height > m.height;

/* Select all pupils with their class and mentor.
 Pupils without a mentor are also included.
 Pupils without a class are not included. */
select p.firstname, p.middlename, p.lastname,
 c.name, m.name
 from pupils p
 join classes c on c.id = p.class
 left join mentors m on m.id = p.mentor;

Chapter 6. Data Manipulation (DML) Statements

248

Named columns joins

Equi-joins often compare columns that have the same name in both tables. If this is the case, we can
also use the second type of qualified join: the named columns join.

 Named columns joins are not supported in Dialect 1 databases.

Named columns joins have a USING clause which states just the column names. So instead of this:

select * from flotsam f
 join jetsam j
 on f.sea = j.sea
 and f.ship = j.ship;

we can also write:

select * from flotsam
 join jetsam using (sea, ship)

which is considerably shorter. The result set is a little different though — at least when using
“SELECT *”:

• The explicit-condition join — with the ON clause — will contain each of the columns SEA and SHIP
twice: once from table FLOTSAM, and once from table JETSAM. Obviously, they will have the same
values.

• The named columns join — with the USING clause — will contain these columns only once.

If you want all the columns in the result set of the named columns join, set up your query like this:

select f.*, j.*
 from flotsam f
 join jetsam j using (sea, ship);

This will give you the exact same result set as the explicit-condition join.

For an OUTER named columns join, there’s an additional twist when using “SELECT *” or an
unqualified column name from the USING list:

If a row from one source set doesn’t have a match in the other but must still be included because of
the LEFT, RIGHT or FULL directive, the merged column in the joined set gets the non-NULL value. That is
fair enough, but now you can’t tell whether this value came from the left set, the right set, or both.
This can be especially deceiving when the value came from the right hand set, because “*” always
shows combined columns in the left hand part — even in the case of a RIGHT join.

Whether this is a problem or not depends on the situation. If it is, use the “a.*, b.*” approach
shown above, with a and b the names or aliases of the two sources. Or better yet, avoid “*”
altogether in your serious queries and qualify all column names in joined sets. This has the

Chapter 6. Data Manipulation (DML) Statements

249

additional benefit that it forces you to think about which data you want to retrieve and where from.

It is your responsibility to make sure the column names in the USING list are of compatible types
between the two sources. If the types are compatible but not equal, the engine converts them to the
type with the broadest range of values before comparing the values. This will also be the data type
of the merged column that shows up in the result set if “SELECT *” or the unqualified column name
is used. Qualified columns on the other hand will always retain their original data type.

If, when joining by named columns, you are using a join column in the WHERE
clause, always use the qualified column name, otherwise an index on this column
will not be used.

SELECT 1 FROM t1 a JOIN t2 b USING (x) WHERE x = 0;

-- PLAN JOIN (A NATURAL , B INDEX (RDB$2))

However:

SELECT 1 FROM t1 a JOIN t2 b USING (x) WHERE a.x = 0;
-- PLAN JOIN (A INDEX (RDB$1), B INDEX (RDB$2))

SELECT 1 FROM t1 a JOIN t2 b USING (x) WHERE b.x = 0;
-- PLAN JOIN (A INDEX (RDB$1), B INDEX (RDB$2))

The fact is, the unspecified column in this case is implicitly replaced by
`COALESCE(a.x, b.x). This clever trick is used to disambiguate column names, but
it also interferes with the use of the index.

Natural joins

Taking the idea of the named columns join a step further, a natural join performs an automatic
equi-join on all the columns that have the same name in the left and right table. The data types of
these columns must be compatible.

 Natural joins are not supported in Dialect 1 databases.

Syntax

<natural-join> ::= NATURAL [<join-type>] JOIN <source>

<join-type> ::= INNER | {LEFT | RIGHT | FULL} [OUTER]

Given these two tables:

create table TA (
 a bigint,

Chapter 6. Data Manipulation (DML) Statements

250

 s varchar(12),
 ins_date date
);

create table TB (
 a bigint,
 descr varchar(12),
 x float,
 ins_date date
);

A natural join on TA and TB would involve the columns a and ins_date, and the following two
statements would have the same effect:

select * from TA
 natural join TB;

select * from TA
 join TB using (a, ins_date);

Like all joins, natural joins are inner joins by default, but you can turn them into outer joins by
specifying LEFT, RIGHT or FULL before the JOIN keyword.

If there are no columns with the same name in the two source relations, a CROSS
JOIN is performed. We’ll get to this type of join in a minute.

Cross joins

A cross join produces the full set product of the two data sources. This means that it successfully
matches every row in the left source to every row in the right source.

Syntax

<cross-join> ::= {CROSS JOIN | ,} <source>

Use of the comma syntax is discouraged, and we recommend using the explicit join syntax.

Cross-joining two sets is equivalent to joining them on a tautology (a condition that is always true).
The following two statements have the same effect:

select * from TA
 cross join TB;

select * from TA

Chapter 6. Data Manipulation (DML) Statements

251

 join TB on 1 = 1;

Cross joins are inner joins, because they only include matching records – it just so happens that
every record matches! An outer cross join, if it existed, wouldn’t add anything to the result, because
what outer joins add are non-matching records, and these don’t exist in cross joins.

Cross joins are seldom useful, except if you want to list all the possible combinations of two or more
variables. Suppose you are selling a product that comes in different sizes, different colors and
different materials. If these variables are each listed in a table of their own, this query would
return all the combinations:

select m.name, s.size, c.name
 from materials m
 cross join sizes s
 cross join colors c;

Implicit Joins

In the SQL:89 standard, the tables involved in a join were specified as a comma-delimited list in the
FROM clause (in other words, a cross join). The join conditions were then specified in the WHERE clause
among other search terms. This type of join is called an implicit join.

An example of an implicit join:

/*
 * A sample of all Detroit customers who
 * made a purchase.
 */
SELECT *
FROM customers c, sales s
WHERE s.cust_id = c.id AND c.city = 'Detroit'

Mixing Explicit and Implicit Joins

Mixing explicit and implicit joins is not recommend, but is allowed. However, some types of mixing
are not supported by Firebird.

For example, the following query will raise the error “Column does not belong to referenced table”

SELECT *
FROM TA, TB
JOIN TC ON TA.COL1 = TC.COL1
WHERE TA.COL2 = TB.COL2

That is because the explicit join cannot see the TA table. However, the next query will complete
without error, since the restriction is not violated.

Chapter 6. Data Manipulation (DML) Statements

252

SELECT *
FROM TA, TB
JOIN TC ON TB.COL1 = TC.COL1
WHERE TA.COL2 = TB.COL2

A Note on Equality

This note about equality and inequality operators applies everywhere in Firebird’s
SQL language, not just in JOIN conditions.

The “=” operator, which is explicitly used in many conditional joins and implicitly in named column
joins and natural joins, only matches values to values. According to the SQL standard, NULL is not a
value and hence two NULLs are neither equal nor unequal to one another. If you need NULLs to match
each other in a join, use the IS NOT DISTINCT FROM operator. This operator returns true if the
operands have the same value or if they are both NULL.

select *
 from A join B
 on A.id is not distinct from B.code;

Likewise, in the — extremely rare — cases where you want to join on inequality, use IS DISTINCT
FROM, not “<>”, if you want NULL to be considered different from any value and two NULLs considered
equal:

select *
 from A join B
 on A.id is distinct from B.code;

Ambiguous field names in joins

Firebird rejects unqualified field names in a query if these field names exist in more than one
dataset involved in a join. This is even true for inner equi-joins where the field name figures in the
ON clause like this:

select a, b, c
 from TA
 join TB on TA.a = TB.a;

There is one exception to this rule: with named columns joins and natural joins, the unqualified
field name of a column taking part in the matching process may be used legally and refers to the
merged column of the same name. For named columns joins, these are the columns listed in the
USING clause. For natural joins, they are the columns that have the same name in both relations. But
please notice again that, especially in outer joins, plain colname isn’t always the same as
left.colname or right.colname. Types may differ, and one of the qualified columns may be NULL

Chapter 6. Data Manipulation (DML) Statements

253

while the other isn’t. In that case, the value in the merged, unqualified column may mask the fact
that one of the source values is absent.

6.1.5. The WHERE clause

The WHERE clause serves to limit the rows returned to the ones that the caller is interested in. The
condition following the keyword WHERE can be as simple as a check like “AMOUNT = 3” or it can be a
multilayered, convoluted expression containing subselects, predicates, function calls, mathematical
and logical operators, context variables and more.

The condition in the WHERE clause is often called the search condition, the search expression or
simply the search.

In DSQL and ESQL, the search expression may contain parameters. This is useful if a query has to
be repeated a number of times with different input values. In the SQL string as it is passed to the
server, question marks are used as placeholders for the parameters. They are called positional
parameters because they can only be told apart by their position in the string. Connectivity libraries
often support named parameters of the form :id, :amount, :a etc. These are more user-friendly; the
library takes care of translating the named parameters to positional parameters before passing the
statement to the server.

The search condition may also contain local (PSQL) or host (ESQL) variable names, preceded by a
colon.

Syntax

SELECT ...
 FROM ...
 [...]
 WHERE <search-condition>
 [...]

Table 72. Argument of WHERE

Parameter Description

search-condition A Boolean expression returning TRUE, FALSE or possibly UNKNOWN
(NULL)

Only those rows for which the search condition evaluates to TRUE are included in the result set. Be
careful with possible NULL outcomes: if you negate a NULL expression with NOT, the result will still be
NULL and the row will not pass. This is demonstrated in one of the examples below.

Examples

select genus, species from mammals
 where family = 'Felidae'
 order by genus;

Chapter 6. Data Manipulation (DML) Statements

254

select * from persons
 where birthyear in (1880, 1881)
 or birthyear between 1891 and 1898;

select name, street, borough, phone
 from schools s
 where exists (select * from pupils p where p.school = s.id)
 order by borough, street;

select * from employees
 where salary >= 10000 and position <> 'Manager';

select name from wrestlers
 where region = 'Europe'
 and weight > all (select weight from shot_putters
 where region = 'Africa');

select id, name from players
 where team_id = (select id from teams where name = 'Buffaloes');

select sum (population) from towns
 where name like '%dam'
 and province containing 'land';

select password from usertable
 where username = current_user;

The following example shows what can happen if the search condition evaluates to NULL.

Suppose you have a table listing some children’s names and the number of marbles they possess. At
a certain moment, the table contains these data:

CHILD MARBLES

Anita 23

Bob E. 12

Chris <null>

Deirdre 1

Eve 17

Fritz 0

Chapter 6. Data Manipulation (DML) Statements

255

CHILD MARBLES

Gerry 21

Hadassah <null>

Isaac 6

First, please notice the difference between NULL and 0: Fritz is known to have no marbles at all,
Chris’s and Hadassah’s marble counts are unknown.

Now, if you issue this SQL statement:

select list(child) from marbletable where marbles > 10;

you will get the names Anita, Bob E., Eve and Gerry. These children all have more than 10 marbles.

If you negate the expression:

select list(child) from marbletable where not marbles > 10

it’s the turn of Deirdre, Fritz and Isaac to fill the list. Chris and Hadassah are not included, because
they aren’t known to have ten marbles or less. Should you change that last query to:

select list(child) from marbletable where marbles <= 10;

the result will still be the same, because the expression NULL <= 10 yields UNKNOWN. This is not the
same as TRUE, so Chris and Hadassah are not listed. If you want them listed with the “poor” children,
change the query to:

select list(child) from marbletable
where marbles <= 10 or marbles is null;

Now the search condition becomes true for Chris and Hadassah, because “marbles is null”
obviously returns TRUE in their case. In fact, the search condition cannot be NULL for anybody now.

Lastly, two examples of SELECT queries with parameters in the search. It depends on the application
how you should define query parameters and even if it is possible at all. Notice that queries like
these cannot be executed immediately: they have to be prepared first. Once a parameterized query
has been prepared, the user (or calling code) can supply values for the parameters and have it
executed many times, entering new values before every call. How the values are entered and the
execution started is up to the application. In a GUI environment, the user typically types the
parameter values in one or more text boxes and then clicks an “Execute”, “Run” or “Refresh”
button.

select name, address, phone frome stores

Chapter 6. Data Manipulation (DML) Statements

256

 where city = ? and class = ?;

select * from pants
 where model = :model and size = :size and color = :col;

The last query cannot be passed directly to the engine; the application must convert it to the other
format first, mapping named parameters to positional parameters.

6.1.6. The GROUP BY clause

GROUP BY merges output rows that have the same combination of values in its item list into a single
row. Aggregate functions in the select list are applied to each group individually instead of to the
dataset as a whole.

If the select list only contains aggregate columns or, more generally, columns whose values don’t
depend on individual rows in the underlying set, GROUP BY is optional. When omitted, the final
result set of will consist of a single row (provided that at least one aggregated column is present).

If the select list contains both aggregate columns and columns whose values may vary per row, the
GROUP BY clause becomes mandatory.

Syntax

SELECT ... FROM ...
 GROUP BY <grouping-item> [, <grouping-item> ...]
 [HAVING <grouped-row-condition>]
 ...

<grouping-item> ::=
 <non-aggr-select-item>
 | <non-aggr-expression>

<non-aggr-select-item> ::=
 column-copy
 | column-alias
 | column-position

Table 73. Arguments for the GROUP BY Clause

Argument Description

non-aggr-expression Any non-aggregating expression that is not included in the SELECT list, i.e.
unselected columns from the source set or expressions that do not
depend on the data in the set at all

column-copy A literal copy, from the SELECT list, of an expression that contains no
aggregate function

column-alias The alias, from the SELECT list, of an expression (column) that contains no
aggregate function

Chapter 6. Data Manipulation (DML) Statements

257

Argument Description

column-position The position number, in the SELECT list, of an expression (column) that
contains no aggregate function

A general rule of thumb is that every non-aggregate item in the SELECT list must also be in the GROUP
BY list. You can do this in three ways:

1. By copying the item verbatim from the select list, e.g. “class” or “'D:' || upper(doccode)”.

2. By specifying the column alias, if it exists.

3. By specifying the column position as an integer literal between 1 and the number of columns.
Integer values resulting from expressions or parameter substitutions are simply invariables and
will be used as such in the grouping. They will have no effect though, as their value is the same
for each row.

If you group by a column position, the expression at that position is copied
internally from the select list. If it concerns a subquery, that subquery will be
executed again in the grouping phase. That is to say, grouping by the column
position, rather than duplicating the subquery expression in the grouping clause,
saves keystrokes and bytes, but it is not a way of saving processing cycles!

In addition to the required items, the grouping list may also contain:

• Columns from the source table that are not in the select list, or non-aggregate expressions based
on such columns. Adding such columns may further subdivide the groups. However, since these
columns are not in the select list, you can’t tell which aggregated row corresponds to which
value in the column. So, in general, if you are interested in this information, you also include
the column or expression in the select list — which brings you back to the rule: “every non-
aggregate column in the select list must also be in the grouping list”.

• Expressions that aren’t dependent on the data in the underlying set, e.g. constants, context
variables, single-value non-correlated subselects etc. This is only mentioned for completeness,
as adding such items is utterly pointless: they don’t affect the grouping at all. “Harmless but
useless” items like these may also figure in the select list without being copied to the grouping
list.

Examples

When the select list contains only aggregate columns, GROUP BY is not mandatory:

select count(*), avg(age) from students
 where sex = 'M';

This will return a single row listing the number of male students and their average age. Adding
expressions that don’t depend on values in individual rows of table STUDENTS doesn’t change that:

select count(*), avg(age), current_date from students

Chapter 6. Data Manipulation (DML) Statements

258

 where sex = 'M';

The row will now have an extra column showing the current date, but other than that, nothing
fundamental has changed. A GROUP BY clause is still not required.

However, in both the above examples it is allowed. This is perfectly valid:

select count(*), avg(age) from students
 where sex = 'M'
 group by class;

This will return a row for each class that has boys in it, listing the number of boys and their average
age in that particular class. (If you also leave the current_date field in, this value will be repeated on
every row, which is not very exciting.)

The above query has a major drawback though: it gives you information about the different classes,
but it doesn’t tell you which row applies to which class. In order to get that extra bit of information,
the non-aggregate column CLASS must be added to the select list:

select class, count(*), avg(age) from students
 where sex = 'M'
 group by class;

Now we have a useful query. Notice that the addition of column CLASS also makes the GROUP BY
clause mandatory. We can’t drop that clause anymore, unless we also remove CLASS from the
column list.

The output of our last query may look something like this:

CLASS COUNT AVG

2A 12 13.5

2B 9 13.9

3A 11 14.6

3B 12 14.4

… … …

The headings “COUNT” and “AVG” are not very informative. In a simple case like this, you might get
away with that, but in general you should give aggregate columns a meaningful name by aliasing
them:

select class,
 count(*) as num_boys,
 avg(age) as boys_avg_age
 from students
 where sex = 'M'

Chapter 6. Data Manipulation (DML) Statements

259

 group by class;

As you may recall from the formal syntax of the columns list, the AS keyword is optional.

Adding more non-aggregate (or rather: row-dependent) columns requires adding them to the GROUP
BY clause too. For instance, you might want to see the above information for girls as well; and you
may also want to differentiate between boarding and day students:

select class,
 sex,
 boarding_type,
 count(*) as number,
 avg(age) as avg_age
 from students
 group by class, sex, boarding_type;

This may give you the following result:

CLASS SEX BOARDING_TYPE NUMBER AVG_AGE

2A F BOARDING 9 13.3

2A F DAY 6 13.5

2A M BOARDING 7 13.6

2A M DAY 5 13.4

2B F BOARDING 11 13.7

2B F DAY 5 13.7

2B M BOARDING 6 13.8

… … … … …

Each row in the result set corresponds to one particular combination of the columns CLASS, SEX and
BOARDING_TYPE. The aggregate results — number and average age — are given for each of these
rather specific groups individually. In a query like this, you don’t see a total for boys as a whole, or
day students as a whole. That’s the tradeoff: the more non-aggregate columns you add, the more
you can pinpoint very specific groups, but the more you also lose sight of the general picture. Of
course, you can still obtain the “coarser” aggregates through separate queries.

HAVING

Just as a WHERE clause limits the rows in a dataset to those that meet the search condition, so the
HAVING sub-clause imposes restrictions on the aggregated rows in a grouped set. HAVING is optional,
and can only be used in conjunction with GROUP BY.

The condition(s) in the HAVING clause can refer to:

• Any aggregated column in the select list. This is the most widely used case.

• Any aggregated expression that is not in the select list, but allowed in the context of the query.

Chapter 6. Data Manipulation (DML) Statements

260

This is sometimes useful too.

• Any column in the GROUP BY list. While legal, it is more efficient to filter on these non-aggregated
data at an earlier stage: in the WHERE clause.

• Any expression whose value doesn’t depend on the contents of the dataset (like a constant or a
context variable). This is valid but utterly pointless, because it will either suppress the entire set
or leave it untouched, based on conditions that have nothing to do with the set itself.

A HAVING clause can not contain:

• Non-aggregated column expressions that are not in the GROUP BY list.

• Column positions. An integer in the HAVING clause is just an integer.

• Column aliases –- not even if they appear in the GROUP BY clause!

Examples

Building on our earlier examples, this could be used to skip small groups of students:

select class,
 count(*) as num_boys,
 avg(age) as boys_avg_age
 from students
 where sex = 'M'
 group by class
 having count(*) >= 5;

To select only groups that have a minimum age spread:

select class,
 count(*) as num_boys,
 avg(age) as boys_avg_age
 from students
 where sex = 'M'
 group by class
 having max(age) - min(age) > 1.2;

Notice that if you’re really interested in this information, you’d normally include min(age) and
max(age) -– or the expression “max(age) - min(age)” –- in the select list as well!

To include only 3rd classes:

select class,
 count(*) as num_boys,
 avg(age) as boys_avg_age
 from students
 where sex = 'M'
 group by class

Chapter 6. Data Manipulation (DML) Statements

261

 having class starting with '3';

Better would be to move this condition to the WHERE clause:

select class,
 count(*) as num_boys,
 avg(age) as boys_avg_age
 from students
 where sex = 'M' and class starting with '3'
 group by class;

6.1.7. The PLAN clause

The PLAN clause enables the user to submit a data retrieval plan, thus overriding the plan that the
optimizer would have generated automatically.

Syntax

PLAN <plan-expr>

<plan-expr> ::=
 (<plan-item> [, <plan-item> ...])
 | <sorted-item>
 | <joined-item>
 | <merged-item>
 | <hash-item>

<sorted-item> ::= SORT (<plan-item>)

<joined-item> ::=
 JOIN (<plan-item>, <plan-item> [, <plan-item> ...])

<merged-item> ::=
 [SORT] MERGE (<sorted-item>, <sorted-item> [, <sorted-item> ...])

<hash-item> ::=
 HASH (<plan-item>, <plan-item> [, <plan-item> ...])

<plan-item> ::= <basic-item> | <plan-expr>

<basic-item> ::=
 <relation> { NATURAL
 | INDEX (<indexlist>)
 | ORDER index [INDEX (<indexlist>)] }

<relation> ::= table | view [table]

<indexlist> ::= index [, index ...]

Chapter 6. Data Manipulation (DML) Statements

262

Table 74. Arguments for the PLAN Clause

Argument Description

table Table name or its alias

view View name

index Index name

Every time a user submits a query to the Firebird engine, the optimizer computes a data retrieval
strategy. Most Firebird clients can make this retrieval plan visible to the user. In Firebird’s own isql
utility, this is done with the command SET PLAN ON. If you are studying query plans rather than
running queries, SET PLANONLY ON will show the plan without executing the query. Use SET PLANONLY
OFF to execute the query and show the plan.

A more detailed plan can be obtained when you enable an advanced plan. In isql
this can be done with SET EXPLAIN ON. The advanced plan displayes more detailed
information about the access methods used by the optimizer, however it cannot be
included in the PLAN clause of a statement. The description of the advanced plan is
beyond the scope of this Language Reference.

In most situations, you can trust that Firebird will select the optimal query plan for you. However,
if you have complicated queries that seem to be underperforming, it may very well be worth your
while to examine the plan and see if you can improve on it.

Simple plans

The simplest plans consist of just a relation name followed by a retrieval method. For example, for
an unsorted single-table select without a WHERE clause:

select * from students
 plan (students natural);

Advanced plan:

Select Expression
 -> Table "STUDENTS" Full Scan

If there’s a WHERE or a HAVING clause, you can specify the index to be used for finding matches:

select * from students
 where class = '3C'
 plan (students index (ix_stud_class));

Advanced plan:

Select Expression

Chapter 6. Data Manipulation (DML) Statements

263

 -> Filter
 -> Table "STUDENTS" Access By ID
 -> Bitmap
 -> Index "IX_STUD_CLASS" Range Scan (full match)

The INDEX directive is also used for join conditions (to be discussed a little later). It can contain a list
of indexes, separated by commas.

ORDER specifies the index for sorting the set if an ORDER BY or GROUP BY clause is present:

select * from students
 plan (students order pk_students)
 order by id;

Advanced plan:

Select Expression
 -> Table "STUDENTS" Access By ID
 -> Index "PK_STUDENTS" Full Scan

ORDER and INDEX can be combined:

select * from students
 where class >= '3'
 plan (students order pk_students index (ix_stud_class))
 order by id;

Advanced plan:

Select Expression
 -> Filter
 -> Table "STUDENTS" Access By ID
 -> Index "PK_STUDENTS" Full Scan
 -> Bitmap
 -> Index "IX_STUD_CLASS" Range Scan (lower bound: 1/1)

It is perfectly OK if ORDER and INDEX specify the same index:

select * from students
 where class >= '3'
 plan (students order ix_stud_class index (ix_stud_class))
 order by class;

Advanced plan:

Chapter 6. Data Manipulation (DML) Statements

264

Select Expression
 -> Filter
 -> Table "STUDENTS" Access By ID
 -> Index "IX_STUD_CLASS" Range Scan (lower bound: 1/1)
 -> Bitmap
 -> Index "IX_STUD_CLASS" Range Scan (lower bound: 1/1)

For sorting sets when there’s no usable index available (or if you want to suppress its use), leave
out ORDER and prepend the plan expression with SORT:

select * from students
 plan sort (students natural)
 order by name;

Advanced plan:

Select Expression
 -> Sort (record length: 128, key length: 56)
 -> Table "STUDENTS" Full Scan

Or when an index is used for the search:

select * from students
 where class >= '3'
 plan sort (students index (ix_stud_class))
 order by name;

Advanced plan:

elect Expression
 -> Sort (record length: 136, key length: 56)
 -> Filter
 -> Table "STUDENTS" Access By ID
 -> Bitmap
 -> Index "IX_STUD_CLASS" Range Scan (lower bound: 1/1)

Notice that SORT, unlike ORDER, is outside the parentheses. This reflects the fact that the data rows are
retrieved unordered and sorted afterwards by the engine.

When selecting from a view, specify the view and the table involved. For instance, if you have a
view FRESHMEN that selects just the first-year students:

select * from freshmen

Chapter 6. Data Manipulation (DML) Statements

265

 plan (freshmen students natural);

Advanced plan:

Select Expression
 -> Table "STUDENTS" as "FRESHMEN" Full Scan

Or, for instance:

select * from freshmen
 where id > 10
 plan sort (freshmen students index (pk_students))
 order by name desc;

Advanced plan:

Select Expression
 -> Sort (record length: 144, key length: 24)
 -> Filter
 -> Table "STUDENTS" as "FRESHMEN" Access By ID
 -> Bitmap
 -> Index "PK_STUDENTS" Range Scan (lower bound: 1/1)

If a table or view has been aliased, it is the alias, not the original name, that must
be used in the PLAN clause.

Composite plans

When a join is made, you can specify the index which is to be used for matching. You must also use
the JOIN directive on the two streams in the plan:

select s.id, s.name, s.class, c.mentor
 from students s
 join classes c on c.name = s.class
 plan join (s natural, c index (pk_classes));

Advanced plan:

Select Expression
 -> Nested Loop Join (inner)
 -> Table "STUDENTS" as "S" Full Scan
 -> Filter
 -> Table "CLASSES" as "C" Access By ID
 -> Bitmap

Chapter 6. Data Manipulation (DML) Statements

266

 -> Index "PK_CLASSES" Unique Scan

The same join, sorted on an indexed column:

select s.id, s.name, s.class, c.mentor
 from students s
 join classes c on c.name = s.class
 plan join (s order pk_students, c index (pk_classes))
 order by s.id;

Advanced plan:

Select Expression
 -> Nested Loop Join (inner)
 -> Table "STUDENTS" as "S" Access By ID
 -> Index "PK_STUDENTS" Full Scan
 -> Filter
 -> Table "CLASSES" as "C" Access By ID
 -> Bitmap
 -> Index "PK_CLASSES" Unique Scan

And on a non-indexed column:

select s.id, s.name, s.class, c.mentor
 from students s
 join classes c on c.name = s.class
 plan sort (join (s natural, c index (pk_classes)))
 order by s.name;

Advanced plan:

Select Expression
 -> Sort (record length: 152, key length: 12)
 -> Nested Loop Join (inner)
 -> Table "STUDENTS" as "S" Full Scan
 -> Filter
 -> Table "CLASSES" as "C" Access By ID
 -> Bitmap
 -> Index "PK_CLASSES" Unique Scan

With a search condition added:

select s.id, s.name, s.class, c.mentor
 from students s
 join classes c on c.name = s.class

Chapter 6. Data Manipulation (DML) Statements

267

 where s.class <= '2'
 plan sort (join (s index (fk_student_class), c index (pk_classes)))
 order by s.name;

Advanced plan:

Select Expression
 -> Sort (record length: 152, key length: 12)
 -> Nested Loop Join (inner)
 -> Filter
 -> Table "STUDENTS" as "S" Access By ID
 -> Bitmap
 -> Index "FK_STUDENT_CLASS" Range Scan (lower bound: 1/1)
 -> Filter
 -> Table "CLASSES" as "C" Access By ID
 -> Bitmap
 -> Index "PK_CLASSES" Unique Scan

As a left outer join:

select s.id, s.name, s.class, c.mentor
 from classes c
 left join students s on c.name = s.class
 where s.class <= '2'
 plan sort (join (c natural, s index (fk_student_class)))
 order by s.name;

Advanced plan:

Select Expression
 -> Sort (record length: 192, key length: 56)
 -> Filter
 -> Nested Loop Join (outer)
 -> Table "CLASSES" as "C" Full Scan
 -> Filter
 -> Table "STUDENTS" as "S" Access By ID
 -> Bitmap
 -> Index "FK_STUDENT_CLASS" Range Scan (full match)

If there are no indices available to match the join condition (or if you don’t want to use it), then it is
possible connect the streams using HASH or MERGE method.

To connect using the HASH method in the plan, the HASH directive is used instead of the JOIN directive.
In this case, the smaller (secondary) stream is materialized completely into an internal buffer.
While reading this secondary stream, a hash function is applied and a pair {hash, pointer to buffer}
is written to a hash table. Then the primary stream is read and its hash key is tested against the
hash table.

Chapter 6. Data Manipulation (DML) Statements

268

select *
 from students s
 join classes c on c.cookie = s.cookie
 plan hash (c natural, s natural)

Advanced plan:

Select Expression
 -> Filter
 -> Hash Join (inner)
 -> Table "STUDENTS" as "S" Full Scan
 -> Record Buffer (record length: 145)
 -> Table "CLASSES" as "C" Full Scan

For a MERGE join, the plan must first sort both streams on their join column(s) and then merge. This
is achieved with the SORT directive (which we’ve already seen) and MERGE instead of JOIN:

select * from students s
 join classes c on c.cookie = s.cookie
 plan merge (sort (c natural), sort (s natural));

Adding an ORDER BY clause means the result of the merge must also be sorted:

select * from students s
 join classes c on c.cookie = s.cookie
 plan sort (merge (sort (c natural), sort (s natural)))
 order by c.name, s.id;

Finally, we add a search condition on two indexable colums of table STUDENTS:

select * from students s
 join classes c on c.cookie = s.cookie
 where s.id < 10 and s.class <= '2'
 plan sort (merge (sort (c natural),
 sort (s index (pk_students, fk_student_class))))
 order by c.name, s.id;

As follows from the formal syntax definition, JOINs and MERGEs in the plan may combine more than
two streams. Also, every plan expression may be used as a plan item in an encompassing plan. This
means that plans of certain complicated queries may have various nesting levels.

Finally, instead of MERGE you may also write SORT MERGE. As this makes absolutely no difference and
may create confusion with “real” SORT directives (the ones that do make a difference), it’s probably
best to stick to plain MERGE.

Chapter 6. Data Manipulation (DML) Statements

269

In addition to the plan for the main query, you can specify a plan for each subquery. For example,
the following query with multiple plans will work:

select *
from color
where exists (
 select *
 from hors
 where horse.code_color = color.code_color
 plan (horse index (fk_horse_color)))
plan (color natural)

Occasionally, the optimizer will accept a plan and then not follow it, even though it
does not reject it as invalid. One such example was

MERGE (unsorted stream, unsorted stream)

It is advisable to treat such as plan as “deprecated”.

6.1.8. UNION

The UNION clause concatenates two or more datasets, thus increasing the number of rows but not
the number of columns. Datasets taking part in a UNION must have the same number of columns,
and columns at corresponding positions must be of the same type. Other than that, they may be
totally unrelated.

By default, a union suppresses duplicate rows. UNION ALL shows all rows, including any duplicates.
The optional DISTINCT keyword makes the default behaviour explicit.

Syntax

<union> ::=
 <individual-select>
 UNION [{DISTINCT | ALL}]
 <individual-select>
 [
 [UNION [{DISTINCT | ALL}]
 <individual-select>
 ...
]
 [<union-wide-clauses>]

<individual-select> ::=
 SELECT
 [TRANSACTION name]
 [FIRST m] [SKIP n]
 [{DISTINCT | ALL}] <columns>
 [INTO <host-varlist>]

Chapter 6. Data Manipulation (DML) Statements

270

 FROM <source> [[AS] alias]
 [<joins>]
 [WHERE <condition>]
 [GROUP BY <grouping-list>
 [HAVING <aggregate-condition>]]
 [PLAN <plan-expr>]

<union-wide-clauses> ::=
 [ORDER BY <ordering-list>]
 [{ ROWS <m> [TO <n>]
 | [OFFSET n {ROW | ROWS}]
 [FETCH {FIRST | NEXT} [m] {ROW | ROWS} ONLY]
 }]
 [FOR UPDATE [OF <columns>]]
 [WITH LOCK]
 [INTO <PSQL-varlist>]

Unions take their column names from the first select query. If you want to alias union columns, do
so in the column list of the topmost SELECT. Aliases in other participating selects are allowed and
may even be useful, but will not propagate to the union level.

If a union has an ORDER BY clause, the only allowed sort items are integer literals indicating 1-based
column positions, optionally followed by an ASC/DESC and/or a NULLS {FIRST | LAST} directive. This
also implies that you cannot order a union by anything that isn’t a column in the union. (You can,
however, wrap it in a derived table, which gives you back all the usual sort options.)

Unions are allowed in subqueries of any kind and can themselves contain subqueries. They can
also contain joins, and can take part in a join when wrapped in a derived table.

Examples

This query presents information from different music collections in one dataset using unions:

select id, title, artist, length, 'CD' as medium
 from cds
union
select id, title, artist, length, 'LP'
 from records
union
select id, title, artist, length, 'MC'
 from cassettes
order by 3, 2 -- artist, title;

If id, title, artist and length are the only fields in the tables involved, the query can also be
written as:

select c.*, 'CD' as medium
 from cds c
union

Chapter 6. Data Manipulation (DML) Statements

271

select r.*, 'LP'
 from records r
union
select c.*, 'MC'
 from cassettes c
order by 3, 2 -- artist, title;

Qualifying the “stars” is necessary here because they are not the only item in the column list. Notice
how the “c” aliases in the first and third select do not conflict with each other: their scopes are not
union-wide but apply only to their respective select queries.

The next query retrieves names and phone numbers from translators and proofreaders.
Translators who also work as proofreaders will show up only once in the result set, provided their
phone number is the same in both tables. The same result can be obtained without DISTINCT. With
ALL, these people would appear twice.

select name, phone from translators
 union distinct
select name, telephone from proofreaders;

A UNION within a subquery:

select name, phone, hourly_rate from clowns
where hourly_rate < all
 (select hourly_rate from jugglers
 union
 select hourly_rate from acrobats)
order by hourly_rate;

6.1.9. ORDER BY

When a SELECT statement is executed, the result set is not sorted in any way. It often happens that
rows appear to be sorted chronologically, simply because they are returned in the same order they
were added to the table by INSERT statements. This is not something you should rely on: the order
may change depending on the plan or updates to rows, etc. To specify an explicit sorting order for
the set specification, an ORDER BY clause is used.

Syntax

SELECT ... FROM ...
...
ORDER BY <ordering-item> [, <ordering-item> …]

<ordering-item> ::=
 {col-name | col-alias | col-position | <expression>}
 [COLLATE collation-name]
 [ASC[ENDING] | DESC[ENDING]]

Chapter 6. Data Manipulation (DML) Statements

272

 [NULLS {FIRST|LAST}]

Table 75. Arguments for the ORDER BY Clause

Argument Description

col-name Full column name

col-alias Column alias

col-position Column position in the SELECT list

expression Any expression

collation-name Collation name (sorting order for string types)

The ORDER BY consists of a comma-separated list of the columns on which the result data set should
be sorted. The sort order can be specified by the name of the column — but only if the column was
not previously aliased in the SELECT columns list. The alias must be used if it was used in the select
list. The ordinal position number of the column in the SELECT column list, the alias given to the
column in the SELECT list with the help of the AS keyword, or the number of the column in the SELECT
list can be used without restriction.

The three forms of expressing the columns for the sort order can be mixed in the same ORDER BY
clause. For instance, one column in the list can be specified by its name and another column can be
specified by its number.

If you sort by column position or alias, then the expression corresponding to this
position (alias) will be copied from the SELECT list. This also applies to subqueries,
thus, the subquery will be executed at least twice.

If you use the column position to specify the sort order for a query of the SELECT *
style, the server expands the asterisk to the full column list in order to determine
the columns for the sort. It is, however, considered “sloppy practice” to design
ordered sets this way.

Sorting Direction

The keyword ASCENDING — usually abbreviated to ASC — specifies a sort direction from lowest to
highest. ASCENDING is the default sort direction.

The keyword DESCENDING — usually abbreviated to DESC — specifies a sort direction from highest to
lowest.

Specifying ascending order for one column and descending order for another is allowed.

Collation Order

The keyword COLLATE specifies the collation order for a string column if you need a collation that is
different from the normal one for this column. The normal collation order will be either the default
one for the database character set, or the one set explicitly in the column’s definition.

Chapter 6. Data Manipulation (DML) Statements

273

NULLs Position

The keyword NULLS defines where NULL in the associated column will fall in the sort order: NULLS
FIRST places the rows with the NULL column above rows ordered by that column’s value; NULLS LAST
places those rows after the ordered rows.

NULLS FIRST is the default.

Ordering UNION-ed Sets

The discrete queries contributing to a UNION cannot take an ORDER BY clause. The only option is to
order the entire output, using one ORDER BY clause at the end of the overall query.

The simplest — and, in some cases, the only — method for specifying the sort order is by the ordinal
column position. However, it is also valid to use the column names or aliases, from the first
contributing query only.

The ASC/DESC and/or NULLS directives are available for this global set.

If discrete ordering within the contributing set is required, use of derived tables or common table
expressions for those sets may be a solution.

Examples of ORDER BY

Sorting the result set in ascending order, ordering by the RDB$CHARACTER_SET_ID and
RDB$COLLATION_ID columns of the RDB$COLLATIONS table:

SELECT
 RDB$CHARACTER_SET_ID AS CHARSET_ID,
 RDB$COLLATION_ID AS COLL_ID,
 RDB$COLLATION_NAME AS NAME
FROM RDB$COLLATIONS
ORDER BY RDB$CHARACTER_SET_ID, RDB$COLLATION_ID;

The same, but sorting by the column aliases:

SELECT
 RDB$CHARACTER_SET_ID AS CHARSET_ID,
 RDB$COLLATION_ID AS COLL_ID,
 RDB$COLLATION_NAME AS NAME
FROM RDB$COLLATIONS
ORDER BY CHARSET_ID, COLL_ID;

Sorting the output data by the column position numbers:

SELECT
 RDB$CHARACTER_SET_ID AS CHARSET_ID,
 RDB$COLLATION_ID AS COLL_ID,

Chapter 6. Data Manipulation (DML) Statements

274

 RDB$COLLATION_NAME AS NAME
FROM RDB$COLLATIONS
ORDER BY 1, 2;

Sorting a SELECT * query by position numbers — possible, but nasty and not recommended:

SELECT *
FROM RDB$COLLATIONS
ORDER BY 3, 2;

Sorting by the second column in the BOOKS table, or — if BOOKS has only one column — the
FILMS.DIRECTOR column:

SELECT
 BOOKS.*,
 FILMS.DIRECTOR
FROM BOOKS, FILMS
ORDER BY 2;

Sorting in descending order by the values of column PROCESS_TIME, with NULLs placed at the
beginning of the set:

SELECT *
FROM MSG
ORDER BY PROCESS_TIME DESC NULLS FIRST;

Sorting the set obtained by a UNION of two queries. Results are sorted in descending order for the
values in the second column, with NULLs at the end of the set; and in ascending order for the values
of the first column with NULLs at the beginning.

SELECT
 DOC_NUMBER, DOC_DATE
FROM PAYORDER
UNION ALL
SELECT
 DOC_NUMBER, DOC_DATE
FROM BUDGORDER
ORDER BY 2 DESC NULLS LAST, 1 ASC NULLS FIRST;

6.1.10. ROWS

Used for

Retrieving a slice of rows from an ordered set

Available in

Chapter 6. Data Manipulation (DML) Statements

275

DSQL, PSQL

Syntax

SELECT <columns> FROM ...
 [WHERE ...]
 [ORDER BY ...]
 ROWS m [TO n]

Table 76. Arguments for the ROWS Clause

Argument Description

m, n Any integer expressions

ROWS is non-standard syntax

ROWS is a Firebird-specific clause. Use the SQL-standard OFFSET, FETCH syntax
wherever possible.

Limits the amount of rows returned by the SELECT statement to a specified number or range.

The ROWS clause also does the same job as the FIRST and SKIP clauses, but neither are SQL-compliant.
Unlike FIRST and SKIP, and OFFSET and FETCH, the ROWS and TO clauses accept any type of integer
expression as their arguments, without parentheses. Of course, parentheses may still be needed for
nested evaluations inside the expression, and a subquery must always be enclosed in parentheses.

• Numbering of rows in the intermediate set — the overall set cached on disk
before the “slice” is extracted — starts at 1.

• OFFSET/FETCH, FIRST/SKIP, and ROWS can all be used without the ORDER BY clause,
although it rarely makes sense to do so — except perhaps when you want to
take a quick look at the table data and don’t care that rows will be in a non-
deterministic order. For this purpose, a query like “SELECT * FROM TABLE1 ROWS
20” would return the first 20 rows instead of a whole table that might be rather
big.

Calling ROWS m retrieves the first m records from the set specified.

Characteristics of using ROWS m without a TO clause:

• If m is greater than the total number of records in the intermediate data set, the entire set is
returned

• If m = 0, an empty set is returned

• If m < 0, the SELECT statement call fails with an error

Calling ROWS m TO n retrieves the rows from the set, starting at row m and ending after row n — the
set is inclusive.

Chapter 6. Data Manipulation (DML) Statements

276

Characteristics of using ROWS m with a TO clause:

• If m is greater than the total number of rows in the intermediate set and n >= m, an empty set is
returned

• If m is not greater than n and n is greater than the total number of rows in the intermediate set,
the result set will be limited to rows starting from m, up to the end of the set

• If m < 1 and n < 1, the SELECT statement call fails with an error

• If n = m - 1, an empty set is returned

• If n < m - 1, the SELECT statement call fails with an error

Using a TO clause without a ROWS clause:

While ROWS replaces the FIRST and SKIP syntax, there is one situation where the ROWS syntax does not
provide the same behaviour: specifying SKIP n on its own returns the entire intermediate set,
without the first n rows. The ROWS … TO syntax needs a little help to achieve this.

With the ROWS syntax, you need a ROWS clause in association with the TO clause and deliberately make
the second (n) argument greater than the size of the intermediate data set. This is achieved by
creating an expression for n that uses a subquery to retrieve the count of rows in the intermediate
set and adds 1 to it.

Replacing of FIRST/SKIP and OFFSET/FETCH

The ROWS clause can be used instead of the SQL-standard OFFSET/FETCH or non-standard FIRST/SKIP
clauses, except the case where only OFFSET or SKIP is used, that is when the whole result set is
returned except for skipping the specified number of rows from the beginning.

In order to implement this behaviour using ROWS, you must specify the TO clause with a value larger
than the size of the returned result set.

Mixing ROWS and FIRST/SKIP or OFFSET/FETCH

ROWS syntax cannot be mixed with FIRST/SKIP or OFFSET/FETCH in the same SELECT expression. Using
the different syntaxes in different subqueries in the same statement is allowed.

ROWS Syntax in UNION Queries

When ROWS is used in a UNION query, the ROWS directive is applied to the unioned set and must be
placed after the last SELECT statement.

If a need arises to limit the subsets returned by one or more SELECT statements inside UNION, there
are a couple of options:

1. Use FIRST/SKIP syntax in these SELECT statements — bearing in mind that an ordering clause
(ORDER BY) cannot be applied locally to the discrete queries, but only to the combined output.

2. Convert the queries to derived tables with their own ROWS clauses.

Chapter 6. Data Manipulation (DML) Statements

277

Examples of ROWS

The following examples rewrite the examples used in the section about FIRST and SKIP, earlier in
this chapter.

Retrieve the first ten names from the output of a sorted query on the PEOPLE table:

SELECT id, name
FROM People
ORDER BY name ASC
ROWS 1 TO 10;

or its equivalent

SELECT id, name
FROM People
ORDER BY name ASC
ROWS 10;

Return all records from the PEOPLE table except for the first 10 names:

SELECT id, name
FROM People
ORDER BY name ASC
ROWS 11 TO (SELECT COUNT(*) FROM People);

And this query will return the last 10 records (pay attention to the parentheses):

SELECT id, name
FROM People
ORDER BY name ASC
ROWS (SELECT COUNT(*) - 9 FROM People)
TO (SELECT COUNT(*) FROM People);

This one will return rows 81-100 from the PEOPLE table:

SELECT id, name
FROM People
ORDER BY name ASC
ROWS 81 TO 100;

 ROWS can also be used with the UPDATE and DELETE statements.

See also

FIRST, SKIP, OFFSET, FETCH

Chapter 6. Data Manipulation (DML) Statements

278

6.1.11. OFFSET, FETCH

Used for

Retrieving a slice of rows from an ordered set

Available in

DSQL, PSQL

Syntax

SELECT <columns> FROM ...
 [WHERE ...]
 [ORDER BY ...]
 [OFFSET <m> {ROW | ROWS}]
 [FETCH {FIRST | NEXT} [<n>] { ROW | ROWS } ONLY]

<m>, <n> ::=
 <integer-literal>
 | <query-parameter>

Table 77. Arguments for the OFFSET and FETCH Clause

Argument Description

integer-literal Integer literal

query-parameter Query parameter place-holder. ? in DSQL and :paramname in PSQL

The OFFSET and FETCH clauses are an SQL:2008 compliant equivalent for FIRST/SKIP, and an
alternative for ROWS. The OFFSET clause specifies the number of rows to skip. The FETCH clause
specifies the number of rows to fetch.

When <n> is left out of the FETCH clause (eg FETCH FIRST ROW ONLY), one row will be fetched.

The choice between ROW or ROWS, or FIRST or NEXT in the clauses is just for aesthetic purposes (eg
making the query more readable or grammatically correct). Technically there is no difference
between OFFSET 10 ROW or OFFSET 10 ROWS, or FETCH NEXT 10 ROWS ONLY or FETCH FIRST 10 ROWS ONLY.

As with SKIP and FIRST, OFFSET and FETCH clauses can be applied independently, in both top-level and
nested query expressions.

1. Firebird doesn’t support the percentage FETCH defined in the SQL standard.

2. Firebird doesn’t support the FETCH … WITH TIES defined in the SQL standard.

3. The FIRST/SKIP and ROWS clause are non-standard alternatives.

4. The OFFSET and/or FETCH clauses cannot be combined with ROWS or FIRST/SKIP on
the same query expression.

5. Expressions, column references, etc are not allowed within either clause.

6. Contrary to the ROWS clause, OFFSET and FETCH are only available on SELECT
statements.

Chapter 6. Data Manipulation (DML) Statements

279

Examples of OFFSET and FETCH

Return all rows except the first 10, ordered by column COL1

SELECT *
FROM T1
ORDER BY COL1
OFFSET 10 ROWS

Return the first 10 rows, ordered by column COL1

SELECT *
FROM T1
ORDER BY COL1
FETCH FIRST 10 ROWS ONLY

Using OFFSET and FETCH clauses in a derived table and in the outer query

SELECT *
FROM (
 SELECT *
 FROM T1
 ORDER BY COL1 DESC
 OFFSET 1 ROW
 FETCH NEXT 10 ROWS ONLY
) a
ORDER BY a.COL1
FETCH FIRST ROW ONLY

The following examples rewrite the FIRST/SKIP examples and ROWS examples earlier in this chapter.

Retrieve the first ten names from the output of a sorted query on the PEOPLE table:

SELECT id, name
FROM People
ORDER BY name ASC
FETCH NEXT 10 ROWS ONLY;

Return all records from the PEOPLE table except for the first 10 names:

SELECT id, name
FROM People
ORDER BY name ASC
OFFSET 10 ROWS;

And this query will return the last 10 records. Contrary to FIRST/SKIP and ROWS we cannot use
expressions (including sub-queries). To retrieve the last 10 rows, reverse the sort to the first (last)

Chapter 6. Data Manipulation (DML) Statements

280

10 rows, and then sort in the right order.

SELECT id, name
FROM (
 SELECT id, name
 FROM People
 ORDER BY name DESC
 FETCH FIRST 10 ROWS ONLY
) a
ORDER BY name ASC;

This one will return rows 81-100 from the PEOPLE table:

SELECT id, name
FROM People
ORDER BY name ASC
OFFSET 80 ROWS
FETCH NEXT 20 ROWS;

See also

FIRST, SKIP, ROWS

6.1.12. FOR UPDATE [OF]

Syntax

SELECT ... FROM single_table
 [WHERE ...]
 [FOR UPDATE [OF <column_list>]]

FOR UPDATE does not do what its name suggests. It’s only effect currently is to disable the pre-fetch
buffer.

It is likely to change in future: the plan is to validate cursors marked with FOR
UPDATE if they are truly updateable and reject positioned updates and deletes for
cursors evaluated as non-updateable.

The OF sub-clause does not do anything at all.

6.1.13. WITH LOCK

Used for

Limited pessimistic locking

Available in

DSQL, PSQL

Chapter 6. Data Manipulation (DML) Statements

281

Syntax

SELECT ... FROM single_table
 [WHERE ...]
 [FOR UPDATE [OF <column_list>]]
 WITH LOCK

WITH LOCK provides a limited explicit pessimistic locking capability for cautious use in conditions
where the affected row set is:

a. extremely small (ideally singleton), and

b. precisely controlled by the application code.

This is for experts only!

The need for a pessimistic lock in Firebird is very rare indeed and should be well
understood before use of this extension is considered.

It is essential to understand the effects of transaction isolation and other
transaction attributes before attempting to implement explicit locking in your
application.

If the WITH LOCK clause succeeds, it will secure a lock on the selected rows and prevent any other
transaction from obtaining write access to any of those rows, or their dependants, until your
transaction ends.

WITH LOCK can only be used with a top-level, single-table SELECT statement. It is not available:

• in a subquery specification

• for joined sets

• with the DISTINCT operator, a GROUP BY clause or any other aggregating operation

• with a view

• with the output of a selectable stored procedure

• with an external table

• with a UNION query

As the engine considers, in turn, each record falling under an explicit lock statement, it returns
either the record version that is the most currently committed, regardless of database state when
the statement was submitted, or an exception.

Wait behaviour and conflict reporting depend on the transaction parameters specified in the TPB
block:

Table 78. How TPB settings affect explicit locking

Chapter 6. Data Manipulation (DML) Statements

282

TPB mode Behaviour

isc_tpb_consistency Explicit locks are overridden by implicit or explicit table-level locks and
are ignored.

isc_tpb_concurrency +
isc_tpb_nowait

If a record is modified by any transaction that was committed since the
transaction attempting to get explicit lock started, or an active transaction
has performed a modification of this record, an update conflict exception
is raised immediately.

isc_tpb_concurrency +
isc_tpb_wait

If the record is modified by any transaction that has committed since the
transaction attempting to get explicit lock started, an update conflict
exception is raised immediately.

If an active transaction is holding ownership on this record (via explicit
locking or by a normal optimistic write-lock) the transaction attempting
the explicit lock waits for the outcome of the blocking transaction and,
when it finishes, attempts to get the lock on the record again. This means
that, if the blocking transaction committed a modified version of this
record, an update conflict exception will be raised.

isc_tpb_read_committe
d + isc_tpb_nowait

If there is an active transaction holding ownership on this record (via
explicit locking or normal update), an update conflict exception is raised
immediately.

isc_tpb_read_committe
d + isc_tpb_wait

If there is an active transaction holding ownership on this record (via
explicit locking or by a normal optimistic write-lock), the transaction
attempting the explicit lock waits for the outcome of blocking transaction
and when it finishes, attempts to get the lock on the record again.

Update conflict exceptions can never be raised by an explicit lock
statement in this TPB mode.

Usage with a FOR UPDATE Clause

If the FOR UPDATE sub-clause precedes the WITH LOCK sub-clause, buffered fetches are suppressed.
Thus, the lock will be applied to each row, one by one, at the moment it is fetched. It becomes
possible, then, that a lock which appeared to succeed when requested will nevertheless fail
subsequently, when an attempt is made to fetch a row which has become locked by another
transaction in the meantime.

As an alternative, it may be possible in your access components to set the size of
the fetch buffer to 1. This would enable you to process the currently-locked row
before the next is fetched and locked, or to handle errors without rolling back your
transaction.

OF <column_list>

This optional sub-clause does nothing at all.

See also

Chapter 6. Data Manipulation (DML) Statements

283

FOR UPDATE [OF]

How the engine deals with WITH LOCK

When an UPDATE statement tries to access a record that is locked by another transaction, it either
raises an update conflict exception or waits for the locking transaction to finish, depending on TPB
mode. Engine behaviour here is the same as if this record had already been modified by the locking
transaction.

No special gdscodes are returned from conflicts involving pessimistic locks.

The engine guarantees that all records returned by an explicit lock statement are actually locked
and do meet the search conditions specified in WHERE clause, as long as the search conditions do not
depend on any other tables, via joins, subqueries, etc. It also guarantees that rows not meeting the
search conditions will not be locked by the statement. It can not guarantee that there are no rows
which, though meeting the search conditions, are not locked.

This situation can arise if other, parallel transactions commit their changes during
the course of the locking statement’s execution.

The engine locks rows at fetch time. This has important consequences if you lock several rows at
once. Many access methods for Firebird databases default to fetching output in packets of a few
hundred rows (“buffered fetches”). Most data access components cannot bring you the rows
contained in the last-fetched packet, when an error occurred.

Caveats using WITH LOCK

• Rolling back of an implicit or explicit savepoint releases record locks that were taken under that
savepoint, but it doesn’t notify waiting transactions. Applications should not depend on this
behaviour as it may get changed in the future.

• While explicit locks can be used to prevent and/or handle unusual update conflict errors, the
volume of deadlock errors will grow unless you design your locking strategy carefully and
control it rigorously.

• Most applications do not need explicit locks at all. The main purposes of explicit locks are:

1. to prevent expensive handling of update conflict errors in heavily loaded applications, and

2. to maintain integrity of objects mapped to a relational database in a clustered environment.

If your use of explicit locking doesn’t fall in one of these two categories, then it’s the wrong way
to do the task in Firebird.

• Explicit locking is an advanced feature; do not misuse it! While solutions for these kinds of
problems may be very important for web sites handling thousands of concurrent writers, or for
ERP/CRM systems operating in large corporations, most application programs do not need to
work in such conditions.

Examples using explicit locking

i. Simple:

Chapter 6. Data Manipulation (DML) Statements

284

SELECT * FROM DOCUMENT WHERE ID=? WITH LOCK;

ii. Multiple rows, one-by-one processing with DSQL cursor:

SELECT * FROM DOCUMENT WHERE PARENT_ID=?
 FOR UPDATE WITH LOCK;

6.1.14. INTO

Used for

Passing SELECT output into variables

Available in

PSQL

Syntax

In PSQL the INTO clause is placed at the very end of the SELECT statement.

SELECT [...] <column-list>
FROM ...
[...]
[INTO <variable-list>]

<variable-list> ::= [:]psqlvar [, [:]psqlvar ...]

 The colon prefix before local variable names in PSQL is optional in the INTO clause.

In PSQL code (triggers, stored procedures and executable blocks), the results of a SELECT statement
can be loaded row-by-row into local variables. It is often the only way to do anything with the
returned values at all, unless an explicit or implicit cursor name is specified. The number, order
and types of the variables must match the columns in the output row.

A “plain” SELECT statement can only be used in PSQL if it returns at most one row, i.e., if it is a
singleton select. For multi-row selects, PSQL provides the FOR SELECT loop construct, discussed later
in the PSQL chapter. PSQL also supports the DECLARE CURSOR statement, which binds a named cursor
to a SELECT statement. The cursor can then be used to walk the result set.

Examples

1. Selecting some aggregated values and passing them into previously declared variables min_amt,
avg_amt and max_amt:

select min(amount), avg(cast(amount as float)), max(amount)
 from orders
 where artno = 372218

Chapter 6. Data Manipulation (DML) Statements

285

 into min_amt, avg_amt, max_amt;

The CAST serves to make the average a real number; otherwise, since amount is
presumably an integer field, SQL rules would truncate it to the nearest lower
integer.

2. A PSQL trigger that retrieves two values as a BLOB field (using the LIST() function) and assigns it
INTO a third field:

select list(name, ', ')
 from persons p
 where p.id in (new.father, new.mother)
 into new.parentnames;

6.1.15. Common Table Expressions (“WITH … AS … SELECT”)

Available in

DSQL, PSQL

Syntax

<cte-construct> ::=
 <cte-defs>
 <main-query>

<cte-defs> ::= WITH [RECURSIVE] <cte> [, <cte> ...]

<cte> ::= name [(<column-list>)] AS (<cte-stmt>)

<column-list> ::= column-alias [, column-alias ...]

Table 79. Arguments for Common Table Expressions

Argument Description

cte-stmt Any SELECT statement, including UNION

main-query The main SELECT statement, which can refer to the CTEs defined in the
preamble

name Alias for a table expression

column-alias Alias for a column in a table expression

A common table expression or CTE can be described as a virtual table or view, defined in a
preamble to a main query, and going out of scope after the main query’s execution. The main query
can reference any CTEs defined in the preamble as if they were regular tables or views. CTEs can be
recursive, i.e. self-referencing, but they cannot be nested.

Chapter 6. Data Manipulation (DML) Statements

286

CTE Notes

• A CTE definition can contain any legal SELECT statement, as long as it doesn’t have a “WITH…”
preamble of its own (no nesting).

• CTEs defined for the same main query can reference each other, but care should be taken to
avoid loops.

• CTEs can be referenced from anywhere in the main query.

• Each CTE can be referenced multiple times in the main query, using different aliases if
necessary.

• When enclosed in parentheses, CTE constructs can be used as subqueries in SELECT statements,
but also in UPDATEs, MERGEs etc.

• In PSQL, CTEs are also supported in FOR loop headers:

for
 with my_rivers as (select * from rivers where owner = 'me')
 select name, length from my_rivers into :rname, :rlen
do
begin
 ..
end

In Firebird 3.0.2 and earlier, if a CTE is declared, it must be used later: otherwise,
you will get an error like this: “CTE "AAA" is not used in query”.

This restriction was removed in Firebird 3.0.3.

Example

with dept_year_budget as (
 select fiscal_year,
 dept_no,
 sum(projected_budget) as budget
 from proj_dept_budget
 group by fiscal_year, dept_no
)
select d.dept_no,
 d.department,
 dyb_2008.budget as budget_08,
 dyb_2009.budget as budget_09
from department d
 left join dept_year_budget dyb_2008
 on d.dept_no = dyb_2008.dept_no
 and dyb_2008.fiscal_year = 2008
 left join dept_year_budget dyb_2009
 on d.dept_no = dyb_2009.dept_no
 and dyb_2009.fiscal_year = 2009
where exists (

Chapter 6. Data Manipulation (DML) Statements

287

 select * from proj_dept_budget b
 where d.dept_no = b.dept_no
);

Recursive CTEs

A recursive (self-referencing) CTE is a UNION which must have at least one non-recursive member,
called the anchor. The non-recursive member(s) must be placed before the recursive member(s).
Recursive members are linked to each other and to their non-recursive neighbour by UNION ALL
operators. The unions between non-recursive members may be of any type.

Recursive CTEs require the RECURSIVE keyword to be present right after WITH. Each recursive union
member may reference itself only once, and it must do so in a FROM clause.

A great benefit of recursive CTEs is that they use far less memory and CPU cycles than an
equivalent recursive stored procedure.

Execution Pattern

The execution pattern of a recursive CTE is as follows:

• The engine begins execution from a non-recursive member.

• For each row evaluated, it starts executing each recursive member one by one, using the
current values from the outer row as parameters.

• If the currently executing instance of a recursive member produces no rows, execution loops
back one level and gets the next row from the outer result set.

Example of recursive CTEs

WITH RECURSIVE DEPT_YEAR_BUDGET AS (
 SELECT
 FISCAL_YEAR,
 DEPT_NO,
 SUM(PROJECTED_BUDGET) BUDGET
 FROM PROJ_DEPT_BUDGET
 GROUP BY FISCAL_YEAR, DEPT_NO
),
DEPT_TREE AS (
 SELECT
 DEPT_NO,
 HEAD_DEPT,
 DEPARTMENT,
 CAST('' AS VARCHAR(255)) AS INDENT
 FROM DEPARTMENT
 WHERE HEAD_DEPT IS NULL
 UNION ALL
 SELECT
 D.DEPT_NO,
 D.HEAD_DEPT,

Chapter 6. Data Manipulation (DML) Statements

288

 D.DEPARTMENT,
 H.INDENT || ' '
 FROM DEPARTMENT D
 JOIN DEPT_TREE H ON H.HEAD_DEPT = D.DEPT_NO
)
SELECT
 D.DEPT_NO,
 D.INDENT || D.DEPARTMENT DEPARTMENT,
 DYB_2008.BUDGET AS BUDGET_08,
 DYB_2009.BUDGET AS BUDGET_09
FROM DEPT_TREE D
 LEFT JOIN DEPT_YEAR_BUDGET DYB_2008 ON
 (D.DEPT_NO = DYB_2008.DEPT_NO) AND
 (DYB_2008.FISCAL_YEAR = 2008)
 LEFT JOIN DEPT_YEAR_BUDGET DYB_2009 ON
 (D.DEPT_NO = DYB_2009.DEPT_NO) AND
 (DYB_2009.FISCAL_YEAR = 2009);

The next example returns the pedigree of a horse. The main difference is that recursion occurs
simultaneously in two branches of the pedigree.

WITH RECURSIVE PEDIGREE (
 CODE_HORSE,
 CODE_FATHER,
 CODE_MOTHER,
 NAME,
 MARK,
 DEPTH)
AS (SELECT
 HORSE.CODE_HORSE,
 HORSE.CODE_FATHER,
 HORSE.CODE_MOTHER,
 HORSE.NAME,
 CAST('' AS VARCHAR(80)),
 0
 FROM
 HORSE
 WHERE
 HORSE.CODE_HORSE = :CODE_HORSE
 UNION ALL
 SELECT
 HORSE.CODE_HORSE,
 HORSE.CODE_FATHER,
 HORSE.CODE_MOTHER,
 HORSE.NAME,
 'F' || PEDIGREE.MARK,
 PEDIGREE.DEPTH + 1
 FROM
 HORSE
 JOIN PEDIGREE

Chapter 6. Data Manipulation (DML) Statements

289

 ON HORSE.CODE_HORSE = PEDIGREE.CODE_FATHER
 WHERE
 PEDIGREE.DEPTH < :MAX_DEPTH
 UNION ALL
 SELECT
 HORSE.CODE_HORSE,
 HORSE.CODE_FATHER,
 HORSE.CODE_MOTHER,
 HORSE.NAME,
 'M' || PEDIGREE.MARK,
 PEDIGREE.DEPTH + 1
 FROM
 HORSE
 JOIN PEDIGREE
 ON HORSE.CODE_HORSE = PEDIGREE.CODE_MOTHER
 WHERE
 PEDIGREE.DEPTH < :MAX_DEPTH
)
SELECT
 CODE_HORSE,
 NAME,
 MARK,
 DEPTH
FROM
 PEDIGREE

Notes on recursive CTEs

• Aggregates (DISTINCT, GROUP BY, HAVING) and aggregate functions (SUM, COUNT, MAX etc) are not
allowed in recursive union members.

• A recursive reference cannot participate in an outer join.

• The maximum recursion depth is 1024.

6.2. INSERT
Used for

Inserting rows of data into a table

Available in

DSQL, ESQL, PSQL

Syntax

INSERT INTO target
 {DEFAULT VALUES | [(<column_list>)] <value_source>}
 [RETURNING <returning_list> [INTO <variables>]]

<column_list> ::= colname [, colname ...]

Chapter 6. Data Manipulation (DML) Statements

290

<value_source> ::= VALUES (<value_list>) | <select_stmt>

<value_list> ::= <value> [, <value> ...]

<returning_list> ::=
 <ret_value> [[AS] ret_alias] [, <ret_value> [[AS] ret_alias] ...]

<ret_value> ::= { colname | target.colname | <value> }

<variables> ::= [:]varname [, [:]varname ...]

Table 80. Arguments for the INSERT Statement Parameters

Argument Description

target The name of the table or view to which a new row, or batch of rows,
should be added

colname Column in the table or view

value An expression whose value is used for inserting into the table or for
returning

ret_value The expression to be returned in the RETURNING clause

varname Name of a PSQL local variable

The INSERT statement is used to add rows to a table or to one or more tables underlying a view:

• If the column values are supplied in a VALUES clause, exactly one row is inserted

• The values may be provided instead by a SELECT expression, in which case zero to many rows
may be inserted

• With the DEFAULT VALUES clause, no values are provided at all and exactly one row is inserted.

Restrictions

• Columns returned to the NEW.column_name context variables in triggers should
not have a colon (“:”) prefixed to their names

• No column may appear more than once in the column list.

ALERT : BEFORE INSERT Triggers

Regardless of the method used for inserting rows, be mindful of any columns in
the target table or view that are populated by BEFORE INSERT triggers, such as
primary keys and case-insensitive search columns. Those columns should be
excluded from both the column_list and the VALUES list if, as they should, the
triggers test the NEW.column_name for NULL.

6.2.1. INSERT … VALUES

The VALUES list must provide a value for every column in the column list, in the same order and of
the correct type. The column list need not specify every column in the target but, if the column list

Chapter 6. Data Manipulation (DML) Statements

291

is absent, the engine requires a value for every column in the table or view (computed columns
excluded).

Introducer syntax provides a way to identify the character set of a value that is a
string constant (literal). Introducer syntax works only with literal strings: it cannot
be applied to string variables, parameters, column references or values that are
expressions.

Examples

INSERT INTO cars (make, model, year)
VALUES ('Ford', 'T', 1908);

INSERT INTO cars
VALUES ('Ford', 'T', 1908, 'USA', 850);

-- notice the '_' prefix (introducer syntax)
INSERT INTO People
VALUES (_ISO8859_1 'Hans-Jörg Schäfer');

6.2.2. INSERT … SELECT

For this method of inserting, the output columns of the SELECT statement must provide a value for
every target column in the column list, in the same order and of the correct type.

Literal values, context variables or expressions of compatible type can be substituted for any
column in the source row. In this case, a source column list and a corresponding VALUES list are
required.

If the column list is absent — as it is when SELECT * is used for the source expression — the
column_list must contain the names of every column in the target table or view (computed columns
excluded).

Examples

INSERT INTO cars (make, model, year)
 SELECT make, model, year
 FROM new_cars;

INSERT INTO cars
 SELECT * FROM new_cars;

INSERT INTO Members (number, name)
 SELECT number, name FROM NewMembers
 WHERE Accepted = 1
UNION ALL
 SELECT number, name FROM SuspendedMembers
 WHERE Vindicated = 1

INSERT INTO numbers(num)

Chapter 6. Data Manipulation (DML) Statements

292

 WITH RECURSIVE r(n) as (
 SELECT 1 FROM rdb$database
 UNION ALL
 SELECT n+1 FROM r WHERE n < 100
)
SELECT n FROM r

Of course, the column names in the source table need not be the same as those in the target table.
Any type of SELECT statement is permitted, as long as its output columns exactly match the insert
columns in number, order and type. Types need not be exactly the same, but they must be
assignment-compatible.

When using and INSERT … SELECT with a RETURNING clause, the SELECT has to
produce at most one row, as RETURNING currently only works for statements
affecting at most one row.

This behaviour may change in future Firebird versions.

6.2.3. INSERT … DEFAULT VALUES

The DEFAULT VALUES clause allows insertion of a record without providing any values at all, either
directly or from a SELECT statement. This is only possible if every NOT NULL or CHECKed column in the
table either has a valid default declared or gets such a value from a BEFORE INSERT trigger.
Furthermore, triggers providing required field values must not depend on the presence of input
values.

Example

INSERT INTO journal
 DEFAULT VALUES
RETURNING entry_id;

6.2.4. The RETURNING clause

An INSERT statement adding at most one row may optionally include a RETURNING clause in order to
return values from the inserted row. The clause, if present, need not contain all of the insert
columns and may also contain other columns or expressions. The returned values reflect any
changes that may have been made in BEFORE INSERT triggers.

The optional INTO sub-clause is only valid in PSQL.

Multiple INSERTs

In DSQL, a statement with RETURNING always returns only one row. If the RETURNING
clause is specified and more than one row is inserted by the INSERT statement, the
statement fails and an error message is returned. This behaviour may change in
future Firebird versions.

Chapter 6. Data Manipulation (DML) Statements

293

Examples

INSERT INTO Scholars (
 firstname,
 lastname,
 address,
 phone,
 email)
VALUES (
 'Henry',
 'Higgins',
 '27A Wimpole Street',
 '3231212',
 NULL)
RETURNING lastname, fullname, id;

INSERT INTO Dumbbells (firstname, lastname, iq)
 SELECT fname, lname, iq
FROM Friends
 ORDER BY iq ROWS 1
 RETURNING id, firstname, iq
INTO :id, :fname, :iq;

Notes

• RETURNING is supported for VALUES and DEFAULT VALUES inserts, and singleton SELECT inserts.

• In DSQL, a statement with a RETURNING clause always returns exactly one row. If no record was
actually inserted, the fields in this row are all NULL. This behaviour may change in a later
version of Firebird. In PSQL, if no row was inserted, nothing is returned, and the target
variables keep their existing values.

6.2.5. Inserting into BLOB columns

Inserting into BLOB columns is only possible under the following circumstances:

1. The client application has made special provisions for such inserts, using the Firebird API. In
this case, the modus operandi is application-specific and outside the scope of this manual.

2. The value inserted is a string literal of no more than 65,533 bytes (64KB - 3).

A limit, in characters, is calculated at run-time for strings that are in multi-byte
character sets, to avoid overrunning the bytes limit. For example, for a UTF8
string (max. 4 bytes/character), the run-time limit is likely to be about
(floor(65533/4)) = 16383 characters.

3. You are using the “INSERT … SELECT” form and one or more columns in the result set are BLOBs.

Chapter 6. Data Manipulation (DML) Statements

294

6.3. UPDATE
Used for

Modifying rows in tables and views

Available in

DSQL, ESQL, PSQL

Syntax

UPDATE target [[AS] alias]
 SET col = <value> [, col = <value> ...]
 [WHERE {<search-conditions> | CURRENT OF cursorname}]
 [PLAN <plan_items>]
 [ORDER BY <sort_items>]
 [ROWS m [TO n]]
 [RETURNING <returning_list> [INTO <variables>]]

<returning_list> ::=
 <ret_value> [[AS] ret_alias] [, <ret_value> [[AS] ret_alias] ...]

<ret_value> ::=
 colname
 | table_or_alias.colname
 | NEW.colname
 | OLD.colname
 | <value>

<variables> ::= [:]varname [, [:]varname ...]

Table 81. Arguments for the UPDATE Statement Parameters

Argument Description

target The name of the table or view where the records are updated

alias Alias for the table or view

col Name or alias of a column in the table or view

value Expression for the new value for a column that is to be updated in the
table or view by the statement, or a value to be returned

search-conditions A search condition limiting the set of the rows to be updated

cursorname The name of the cursor through which the row(s) to be updated are
positioned

plan_items Clauses in the query plan

sort_items Columns listed in an ORDER BY clause

m, n Integer expressions for limiting the number of rows to be updated

ret_value A value to be returned in the RETURNING clause

Chapter 6. Data Manipulation (DML) Statements

295

Argument Description

varname Name of a PSQL local variable

The UPDATE statement changes values in a table or in one or more of the tables that underlie a view.
The columns affected are specified in the SET clause. The rows affected may be limited by the WHERE
and ROWS clauses. If neither WHERE nor ROWS is present, all the records in the table will be updated.

6.3.1. Using an alias

If you assign an alias to a table or a view, the alias must be used when specifying columns and also
in any column references included in other clauses.

Example

Correct usage:

update Fruit set soort = 'pisang' where ...

update Fruit set Fruit.soort = 'pisang' where ...

update Fruit F set soort = 'pisang' where ...

update Fruit F set F.soort = 'pisang' where ...

Not possible:

update Fruit F set Fruit.soort = 'pisang' where ...

6.3.2. The SET Clause

In the SET clause, the assignment phrases, containing the columns with the values to be set, are
separated by commas. In an assignment phrase, column names are on the left and the values or
expressions containing the assignment values are on the right. A column may be included only
once in the SET clause.

A column name can be used in expressions on the right. The old value of the column will always be
used in these right-side values, even if the column was already assigned a new value earlier in the
SET clause.

Here is an example

Data in the TSET table:

A B

1 0
2 0

Chapter 6. Data Manipulation (DML) Statements

296

The statement:

UPDATE tset SET a = 5, b = a;

will change the values to:

A B

5 1
5 2

Notice that the old values (1 and 2) are used to update the b column even after the column was
assigned a new value (5).

Before Firebird 2.5, columns got their new values immediately upon assignment. It
was non-standard behaviour that was fixed in Firebird 2.5.

6.3.3. The WHERE Clause

The WHERE clause sets the conditions that limit the set of records for a searched update.

In PSQL, if a named cursor is being used for updating a set, using the WHERE CURRENT OF clause, the
action is limited to the row where the cursor is currently positioned. This is a positioned update.

The WHERE CURRENT OF clause is available only in PSQL, since there is no statement
for creating and manipulating an explicit cursor in DSQL. Searched updates are
also available in PSQL, of course.

Examples

UPDATE People
 SET firstname = 'Boris'
 WHERE lastname = 'Johnson';

UPDATE employee e
 SET salary = salary * 1.05
 WHERE EXISTS(
 SELECT *
 FROM employee_project ep
 WHERE e.emp_no = ep.emp_no);

UPDATE addresses
 SET city = 'Saint Petersburg', citycode = 'PET'
 WHERE city = 'Leningrad'

UPDATE employees
 SET salary = 2.5 * salary

Chapter 6. Data Manipulation (DML) Statements

297

 WHERE title = 'CEO'

For string literals with which the parser needs help to interpret the character set of the data, the
introducer syntax may be used. The string literal is preceded by the character set name, prefixed
with an underscore character:

-- notice the '_' prefix

UPDATE People
SET name = _ISO8859_1 'Hans-Jörg Schäfer'
WHERE id = 53662;

6.3.4. The ORDER BY and ROWS Clauses

The ORDER BY and ROWS clauses make sense only when used together. However, they can be used
separately.

If ROWS has one argument, m, the rows to be updated will be limited to the first m rows.

Points to note

• If m > the number of rows being processed, the entire set of rows is updated

• If m = 0, no rows are updated

• If m < 0, an error occurs and the update fails

If two arguments are used, m and n, ROWS limits the rows being updated to rows from m to n
inclusively. Both arguments are integers and start from 1.

Points to note

• If m > the number of rows being processed, no rows are updated

• If n > the number of rows, rows from m to the end of the set are updated

• If m < 1 or n < 1, an error occurs and the update fails

• If n = m - 1, no rows are updated

• If n < m -1, an error occurs and the update fails

ROWS Example

UPDATE employees
SET salary = salary + 50
ORDER BY salary ASC
ROWS 20;

6.3.5. The RETURNING Clause

An UPDATE statement involving at most one row may include RETURNING in order to return some
values from the row being updated. RETURNING may include data from any column of the row, not

Chapter 6. Data Manipulation (DML) Statements

298

necessarily the columns that are currently being updated. It can include literals or expressions not
associated with columns, if there is a need for that.

When the RETURNING set contains data from the current row, the returned values report changes
made in the BEFORE UPDATE triggers, but not those made in AFTER UPDATE triggers.

The context variables OLD.fieldname and NEW.fieldname can be used as column names. If OLD. or NEW.
is not specified, the column values returned are the NEW. ones.

In DSQL, a statement with RETURNING always returns a single row. Attempts to execute an UPDATE …
RETURNING … that affects multiple rows will result in the error “multiple rows in singleton select”. If
the statement updates no records, the returned values contain NULL. This behaviour may change in
future Firebird versions.

The INTO Sub-clause

In PSQL, the INTO clause can be used to pass the returning values to local variables. It is not
available in DSQL. If no records are updated, nothing is returned and variables specified in
RETURNING will keep their previous values.

RETURNING Example (DSQL)

UPDATE Scholars
SET firstname = 'Hugh', lastname = 'Pickering'
WHERE firstname = 'Henry' and lastname = 'Higgins'
RETURNING id, old.lastname, new.lastname;

6.3.6. Updating BLOB columns

Updating a BLOB column always replaces the entire contents. Even the BLOB ID, the “handle” that is
stored directly in the column, is changed. BLOBs can be updated if:

1. The client application has made special provisions for this operation, using the Firebird API. In
this case, the modus operandi is application-specific and outside the scope of this manual.

2. The new value is a string literal of no more than 65,533 bytes (64KB - 3).

A limit, in characters, is calculated at run-time for strings that are in multi-byte
character sets, to avoid overrunning the bytes limit. For example, for a UTF8
string (max. 4 bytes/character), the run-time limit is likely to be about
(floor(65533/4)) = 16383 characters.

3. The source is itself a BLOB column or, more generally, an expression that returns a BLOB.

4. You use the INSERT CURSOR statement (ESQL only).

6.4. UPDATE OR INSERT
Used for

Chapter 6. Data Manipulation (DML) Statements

299

Updating an existing record in a table or, if it does not exist, inserting it

Available in

DSQL, PSQL

Syntax

UPDATE OR INSERT INTO
 target [(<column_list>)]
 VALUES (<value_list>)
 [MATCHING (<column_list>)]
 [RETURNING <values> [INTO <variables>]]

<column_list> ::= colname [, colname ...]

<value_list> ::= <value> [, <value> ...]

<returning_list> ::= <ret_value> [, <ret_value> ...]

<ret_value> ::=
 colname
 | NEW.colname
 | OLD.colname
 | <value>

<variables> ::= [:]varname [, [:]varname ...]

Table 82. Arguments for the UPDATE OR INSERT Statement Parameters

Argument Description

target The name of the table or view where the record(s) is to be updated or a
new record inserted

colname Name of a column in the table or view

value An expression whose value is to be used for inserting or updating the
table, or returning a value

ret_value An expression returned in the RETURNING clause

varname Variable name — PSQL only

UPDATE OR INSERT inserts a new record or updates one or more existing records. The action taken
depends on the values provided for the columns in the MATCHING clause (or, if the latter is absent, in
the primary key). If there are records found matching those values, they are updated. If not, a new
record is inserted. A match only counts if all the values in the MATCHING or primary key columns are
equal. Matching is done with the IS NOT DISTINCT operator, so one NULL matches another.

Restrictions

• If the table has no primary key, the MATCHING clause is mandatory.

• In the MATCHING list as well as in the update/insert column list, each column

Chapter 6. Data Manipulation (DML) Statements

300

name may occur only once.

• The “INTO <variables>” subclause is only available in PSQL.

• When values are returned into the context variable NEW, this name must not be
preceded by a colon (“:”).

6.4.1. The RETURNING clause

The optional RETURNING clause, if present, need not contain all the columns mentioned in the
statement and may also contain other columns or expressions. The returned values reflect any
changes that may have been made in BEFORE triggers, but not those in AFTER triggers. OLD.fieldname
and NEW.fieldname may both be used in the list of columns to return; for field names not preceded
by either of these, the new value is returned.

In DSQL, a statement with a RETURNING clause always returns exactly one row. If a RETURNING clause is
present and more than one matching record is found, an error “multiple rows in singleton select” is
raised. This behaviour may change in a later version of Firebird.

The optional INTO sub-clause is only valid in PSQL.

6.4.2. Example of UPDATE OR INSERT

Modifying data in a table, using UPDATE OR INSERT in a PSQL module. The return value is passed to a
local variable, whose colon prefix is optional.

UPDATE OR INSERT INTO Cows (Name, Number, Location)
 VALUES ('Suzy Creamcheese', 3278823, 'Green Pastures')
 MATCHING (Number)
 RETURNING rec_id into :id;

6.5. DELETE
Used for

Deleting rows from a table or view

Available in

DSQL, ESQL, PSQL

Syntax

DELETE
 FROM target [[AS] alias]
 [WHERE {<search-conditions> | CURRENT OF cursorname}]
 [PLAN <plan_items>]
 [ORDER BY <sort_items>]
 [ROWS m [TO n]]
 [RETURNING <returning_list> [INTO <variables>]]

Chapter 6. Data Manipulation (DML) Statements

301

<returning_list> ::=
 <ret_value> [[AS] ret_alias] [, <ret_value> [[AS] ret_alias] ...]

<ret_value> ::=
 { colname | target_or_alias.colname | <value> }

<variables> ::=
 [:]varname [, [:]varname ...]

Table 83. Arguments for the DELETE Statement Parameters

Argument Description

target The name of the table or view from which the records are to be deleted

alias Alias for the target table or view

search-conditions Search condition limiting the set of rows being targeted for deletion

cursorname The name of the cursor in which current record is positioned for deletion

plan_items Query plan clause

sort_items ORDER BY clause

m, n Integer expressions for limiting the number of rows being deleted

ret_value An expression to be returned in the RETURNING clause

value An expression whose value is used for returning

varname Name of a PSQL variable

DELETE removes rows from a database table or from one or more of the tables that underlie a view.
WHERE and ROWS clauses can limit the number of rows deleted. If neither WHERE nor ROWS is present,
DELETE removes all the rows in the relation.

6.5.1. Aliases

If an alias is specified for the target table or view, it must be used to qualify all field name
references in the DELETE statement.

Examples

Supported usage:

delete from Cities where name starting 'Alex';

delete from Cities where Cities.name starting 'Alex';

delete from Cities C where name starting 'Alex';

delete from Cities C where C.name starting 'Alex';

Not possible:

Chapter 6. Data Manipulation (DML) Statements

302

delete from Cities C where Cities.name starting 'Alex';

6.5.2. WHERE

The WHERE clause sets the conditions that limit the set of records for a searched delete.

In PSQL, if a named cursor is being used for deleting a set, using the WHERE CURRENT OF clause, the
action is limited to the row where the cursor is currently positioned. This is a positioned delete.

The WHERE CURRENT OF clause is available only in PSQL and ESQL, since there is no
statement for creating and manipulating an explicit cursor in DSQL. Searched
deletes are also available in PSQL, of course.

Examples

DELETE FROM People
 WHERE firstname <> 'Boris' AND lastname <> 'Johnson';

DELETE FROM employee e
 WHERE NOT EXISTS(
 SELECT *
 FROM employee_project ep
 WHERE e.emp_no = ep.emp_no);

DELETE FROM Cities
 WHERE CURRENT OF Cur_Cities; -- ESQL and PSQL only

6.5.3. PLAN

A PLAN clause allows the user to optimize the operation manually.

Example

DELETE FROM Submissions
 WHERE date_entered < '1-Jan-2002'
 PLAN (Submissions INDEX ix_subm_date);

6.5.4. ORDER BY and ROWS

The ORDER BY clause orders the set before the actual deletion takes place. It only makes sense in
combination with ROWS, but is also valid without it.

The ROWS clause limits the number of rows being deleted. Integer literals or any integer expressions
can be used for the arguments m and n.

If ROWS has one argument, m, the rows to be deleted will be limited to the first m rows.

Chapter 6. Data Manipulation (DML) Statements

303

Points to note

• If m > the number of rows being processed, the entire set of rows is deleted

• If m = 0, no rows are deleted

• If m < 0, an error occurs and the deletion fails

If two arguments are used, m and n, ROWS limits the rows being deleted to rows from m to n
inclusively. Both arguments are integers and start from 1.

Points to note

• If m > the number of rows being processed, no rows are deleted

• If m > 0 and <= the number of rows in the set and n is outside these values, rows from m to the
end of the set are deleted

• If m < 1 or n < 1, an error occurs and the deletion fails

• If n = m - 1, no rows are deleted

• If n < m -1, an error occurs and the deletion fails

Examples

Deleting the oldest purchase:

DELETE FROM Purchases
 ORDER BY date ROWS 1;

Deleting the highest custno(s):

DELETE FROM Sales
 ORDER BY custno DESC ROWS 1 to 10;

Deleting all sales, ORDER BY clause pointless:

DELETE FROM Sales
 ORDER BY custno DESC;

Deleting one record starting from the end, i.e. from Z…:

DELETE FROM popgroups
 ORDER BY name DESC ROWS 1;

Deleting the five oldest groups:

DELETE FROM popgroups
 ORDER BY formed ROWS 5;

Chapter 6. Data Manipulation (DML) Statements

304

No sorting (ORDER BY) is specified so 8 found records, starting from the fifth one, will be deleted:

DELETE FROM popgroups
 ROWS 5 TO 12;

6.5.5. RETURNING

A DELETE statement removing at most one row may optionally include a RETURNING clause in order to
return values from the deleted row. The clause, if present, need not contain all the relation’s
columns and may also contain other columns or expressions.

• In DSQL, a statement with RETURNING always returns a singleton, never a multi-
row set. If a RETURNING clause is present and more than one matching record is
found, an error “multiple rows in singleton select” is raised. If no records are
deleted, the returned columns contain NULL. This behaviour may change in
future Firebird versions

• The INTO clause is available only in PSQL

◦ If the row is not deleted, nothing is returned and the target variables keep
their values

Examples

DELETE FROM Scholars
 WHERE firstname = 'Henry' and lastname = 'Higgins'
 RETURNING lastname, fullname, id;

DELETE FROM Dumbbells
 ORDER BY iq DESC
 ROWS 1
 RETURNING lastname, iq into :lname, :iq;

6.6. MERGE
Used for

Merging data from a source set into a target relation

Available in

DSQL, PSQL

Syntax

MERGE INTO target [[AS] target_alias]
 USING <source> [[AS] source_alias]
 ON <join_condition>
 <merge_when> [<merge_when> ...]

Chapter 6. Data Manipulation (DML) Statements

305

 [RETURNING <returning_list> [INTO <variables>]]

<merge_when> ::=
 <merge_when_matched>
 | <merge_when_not_matched>

<merge_when_matched> ::=
 WHEN MATCHED [AND <condition>] THEN
 { UPDATE SET <assignment-list>
 | DELETE }

<merge_when_not_matched> ::=
 WHEN NOT MATCHED [AND <condition>] THEN
 INSERT [(<column_list>)] VALUES (<value_list>)

<source> ::= tablename | (<select_stmt>)

<assignment_list ::=
 colname = <value> [, <colname> = <value> ...]]

<column_list> ::= colname [, colname ...]

<value_list> ::= <value> [, <value> ...]

<returning_list> ::=
 <ret_value> [[AS] ret_alias] [, <ret_value> [[AS] ret_alias] ...]

<ret_value> ::=
 colname
 | table_or_alias.colname
 | NEW.colname
 | OLD.colname
 | <value>

<variables> ::=
 [:]varname [, [:]varname ...]

Table 84. Arguments for the MERGE Statement Parameters

Argument Description

target Name of target relation (table or updatable view)

source Data source. It can be a table, a view, a stored procedure or a derived
table

target_alias Alias for the target relation (table or updatable view)

source_alias Alias for the source relation or set

join_conditions The (ON) condition(s) for matching the source records with those in the
target

condition Additional test condition in WHEN MATCHED or WHEN NOT MATCHED clause

Chapter 6. Data Manipulation (DML) Statements

306

Argument Description

tablename Table or view name

select_stmt Select statement of the derived table

colname Name of a column in the target relation

value The value assigned to a column in the target table. This expression may
be a literal value, a PSQL variable, a column from the source, or a
compatible context variable

ret_value The expression to be returned in the RETURNING clause Can be a column
reference to source or target, or a column reference of the NEW or OLD
context of the target, or a value.

ret_alias Alias for the value expression in the RETURNING clause

varname Name of a PSQL local variable

The MERGE statement merges records from the source into a target table or updatable view. The
source may be a table, view or “anything you can SELECT from” in general. Each source record will
be used to update one or more target records, insert a new record in the target table, delete a
record from the target table or do nothing.

The action taken depends on the supplied join condition, the WHEN clause(s), and the - optional -
condition in the WHEN clause. The join condition and condition in the WHEN will typically contain a
comparison of fields in the source and target relations.

Multiple WHEN MATCHED and WHEN NOT MATCHED clauses are allowed. For each row in the source, the
WHEN clauses are checked in the order they are specified in the statement. If the condition in the WHEN
clause does not evaluate to true, the clause is skipped, and the next clause will be checked. This will
be done until the condition for a WHEN clause evaluates to true, or a WHEN clauses without condition
matches, or there are no more WHEN clauses. If a matching clause is found, the action associated with
the clause is executed. For each row in the source, at most one action is executed.

At least one WHEN clause must be present.

WHEN NOT MATCHED is evaluated from the source viewpoint, that is, the table or set
specified in USING. It has to work this way because if the source record does not
match a target record, INSERT is executed. Of course, if there is a target record
which does not match a source record, nothing is done.

Currently, the ROW_COUNT variable returns the value 1, even if more than one record
is modified or inserted. For details and progress, refer to Tracker ticket CORE-4400.

ALERT : Another irregularity!

If the WHEN MATCHED clause is present and several records match a single record in
the target table, an UPDATE will be executed on that one target record for each one
of the matching source records, with each successive update overwriting the
previous one. This behaviour does not comply with the SQL:2003 standard, which
requires that this situation throw an exception (an error).

Chapter 6. Data Manipulation (DML) Statements

307

http://tracker.firebirdsql.org/browse/CORE-4400

This has been fixed in Firebird 4, and will raise an error instead. See also CORE-
2274

6.6.1. The RETURNING Clause

A MERGE statement that affects at most one row can contain a RETURNING clause to return values
added, modified or removed. If a RETURNING clause is present and more than one matching record is
found, an error “multiple rows in singleton select” is raised. The RETURNING clause can contain any
columns from the target table (or updateable view), as well as other columns (eg from the source)
and expressions.

The optional INTO sub-clause is only valid in PSQL.

The restriction that RETURNING can only be used with a statement that affects at
most one row might be removed in a future version.

Column names can be qualified by the OLD or NEW prefix to define exactly what value to return:
before or after modification. The returned values include the changes made by BEFORE triggers.

For the UPDATE or INSERT action, unqualified column names or those qualified by the target table
name or alias will behave as if qualified by NEW, while for the DELETE action as if qualified by OLD.

The following example modifies the previous example to affect one line, and adds a RETURNING
clause to return the old and new quantity of goods, and the difference between those values.

Using MERGE with a RETURNING clause

MERGE INTO PRODUCT_INVENTORY AS TARGET
USING (
 SELECT
 SL.ID_PRODUCT,
 SUM(SL.QUANTITY)
 FROM SALES_ORDER_LINE SL
 JOIN SALES_ORDER S ON S.ID = SL.ID_SALES_ORDER
 WHERE S.BYDATE = CURRENT_DATE
 AND SL.ID_PRODUCT =: ID_PRODUCT
 GROUP BY 1
) AS SRC (ID_PRODUCT, QUANTITY)
ON TARGET.ID_PRODUCT = SRC.ID_PRODUCT
WHEN MATCHED AND TARGET.QUANTITY - SRC.QUANTITY <= 0 THEN
 DELETE
WHEN MATCHED THEN
 UPDATE SET
 TARGET.QUANTITY = TARGET.QUANTITY - SRC.QUANTITY,
 TARGET.BYDATE = CURRENT_DATE
RETURNING OLD.QUANTITY, NEW.QUANTITY, SRC.QUANTITY
INTO : OLD_QUANTITY, :NEW_QUANTITY, :DIFF_QUANTITY

Chapter 6. Data Manipulation (DML) Statements

308

http://tracker.firebirdsql.org/browse/CORE-2274
http://tracker.firebirdsql.org/browse/CORE-2274

6.6.2. Examples of MERGE

1. Update books when present, or add new record if absent

MERGE INTO books b
 USING purchases p
 ON p.title = b.title and p.type = 'bk'
 WHEN MATCHED THEN
 UPDATE SET b.desc = b.desc || '; ' || p.desc
 WHEN NOT MATCHED THEN
 INSERT (title, desc, bought) values (p.title, p.desc, p.bought);

2. Using a derived table

MERGE INTO customers c
 USING (SELECT * from customers_delta WHERE id > 10) cd
 ON (c.id = cd.id)
 WHEN MATCHED THEN
 UPDATE SET name = cd.name
 WHEN NOT MATCHED THEN
 INSERT (id, name) values (cd.id, cd.name);

3. Together with a recursive CTE

MERGE INTO numbers
 USING (
 WITH RECURSIVE r(n) AS (
 SELECT 1 FROM rdb$database
 UNION ALL
 SELECT n+1 FROM r WHERE n < 200
)
 SELECT n FROM r
) t
 ON numbers.num = t.n
 WHEN NOT MATCHED THEN
 INSERT(num) VALUES(t.n);

4. Using DELETE clause

MERGE INTO SALARY_HISTORY
USING (
 SELECT EMP_NO
 FROM EMPLOYEE
 WHERE DEPT_NO = 120) EMP
ON SALARY_HISTORY.EMP_NO = EMP.EMP_NO
WHEN MATCHED THEN DELETE

Chapter 6. Data Manipulation (DML) Statements

309

5. The following example updates the PRODUCT_INVENTORY table daily based on orders processed in
the SALES_ORDER_LINE table. If the stock level of the product would drop to zero or lower, then the
row for that product is removed from the PRODUCT_INVENTORY table.

MERGE INTO PRODUCT_INVENTORY AS TARGET
USING (
 SELECT
 SL.ID_PRODUCT,
 SUM (SL.QUANTITY)
 FROM SALES_ORDER_LINE SL
 JOIN SALES_ORDER S ON S.ID = SL.ID_SALES_ORDER
 WHERE S.BYDATE = CURRENT_DATE
 GROUP BY 1
) AS SRC (ID_PRODUCT, QUANTITY)
ON TARGET.ID_PRODUCT = SRC.ID_PRODUCT
WHEN MATCHED AND TARGET.QUANTITY - SRC.QUANTITY <= 0 THEN
 DELETE
WHEN MATCHED THEN
 UPDATE SET
 TARGET.QUANTITY = TARGET.QUANTITY - SRC.QUANTITY,
 TARGET.BYDATE = CURRENT_DATE

See also

SELECT, INSERT, UPDATE, UPDATE OR INSERT, DELETE

6.7. EXECUTE PROCEDURE
Used for

Executing a stored procedure

Available in

DSQL, ESQL, PSQL

Syntax

EXECUTE PROCEDURE procname
 [{ <inparam-list | (<inparam-list>) }]
 [RETURNING_VALUES { <outvar-list> | (<outvar-list) }]

<inparam-list> ::=
 <inparam> [, <inparam> ...]

<outvar-list> ::=
 <outvar> [, <outvar> ...]

<outvar> ::= [:]varname

Table 85. Arguments for the EXECUTE PROCEDURE Statement Parameters

Chapter 6. Data Manipulation (DML) Statements

310

Argument Description

procname Name of the stored procedure

inparam An expression evaluating to the declared data type of an input parameter

varname A PSQL variable to receive the return value

Executes an executable stored procedure, taking a list of one or more input parameters, if they are
defined for the procedure, and returning a one-row set of output values, if they are defined for the
procedure.

6.7.1. “Executable” Stored Procedure

The EXECUTE PROCEDURE statement is most commonly used to invoke the style of stored procedure
that is written to perform some data-modifying task at the server side — those that do not contain
any SUSPEND statements in their code. They can be designed to return a result set, consisting of only
one row, which is usually passed, via a set of RETURNING_VALUES() variables, to another stored
procedure that calls it. Client interfaces usually have an API wrapper that can retrieve the output
values into a single-row buffer when calling EXECUTE PROCEDURE in DSQL.

Invoking the other style of stored procedure — a “selectable” one — is possible with EXECUTE
PROCEDURE, but it returns only the first row of an output set which is almost surely designed to be
multi-row. Selectable stored procedures are designed to be invoked by a SELECT statement,
producing output that behaves like a virtual table.

• In PSQL and DSQL, input parameters may be any expression that resolves to
the expected type.

• Although parentheses are not required after the name of the stored procedure
to enclose the input parameters, their use is recommended for the sake of good
housekeeping.

• Where output parameters have been defined in a procedure, the
RETURNING_VALUES clause can be used in PSQL to retrieve them into a list of
previously declared variables that conforms in sequence, data type and
number with the defined output parameters.

• The list of RETURNING_VALUES may be optionally enclosed in parentheses and
their use is recommended.

• When DSQL applications call EXECUTE PROCEDURE using the Firebird API or some
form of wrapper for it, a buffer is prepared to receive the output row and the
RETURNING_VALUES clause is not used.

6.7.2. Examples of EXECUTE PROCEDURE

1. In PSQL, with optional colons and without optional parentheses:

EXECUTE PROCEDURE MakeFullName
 :FirstName, :MiddleName, :LastName

Chapter 6. Data Manipulation (DML) Statements

311

 RETURNING_VALUES :FullName;

2. In Firebird’s command-line utility isql, with literal parameters and optional parentheses:

EXECUTE PROCEDURE MakeFullName ('J', 'Edgar', 'Hoover');

In DSQL (eg in isql), RETURNING_VALUES is not used. Any output values are
captured by the application and displayed automatically.

3. A PSQL example with expression parameters and optional parentheses:

EXECUTE PROCEDURE MakeFullName
 ('Mr./Mrs. ' || FirstName, MiddleName, upper(LastName))
 RETURNING_VALUES (FullName);

6.8. EXECUTE BLOCK
Used for

Creating an “anonymous” block of PSQL code in DSQL for immediate execution

Available in

DSQL

Syntax

EXECUTE BLOCK [(<inparams>)]
 [RETURNS (<outparams>)]
 <psql-module-body>

<inparams> ::= <param_decl> = ? [, <inparams>]

<outparams> ::= <param_decl> [, <outparams>]

<param_decl> ::=
 paramname <domain_or_non_array_type> [NOT NULL] [COLLATE collation]

<domain_or_non_array_type> ::=
 !! See Scalar Data Types Syntax !!

<psql-module-body> ::=
 !! See Syntax of a Module Body !!

Table 86. Arguments for the EXECUTE BLOCK Statement Parameters

Argument Description

param_decl Name and description of an input or output parameter

Chapter 6. Data Manipulation (DML) Statements

312

Argument Description

paramname The name of an input or output parameter of the procedural block, up to
31 characters long. The name must be unique among input and output
parameters and local variables in the block

collation Collation sequence

Executes a block of PSQL code as if it were a stored procedure, optionally with input and output
parameters and variable declarations. This allows the user to perform “on-the-fly” PSQL within a
DSQL context.

6.8.1. Examples

1. This example injects the numbers 0 through 127 and their corresponding ASCII characters into
the table ASCIITABLE:

EXECUTE BLOCK
AS
declare i INT = 0;
BEGIN
 WHILE (i < 128) DO
 BEGIN
 INSERT INTO AsciiTable VALUES (:i, ascii_char(:i));
 i = i + 1;
 END
END

2. The next example calculates the geometric mean of two numbers and returns it to the user:

EXECUTE BLOCK (x DOUBLE PRECISION = ?, y DOUBLE PRECISION = ?)
RETURNS (gmean DOUBLE PRECISION)
AS
BEGIN
 gmean = SQRT(x*y);
 SUSPEND;
END

Because this block has input parameters, it has to be prepared first. Then the parameters can be
set and the block executed. It depends on the client software how this must be done and even if
it is possible at all — see the notes below.

3. Our last example takes two integer values, smallest and largest. For all the numbers in the
range smallest…largest, the block outputs the number itself, its square, its cube and its fourth
power.

EXECUTE BLOCK (smallest INT = ?, largest INT = ?)
RETURNS (number INT, square BIGINT, cube BIGINT, fourth BIGINT)

Chapter 6. Data Manipulation (DML) Statements

313

AS
BEGIN
 number = smallest;
 WHILE (number <= largest) DO
 BEGIN
 square = number * number;
 cube = number * square;
 fourth = number * cube;
 SUSPEND;
 number = number + 1;
 END
END

Again, it depends on the client software if and how you can set the parameter values.

6.8.2. Input and output parameters

Executing a block without input parameters should be possible with every Firebird client that
allows the user to enter his or her own DSQL statements. If there are input parameters, things get
trickier: these parameters must get their values after the statement is prepared, but before it is
executed. This requires special provisions, which not every client application offers. (Firebird’s
own isql, for one, doesn’t.)

The server only accepts question marks (“?”) as placeholders for the input values, not “:a”,
“:MyParam” etc., or literal values. Client software may support the “:xxx” form though, and will
preprocess it before sending it to the server.

If the block has output parameters, you must use SUSPEND or nothing will be returned.

Output is always returned in the form of a result set, just as with a SELECT statement. You can’t use
RETURNING_VALUES or execute the block INTO some variables, even if there is only one result row.

PSQL Links

For more information about writing PSQL, consult Chapter Procedural SQL (PSQL)
Statements.

6.8.3. Statement Terminators

Some SQL statement editors — specifically the isql utility that comes with Firebird and possibly
some third-party editors — employ an internal convention that requires all statements to be
terminated with a semi-colon. This creates a conflict with PSQL syntax when coding in these
environments. If you are unacquainted with this problem and its solution, please study the details
in the PSQL chapter in the section entitled Switching the Terminator in isql.

Chapter 6. Data Manipulation (DML) Statements

314

Chapter 7. Procedural SQL (PSQL) Statements
Procedural SQL (PSQL) is a procedural extension of SQL. This language subset is used for writing
stored procedures, triggers, and PSQL blocks.

PSQL provides all the basic constructs of traditional structured programming languages, and also
includes DML statements (SELECT, INSERT, UPDATE, DELETE, etc.), with a slight modified syntax in some
cases.

7.1. Elements of PSQL
A procedural extension may contain declarations of local variables, routines and cursors,
assignments, conditional statements, loops, statements for raising custom exceptions, error
handling and sending messages (events) to client applications. Triggers have access to special
context variables, two arrays that store, respectively, the NEW values for all columns during insert
and update activity, and the OLD values during update and delete work.

Statements that modify metadata (DDL) are not available in PSQL.

7.1.1. DML Statements with Parameters

If DML statements (SELECT, INSERT, UPDATE, DELETE, etc.) in the body of the module (procedure,
function, trigger or block) use parameters, only named parameters can be used. If DML statements
contain named parameters, then they must be previously declared as local variables using DECLARE
[VARIABLE] in the declaration section of the module, or as input or output variables in the module
header.

When a DML statement with parameters is included in PSQL code, the parameter name must be
prefixed by a colon (‘:’) in most situations. The colon is optional in statement syntax that is specific
to PSQL, such as assignments and conditionals and the INTO clause. The colon prefix on parameters
is not required when calling stored procedures from within another PSQL module or in DSQL.

7.1.2. Transactions

Stored procedures and functions (including those defined in packages) are executed in the context
of the transaction in which they are called. Triggers are executed as an intrinsic part of the
operation of the DML statement: thus, their execution is within the same transaction context as the
statement itself. Individual transactions are launched for database event triggers.

Statements that start and end transactions are not available in PSQL, but it is possible to run a
statement or a block of statements in an autonomous transaction.

7.1.3. Module Structure

PSQL code modules consist of a header and a body. The DDL statements for defining them are
complex statements; that is, they consist of a single statement that encloses blocks of multiple
statements. These statements begin with a verb (CREATE, ALTER, DROP, RECREATE, CREATE OR ALTER) and
end with the last END statement of the body.

Chapter 7. Procedural SQL (PSQL) Statements

315

The Module Header

The header provides the module name and defines any input and output parameters or — for
functions — the return type. Stored procedures and PSQL blocks may have input and output
parameters. Functions may have input parameters and must have a scalar return type. Triggers do
not have either input or output parameters.

The header of a trigger indicates the database event (insert, update or delete, or a combination) and
the phase of operation (BEFORE or AFTER that event) that will cause it to “fire”.

The Module Body

The module body is either a PSQL module body, or an external module body.

Syntax of a Module Body

<module-body> ::=
 <psql-module-body> | <external-module-body>

<psql-module-body> ::=
 AS
 [<declarations>]
 BEGIN
 [<PSQL_statements>]
 END

<external-module-body> ::=
 EXTERNAL [NAME <extname>] ENGINE engine
 [AS '<extbody>']

<declarations> ::= <declare-item> [<declare-item ...]

<declare-item> ::=
 <declare-var>
 | <declare-cursor>
 | <declare-subfunc>
 | <declare-subproc>

<extname> ::=
 '<module-name>!<routine-name>[!<misc-info>]'

Table 87. Module Body Parameters

Parameter Description

declarations Section for declaring local variables, named cursors, and subroutines

PSQL_statements Procedural SQL statements. Some PSQL statements may not be valid in all
types of PSQL. For example, RETURN <value>; is only valid in functions.

declare_var Local variable declaration

declare_cursor Named cursor declaration

Chapter 7. Procedural SQL (PSQL) Statements

316

Parameter Description

declare-subfunc Sub-function declaration

declare-subproc Sub-procedure declaration

extname String identifying the external procedure

engine String identifying the UDR engine

extbody External procedure body. A string literal that can be used by UDRs for
various purposes.

module-name The name of the module that contains the procedure

routine-name The internal name of the procedure inside the external module

misc-info Optional string that is passed to the procedure in the external module

The PSQL Module Body

The PSQL body starts with an optional section that declares variables and subroutines, followed by
a block of statements that run in a logical sequence, like a program. A block of statements — or
compound statement — is enclosed by the BEGIN and END keywords, and is executed as a single unit
of code. The main BEGIN…END block may contain any number of other BEGIN…END blocks, both
embedded and sequential. Blocks can be nested to a maximum depth of 512 blocks. All statements
except BEGIN and END are terminated by semicolons (‘;’). No other character is valid for use as a
terminator for PSQL statements.

In the Firebird 2.5 Language Reference, the declaration of local variables and
cursors was considered part of the module header. With the introduction of UDR
(external routines) in Firebird 3.0, we now consider this declaration section part of
the — PSQL — module body.

Switching the Terminator in isql

Here we digress a little, to explain how to switch the terminator character in the isql utility to
make it possible to define PSQL modules in that environment without conflicting with isql
itself, which uses the same character, semicolon (‘;’), as its own statement terminator.

isql Command SET TERM

Used for

Changing the terminator character(s) to avoid conflict with the terminator character in PSQL
statements

Available in

ISQL only

Syntax

SET TERM new_terminator old_terminator

Chapter 7. Procedural SQL (PSQL) Statements

317

Table 88. SET TERM Parameters

Argument Description

new_terminator New terminator

old_terminator Old terminator

When you write your triggers and stored procedures in isql — either in the interactive
interface or in scripts — running a SET TERM statement is needed to switch the normal isql
statement terminator from the semicolon to some other character or short string, to avoid
conflict with the non-changeable semicolon terminator in PSQL. The switch to an alternative
terminator needs to be done before you begin defining PSQL objects or running your scripts.

The alternative terminator can be any string of characters except for a space, an apostrophe
or the current terminator character(s). Any letter character(s) used will be case-sensitive.

Example

Changing the default semicolon to ‘^’ (caret) and using it to submit a stored procedure
definition: character as an alternative terminator character:

SET TERM ^;

CREATE OR ALTER PROCEDURE SHIP_ORDER (
 PO_NUM CHAR(8))
AS
BEGIN
 /* Stored procedure body */
END^

/* Other stored procedures and triggers */

SET TERM ;^

/* Other DDL statements */

The External Module Body

The external module body specifies the UDR engine used to execute the external module, and
optionally specifies the name of the UDR routine to call (<extname>) and/or a string (<extbody>)
with UDR-specific semantics.

Configuration of external modules and UDR engines is not covered further in this Language
Reference. Consult the documentation of a specific UDR engine for details.

7.2. Stored Procedures
A stored procedure is executable code stored in the database metadata for execution on the server.
A stored procedure can be called by other stored procedures (including itself), functions, triggers

Chapter 7. Procedural SQL (PSQL) Statements

318

and client applications. A procedure that calls itself is known as recursive.

7.2.1. Benefits of Stored Procedures

Stored procedures have the following advantages:

Modularity applications working with the database can use the same
stored procedure, thereby reducing the size of the
application code and avoiding code duplication.

Simpler Application Support when a stored procedure is modified, changes appear
immediately to all host applications, without the need to
recompile them if the parameters were unchanged.

Enhanced Performance since stored procedures are executed on a server instead of
at the client, network traffic is reduced, which improves
performance.

7.2.2. Types of Stored Procedures

Firebird supports two types of stored procedures: executable and selectable.

Executable Procedures

Executable procedures usually modify data in a database. They can receive input parameters and
return a single set of output (RETURNS) parameters. They are called using the EXECUTE PROCEDURE
statement. See an example of an executable stored procedure at the end of the CREATE PROCEDURE
section of Chapter 5.

Selectable Procedures

Selectable stored procedures usually retrieve data from a database, returning an arbitrary number
of rows to the caller. The caller receives the output one row at a time from a row buffer that the
database engine prepares for it.

Selectable procedures can be useful for obtaining complex sets of data that are often impossible or
too difficult or too slow to retrieve using regular DSQL SELECT queries. Typically, this style of
procedure iterates through a looping process of extracting data, perhaps transforming it before
filling the output variables (parameters) with fresh data at each iteration of the loop. A SUSPEND
statement at the end of the iteration fills the buffer and waits for the caller to fetch the row.
Execution of the next iteration of the loop begins when the buffer has been cleared.

Selectable procedures may have input parameters, and the output set is specified by the RETURNS
clause in the header.

A selectable stored procedure is called with a SELECT statement. See an example of a selectable
stored procedure at the end of the CREATE PROCEDURE section of Chapter 5.

Chapter 7. Procedural SQL (PSQL) Statements

319

7.2.3. Creating a Stored Procedure

The syntax for creating executable stored procedures and selectable stored procedures is exactly
the same. The difference comes in the logic of the program code.

For information about creating stored procedures, see CREATE PROCEDURE in Chapter Data Definition
(DDL) Statements.

7.2.4. Modifying a Stored Procedure

For information about modifying existing stored procedures, see ALTER PROCEDURE, CREATE OR ALTER
PROCEDURE, RECREATE PROCEDURE, in Chapter Data Definition (DDL) Statements.

7.2.5. Deleting a Stored Procedure

For information about deleting stored procedures, see DROP PROCEDURE in Chapter Data Definition
(DDL) Statements.

7.3. Stored Functions
A stored function is executable code stored in the database metadata for execution on the server. A
stored function can be called by other stored functions (including itself), procedures, triggers and
client applications. A function that calls itself is known as recursive.

Unlike stored procedures, stored functions always return one scalar value. To return a value from a
stored function, use the RETURN statement, which immediately terminates the function.

7.3.1. Creating a Stored Function

For information about creating stored functions, see CREATE FUNCTION in Chapter Data Definition
(DDL) Statements.

7.3.2. Modifying a Stored Function

For information about modifying stored functions, see ALTER FUNCTION, CREATE OR ALTER FUNCTION,
RECREATE FUNCTION, in Chapter Data Definition (DDL) Statements.

7.3.3. Deleting a Stored Function

For information about deleting stored procedures, see DROP FUNCTION in Chapter Data Definition
(DDL) Statements.

7.4. PSQL Blocks
A self-contained, unnamed (“anonymous”) block of PSQL code can be executed dynamically in
DSQL, using the EXECUTE BLOCK syntax. The header of an anonymous PSQL block may optionally
contain input and output parameters. The body may contain local variables, cursor declarations
and local routines, followed by a block of PSQL statements.

Chapter 7. Procedural SQL (PSQL) Statements

320

An anonymous PSQL block is not defined and stored as an object, unlike stored procedures and
triggers. It executes in run-time and cannot reference itself.

Just like stored procedures, anonymous PSQL blocks can be used to process data and to retrieve
data from the database.

Syntax (incomplete)

EXECUTE BLOCK
 [(<inparam> = ? [, <inparam> = ? ...])]
 [RETURNS (<outparam> [, <outparam> ...])]
 <psql-module-body>

<psql-module-body> ::=
 !! See Syntax of Module Body !!

Table 89. PSQL Block Parameters

Argument Description

inparam Input parameter description

outparam Output parameter description

declarations A section for declaring local variables and named cursors

PSQL statements PSQL and DML statements

See also

See EXECUTE BLOCK for details.

7.5. Packages
A package is a group of stored procedures and function defined as a single database object.

Firebird packages are made up of two parts: a header (PACKAGE keyword) and a body (PACKAGE BODY
keywords). This separation is very similar to Delphi modules, the header corresponds to the
interface part, and the body corresponds to the implementation part.

7.5.1. Benefits of Packages

The notion of “packaging” the code components of a database operation addresses has several
advantagrs:

Modularisation

Blocks of interdependent code are grouped into logical modules, as done in other programming
languages.

In programming, it is well recognised that grouping code in various ways, in namespaces, units
or classes, for example, is a good thing. This is not possible with standard stored procedures and
functions in the database. Although they can be grouped in different script files, two problems

Chapter 7. Procedural SQL (PSQL) Statements

321

remain:

a. The grouping is not represented in the database metadata.

b. Scripted routines all participate in a flat namespace and are callable by everyone (we are not
referring to security permissions here).

Easier tracking of dependencies

Packages make it easy to track dependencies between a collection of related routines, as well as
between this collection and other routines, both packaged and unpackaged.

Whenever a packaged routine determines that it uses a certain database object, a dependency
on that object is registered in Firebird’s system tables. Thereafter, to drop, or maybe alter that
object, you first need to remove what depends on it. Since the dependency on other objects only
exists for the package body, and not the package body, this package body can easily be removed,
even if some other object depends on this package. When the body is dropped, the header
remains, allowing you to recreate its body once the changes related to the removed object are
done.

Simplify permission management

As Firebird runs routines with the caller privileges, it is necessary also to grant resource usage to
each routine when these resources would not be directly accessible to the caller. Usage of each
routine needs to be granted to users and/or roles.

Packaged routines do not have individual privileges. The privileges apply to the package as a
whole. Privileges granted to packages are valid for all package body routines, including private
ones, but are stored for the package header. An EXECUTE privilege on a package granted to a user
(or other object), grants that user the privilege to execute all routines defined in the package
header.

For example

GRANT SELECT ON TABLE secret TO PACKAGE pk_secret;
GRANT EXECUTE ON PACKAGE pk_secret TO ROLE role_secret;

Private scopes

Stored procedures and functions can be privates; that is, make them available only for internal
usage within the defining package.

All programming languages have the notion of routine scope, which is not possible without some
form of grouping. Firebird packages also work like Delphi units in this regard. If a routine is not
declared in the package header (interface) and is implemented in the body (implementation), it
becomes a private routine. A private routine can only be called from inside its package.

7.5.2. Creating a Package

For information on creating packages, see CREATE PACKAGE, CREATE PACKAGE BODY

Chapter 7. Procedural SQL (PSQL) Statements

322

7.5.3. Modifying a Package

For information on modifying existing package header or bodies, see ALTER PACKAGE, CREATE OR ALTER
PACKAGE, RECREATE PACKAGE, RECREATE PACKAGE BODY

7.5.4. Deleting a Package

For information on deleting a package, see DROP PACKAGE, DROP PACKAGE BODY

7.6. Triggers
A trigger is another form of executable code that is stored in the metadata of the database for
execution by the server. A trigger cannot be called directly. It is called automatically (“fired”) when
data-changing events involving one particular table or view occur, or on a specific database event.

A trigger applies to exactly one table or view or database event, and only one phase in an event
(BEFORE or AFTER the event). A single DML trigger might be written to fire only when one specific
data-changing event occurs (INSERT, UPDATE or DELETE), or it might be written to apply to more than
one of those.

A DML trigger is executed in the context of the transaction in which the data-changing DML
statement is running. For triggers that respond to database events, the rule is different: for DDL
triggers and transaction triggers, the trigger runs in the same transaction that executed the DDL, for
other types, a new default transaction is started.

7.6.1. Firing Order (Order of Execution)

More than one trigger can be defined for each phase-event combination. The order in which they
are executed (known as “firing order” can be specified explicitly with the optional POSITION
argument in the trigger definition. You have 32,767 numbers to choose from. Triggers with the
lowest position numbers fire first.

If a POSITION clause is omitted, or if several matching event-phase triggers have the same position
number, then the triggers will fire in alphabetical order.

7.6.2. DML Triggers

DML triggers are those that fire when a DML operation changes the state of data: updating rows in
tables, inserting new rows or deleting rows. They can be defined for both tables and views.

Trigger Options

Six base options are available for the event-phase combination for tables and views:

Before a new row is inserted BEFORE INSERT

After a new row is inserted AFTER INSERT

Before a row is updated BEFORE UPDATE

After a row is updated AFTER UPDATE

Chapter 7. Procedural SQL (PSQL) Statements

323

Before a row is deleted BEFORE DELETE

After a row is deleted AFTER DELETE

These base forms are for creating single phase/single-event triggers. Firebird also supports forms
for creating triggers for one phase and multiple-events, BEFORE INSERT OR UPDATE OR DELETE, for
example, or AFTER UPDATE OR DELETE: the combinations are your choice.

 “Multi-phase” triggers, such as BEFORE OR AFTER …, are not possible.

The Boolean context variables INSERTING, UPDATING and DELETING can be used in the body of a trigger
to determine the type of event that fired the trigger.

OLD and NEW Context Variables

For DML triggers, the Firebird engine provides access to sets of OLD and NEW context variables. Each
is an array of the values of the entire row: one for the values as they are before the data-changing
event (the BEFORE phase) and one for the values as they will be after the event (the AFTER phase).
They are referenced in statements using the form NEW.column_name and OLD.column_name,
respectively. The column_name can be any column in the table’s definition, not just those that are
being updated.

The NEW and OLD variables are subject to some rules:

• In all triggers, the OLD value is read-only

• In BEFORE UPDATE and BEFORE INSERT code, the NEW value is read/write, unless it is a COMPUTED BY
column

• In INSERT triggers, references to the OLD variables are invalid and will throw an exception

• In DELETE triggers, references to the NEW variables are invalid and will throw an exception

• In all AFTER trigger code, the NEW variables are read-only

7.6.3. Database Triggers

A trigger associated with a database or transaction event can be defined for the following events:

Connecting to a
database

ON CONNECT Before the trigger is executed, a transaction is automatically
started with the default isolation level (snapshot
(concurrency), write, wait)

Disconnecting from
a database

ON DISCONNECT Before the trigger is executed, a transaction is automatically
started with the default isolation level (snapshot
(concurrency), write, wait)

When a transaction
is started

ON TRANSACTION
START

The trigger is executed in the current transaction context

When a transaction
is committed

ON TRANSACTION
COMMIT

The trigger is executed in the current transaction context

Chapter 7. Procedural SQL (PSQL) Statements

324

When a transaction
is cancelled

ON TRANSACTION
ROLLBACK

The trigger is executed in the current transaction context

7.6.4. DDL Triggers

DDL triggers fire on specified metadata changes events in a specified phase. BEFORE triggers run
before changes to system tables. AFTER triggers run after changes in system tables.

DDL triggers are a specific type of database trigger, so most rules for and semantics of database
triggers also apply for DDL triggers.

Semantics

1. BEFORE triggers are fired before changes to the system tables. AFTER triggers are fired after
system table changes.

Important Rule

The event type [BEFORE | AFTER] of a DDL trigger cannot be changed.

2. When a DDL statement fires a trigger that raises an exception (BEFORE or AFTER, intentionally or
unintentionally) the statement will not be committed. That is, exceptions can be used to ensure
that a DDL operation will fail if the conditions are not precisely as intended.

3. DDL trigger actions are executed only when committing the transaction in which the affected
DDL command runs. Never overlook the fact that what is possible to do in an AFTER trigger is
exactly what is possible to do after a DDL command without autocommit. You cannot, for
example, create a table and then use it in the trigger.

4. With “CREATE OR ALTER” statements, a trigger is fired one time at the CREATE event or the ALTER
event, according to the previous existence of the object. With RECREATE statements, a trigger is
fired for the DROP event if the object exists, and for the CREATE event.

5. ALTER and DROP events are generally not fired when the object name does not exist. For the
exception, see point 6.

6. The exception to rule 5 is that BEFORE ALTER/DROP USER triggers fire even when the username
does not exist. This is because, underneath, these commands perform DML on the security
database, and the verification is not done before the command on it is run. This is likely to be
different with embedded users, so do not write code that depends on this.

7. If some exception is raised after the DDL command starts its execution and before AFTER triggers
are fired, AFTER triggers will not be fired.

8. Packaged procedures and triggers do not fire individual {CREATE | ALTER | DROP} {PROCEDURE |
FUNCTION} triggers.

The DDL_TRIGGER Context Namespace

When a DDL trigger is running, the DDL_TRIGGER namespace is available for use with
RDB$GET_CONTEXT. This namespace contains information on the currently firing trigger.

See also The DDL_TRIGGER Namespace in RDB$GET_CONTEXT in Chapter Built-in Scalar Functions.

Chapter 7. Procedural SQL (PSQL) Statements

325

7.6.5. Creating Triggers

For information on creating triggers, see CREATE TRIGGER, CREATE OR ALTER TRIGGER, RECREATE TRIGGER
in Chapter Data Definition (DDL) Statements.

7.6.6. Modifying Triggers

For information on modifying triggers, see ALTER TRIGGER, CREATE OR ALTER TRIGGER, RECREATE
TRIGGER in Chapter Data Definition (DDL) Statements.

7.6.7. Deleting a Trigger

For information on deleting triggers, see DROP TRIGGER in Chapter Data Definition (DDL) Statements.

7.7. Writing the Body Code
This section takes a closer look at the procedural SQL language constructs and statements that are
available for coding the body of a stored procedure, trigger or anonymous PSQL block.

Colon Marker (‘:’)

The colon marker prefix (‘:’) is used in PSQL to mark a reference to a variable in a DML
statement. The colon marker is not required before variable names in other PSQL code.

Since Firebird 3.0, the colon prefix can also be used for the NEW and OLD contexts, and for
cursor variables.

7.7.1. Assignment Statements

Used for

Assigning a value to a variable

Available in

PSQL

Syntax

varname = <value_expr>;

Table 90. Assignment Statement Parameters

Argument Description

varname Name of a parameter or local variable

value_expr An expression, constant or variable whose value resolves to the same
data type as varname

PSQL uses the equal symbol (‘=’) as its assignment operator. The assignment statement assigns an

Chapter 7. Procedural SQL (PSQL) Statements

326

SQL expression value on the right to the variable on the left of the operator. The expression can be
any valid SQL expression: it may contain literals, internal variable names, arithmetic, logical and
string operations, calls to internal functions, stored functions or external functions (UDFs).

Example using assignment statements

CREATE PROCEDURE MYPROC (
 a INTEGER,
 b INTEGER,
 name VARCHAR (30)
)
RETURNS (
 c INTEGER,
 str VARCHAR(100))
AS
BEGIN
 -- assigning a constant
 c = 0;
 str = '';
 SUSPEND;
 -- assigning expression values
 c = a + b;
 str = name || CAST(b AS VARCHAR(10));
 SUSPEND;
 -- assigning expression value
 -- built by a query
 c = (SELECT 1 FROM rdb$database);
 -- assigning a value from a context variable
 str = CURRENT_USER;
 SUSPEND;
END

See also

DECLARE VARIABLE

7.7.2. DECLARE VARIABLE

Used for

Declaring a local variable

Available in

PSQL

Syntax

DECLARE [VARIABLE] varname
 <domain_or_non_array_type> [NOT NULL] [COLLATE collation]
 [{DEFAULT | = } <initvalue>];

Chapter 7. Procedural SQL (PSQL) Statements

327

<domain_or_non_array_type> ::=
 !! See Scalar Data Types Syntax !!

<initvalue> ::= <literal> | <context_var>

Table 91. DECLARE VARIABLE Statement Parameters

Argument Description

varname Name of the local variable

collation Collation sequence

initvalue Initial value for this variable

literal Literal of a type compatible with the type of the local variable

context_var Any context variable whose type is compatible with the type of the local
variable

The statement DECLARE [VARIABLE] is used for declaring a local variable. The keyword VARIABLE can
be omitted. One DECLARE [VARIABLE] statement is required for each local variable. Any number of
DECLARE [VARIABLE] statements can be included and in any order. The name of a local variable must
be unique among the names of local variables and input and output parameters declared for the
module.

A special case of DECLARE [VARIABLE] — declaring cursors — is covered separately in
DECLARE .. CURSOR

Data Type for Variables

A local variable can be of any SQL type other than an array.

• A domain name can be specified as the type; the variable will inherit all of its attributes.

• If the TYPE OF domain clause is used instead, the variable will inherit only the domain’s data type,
and, if applicable, its character set and collation attributes. Any default value or constraints
such as NOT NULL or CHECK constraints are not inherited.

• If the TYPE OF COLUMN relation.column> option is used to “borrow” from a column in a table or
view, the variable will inherit only the column’s data type, and, if applicable, its character set
and collation attributes. Any other attributes are ignored.

NOT NULL Constraint

For local variables, you can specify the NOT NULL constraint, disallowing NULL values for the variable.
If a domain has been specified as the data type and the domain already has the NOT NULL constraint,
the declaration is unnecessary. For other forms, including use of a domain that is nullable, the NOT
NULL constraint can be included if needed.

CHARACTER SET and COLLATE clauses

Unless specified, the character set and collation sequence of a string variable will be the database

Chapter 7. Procedural SQL (PSQL) Statements

328

defaults. A CHARACTER SET clause can be included, if required, to handle string data that is going to
be in a different character set. A valid collation sequence (COLLATE clause) can also be included, with
or without the character set clause.

Initializing a Variable

Local variables are NULL when execution of the module begins. They can be initialized so that a
starting or default value is available when they are first referenced. The DEFAULT <initvalue> form
can be used, or just the assignment operator, ‘=’: = <initvalue>. The value can be any type-
compatible literal or context variable, including NULL.

Be sure to use this clause for any variables that have a NOT NULL constraint and do
not otherwise have a default value available.

Examples of various ways to declare local variables

CREATE OR ALTER PROCEDURE SOME_PROC
AS
 -- Declaring a variable of the INT type
 DECLARE I INT;
 -- Declaring a variable of the INT type that does not allow NULL
 DECLARE VARIABLE J INT NOT NULL;
 -- Declaring a variable of the INT type with the default value of 0
 DECLARE VARIABLE K INT DEFAULT 0;
 -- Declaring a variable of the INT type with the default value of 1
 DECLARE VARIABLE L INT = 1;
 -- Declaring a variable based on the COUNTRYNAME domain
 DECLARE FARM_COUNTRY COUNTRYNAME;
 -- Declaring a variable of the type equal to the COUNTRYNAME domain
 DECLARE FROM_COUNTRY TYPE OF COUNTRYNAME;
 -- Declaring a variable with the type of the CAPITAL column in the COUNTRY table
 DECLARE CAPITAL TYPE OF COLUMN COUNTRY.CAPITAL;
BEGIN
 /* PSQL statements */
END

See also

Data Types and Subtypes, Custom Data Types — Domains, CREATE DOMAIN

7.7.3. DECLARE .. CURSOR

Used for

Declaring a named cursor

Available in

PSQL

Chapter 7. Procedural SQL (PSQL) Statements

329

Syntax

DECLARE [VARIABLE] cursor_name
 [[NO] SCROLL] CURSOR
 FOR (<select>);

Table 92. DECLARE … CURSOR Statement Parameters

Argument Description

cursor_name Cursor name

select SELECT statement

The DECLARE … CURSOR … FOR statement binds a named cursor to the result set obtained in the
SELECT statement specified in the FOR clause. In the body code, the cursor can be opened, used to
iterate row-by-row through the result set, and closed. While the cursor is open, the code can
perform positioned updates and deletes using the WHERE CURRENT OF in the UPDATE or DELETE
statement.

 Syntactically, the DECLARE … CURSOR statement is a special case of DECLARE VARIABLE.

Forward-Only and Scrollable Cursors

The cursor can be forward-only (unidirectional) or scrollable. The optional clause SCROLL makes the
cursor scrollable, the NO SCROLL clause, forward-only. By default, cursors are forward-only.

Forward-only cursors can — as the name implies — only move forward in the dataset. Forward-only
cursors only support the FETCH [NEXT FROM] statement, other commands raise an error. Scrollable
cursors allow you to move not only forward in the dataset, but also back, asl well as N positions
relative to the current position.

Scrollable cursors are materialized as a temporary dataset, as such, they consume
additional memory or disk space, so use them only when you really need them.

Cursor Idiosyncrasies

• The optional FOR UPDATE clause can be included in the SELECT statement, but its absence does not
prevent successful execution of a positioned update or delete

• Care should be taken to ensure that the names of declared cursors do not conflict with any
names used subsequently in statements for AS CURSOR clauses

• If the cursor is needed only to walk the result set, it is nearly always easier and less error-prone
to use a FOR SELECT statement with the AS CURSOR clause. Declared cursors must be explicitly
opened, used to fetch data, and closed. The context variable ROW_COUNT has to be checked after
each fetch and, if its value is zero, the loop has to be terminated. A FOR SELECT statement does
this automatically.

Nevertheless, declared cursors provide a high level of control over sequential events and allow
several cursors to be managed in parallel.

Chapter 7. Procedural SQL (PSQL) Statements

330

• The SELECT statement may contain parameters. For instance:

SELECT NAME || :SFX FROM NAMES WHERE NUMBER = :NUM

Each parameter has to have been declared beforehand as a PSQL variable, even if they
originate as input and output parameters. When the cursor is opened, the parameter is assigned
the current value of the variable.

Unstable Variables and Cursors

If the value of the PSQL variable used in the SELECT statement of the cursor
changes during the execution of the loop, then its new value may — but not
always — be used when selecting the next rows. It is better to avoid such
situations. If you really need this behaviour, then you should thoroughly test your
code and make sure you understand how changes to the variable affect the query
results.

Note particularly that the behaviour may depend on the query plan, specifically on
the indexes being used. Currently, there are no strict rules for this behaviour, and
this may change in future versions of Firebird.

Examples Using Named Cursors

1. Declaring a named cursor in the trigger.

CREATE OR ALTER TRIGGER TBU_STOCK
 BEFORE UPDATE ON STOCK
AS
 DECLARE C_COUNTRY CURSOR FOR (
 SELECT
 COUNTRY,
 CAPITAL
 FROM COUNTRY
);
BEGIN
 /* PSQL statements */
END

2. Declaring a scrollable cursor

EXECUTE BLOCK
 RETURNS (
 N INT,
 RNAME CHAR(31))
AS
 - Declaring a scrollable cursor
 DECLARE C SCROLL CURSOR FOR (
 SELECT

Chapter 7. Procedural SQL (PSQL) Statements

331

 ROW_NUMBER() OVER (ORDER BY RDB$RELATION_NAME) AS N,
 RDB$RELATION_NAME
 FROM RDB$RELATIONS
 ORDER BY RDB$RELATION_NAME);
BEGIN
 / * PSQL statements * /
END

3. A collection of scripts for creating views with a PSQL block using named cursors.

EXECUTE BLOCK
RETURNS (
 SCRIPT BLOB SUB_TYPE TEXT)
AS
 DECLARE VARIABLE FIELDS VARCHAR(8191);
 DECLARE VARIABLE FIELD_NAME TYPE OF RDB$FIELD_NAME;
 DECLARE VARIABLE RELATION RDB$RELATION_NAME;
 DECLARE VARIABLE SOURCE TYPE OF COLUMN RDB$RELATIONS.RDB$VIEW_SOURCE;
 DECLARE VARIABLE CUR_R CURSOR FOR (
 SELECT
 RDB$RELATION_NAME,
 RDB$VIEW_SOURCE
 FROM
 RDB$RELATIONS
 WHERE
 RDB$VIEW_SOURCE IS NOT NULL);
 -- Declaring a named cursor where
 -- a local variable is used
 DECLARE CUR_F CURSOR FOR (
 SELECT
 RDB$FIELD_NAME
 FROM
 RDB$RELATION_FIELDS
 WHERE
 -- It is important that the variable must be declared earlier
 RDB$RELATION_NAME = :RELATION);
BEGIN
 OPEN CUR_R;
 WHILE (1 = 1) DO
 BEGIN
 FETCH CUR_R
 INTO :RELATION, :SOURCE;
 IF (ROW_COUNT = 0) THEN
 LEAVE;

 FIELDS = NULL;
 -- The CUR_F cursor will use the value
 -- of the RELATION variable initiated above
 OPEN CUR_F;
 WHILE (1 = 1) DO

Chapter 7. Procedural SQL (PSQL) Statements

332

 BEGIN
 FETCH CUR_F
 INTO :FIELD_NAME;
 IF (ROW_COUNT = 0) THEN
 LEAVE;
 IF (FIELDS IS NULL) THEN
 FIELDS = TRIM(FIELD_NAME);
 ELSE
 FIELDS = FIELDS || ', ' || TRIM(FIELD_NAME);
 END
 CLOSE CUR_F;

 SCRIPT = 'CREATE VIEW ' || RELATION;

 IF (FIELDS IS NOT NULL) THEN
 SCRIPT = SCRIPT || ' (' || FIELDS || ')';

 SCRIPT = SCRIPT || ' AS ' || ASCII_CHAR(13);
 SCRIPT = SCRIPT || SOURCE;

 SUSPEND;
 END
 CLOSE CUR_R;
END

See also

OPEN, FETCH, CLOSE

7.7.4. DECLARE FUNCTION

Used for

Declaring a sub-function

Available in

PSQL

Syntax

DECLARE FUNCTION subfuncname [([<in_params>])]
 RETURNS <domain_or_non_array_type> [COLLATE collation]
 [DETERMINISTIC]
 <psql-module-body>

<in_params> ::=
 !! See CREATE FUNCTION Syntax !!

<domain_or_non_array_type> ::=
 !! See Scalar Data Types Syntax !!

<psql-module-body> ::=

Chapter 7. Procedural SQL (PSQL) Statements

333

 !! See Syntax of Module Body !!

Table 93. DECLARE FUNCTION Statement Parameters

Argument Description

subfuncname Sub-function name

collation Collation name

The DECLARE FUNCTION statement declares a sub-function. A sub-function is only visible to the PSQL
module that defined the sub-function.

Sub-functions have a number of restrictions:

• A sub-function cannot be nested in another sub-routine. Sub-routines are only supported in top-
level PSQL modules (stored procedures, stored functions, triggers and anonymous PSQL blocks).
This restriction is not enforced by the syntax, but attempts to create nested sub-functions will
raise an error “feature is not supported” with detail message “nested sub function”.

• Currently, the sub-function has no direct access to use variables, cursors and other routines
(including itself) from its parent module. This may change in a future Firebird version.

◦ As a result of this restriction, a sub-function cannot call itself recursively; attempts to call it
will yield error “Function unknown: subfuncname”.

Declaring a sub-function with the same name as a stored function will hide that
stored function from your module. It will not be possible to call that stored
function.

Contrary to DECLARE [VARIABLE], a DECLARE FUNCTION is not terminated by a
semicolon. The END of its main BEGIN … END block is considered its terminator.

Examples of Sub-Functions

Subfunction within a stored function

CREATE OR ALTER FUNCTION FUNC1 (n1 INTEGER, n2 INTEGER)
 RETURNS INTEGER
AS
- Subfunction
 DECLARE FUNCTION SUBFUNC (n1 INTEGER, n2 INTEGER)
 RETURNS INTEGER
 AS
 BEGIN
 RETURN n1 + n2;
 END
BEGIN
 RETURN SUBFUNC (n1, n2);
END

Chapter 7. Procedural SQL (PSQL) Statements

334

See also

DECLARE PROCEDURE, CREATE FUNCTION

7.7.5. DECLARE PROCEDURE

Used for

Declaring a sub-procedure

Available in

PSQL

Syntax

DECLARE subprocname [([<in_params>])]
 [RETURNS (<out_params>)]
 <psq-module-body>

<in_params> ::=
 !! See CREATE PROCEDURE Syntax !!

<domain_or_non_array_type> ::=
 !! See Scalar Data Types Syntax !!

<psql-module-body> ::=
 !! See Syntax of Module Body !!

Table 94. DECLARE PROCEDURE Statement Parameters

Argument Description

subprocname Sub-procedure name

collation Collation name

The DECLARE PROCEDURE statement declares a sub-procedure. A sub-procedure is only visible to the
PSQL module that defined the sub-procedure.

Sub-procedures have a number of restrictions:

• A sub-procedure cannot be nested in another sub-routine. Sub-routines are only supported in
top-level PSQL modules (stored procedures, stored functions, triggers and anonymous PSQL
blocks). This restriction is not enforced by the syntax, but attempts to create nested sub-
procedures will raise an error “feature is not supported” with detail message “nested sub
procedure”.

• Currently, the sub-procedure has no direct access to use variables, cursors and other routines
(including itself) from its parent module. This may change in a future Firebird version.

◦ As a result of this restriction, a sub-procedure cannot call itself recursively; attempts to call
it will yield error “Function unknown: subprocname”.

 Declaring a sub-procedure with the same name as a stored procedure, table or

Chapter 7. Procedural SQL (PSQL) Statements

335

view will hide that stored procedure, table or view from your module. It will not
be possible to call that stored procedure, table or view.

Contrary to DECLARE [VARIABLE], a DECLARE PROCEDURE is not terminated by a
semicolon. The END of its main BEGIN … END block is considered its terminator.

Examples of Sub-Procedures

Subroutines in EXECUTE BLOCK

EXECUTE BLOCK
 RETURNS (name VARCHAR(31))
AS
-- Sub-procedure returning a list of tables
 DECLARE PROCEDURE get_tables
 RETURNS (table_name VARCHAR(31))
 AS
 BEGIN
 FOR SELECT RDB$RELATION_NAME
 FROM RDB$RELATIONS
 WHERE RDB$VIEW_BLR IS NULL
 INTO table_name
 DO SUSPEND;
 END
-- Sub-procedure returning a list of views
 DECLARE PROCEDURE get_views
 RETURNS (view_name VARCHAR(31))
 AS
 BEGIN
 FOR SELECT RDB$RELATION_NAME
 FROM RDB$RELATIONS
 WHERE RDB$VIEW_BLR IS NOT NULL
 INTO view_name
 DO SUSPEND;
 END
BEGIN
 FOR SELECT table_name
 FROM get_tables
 UNION ALL
 SELECT view_name
 FROM get_views
 INTO name
 DO SUSPEND;
END

See also

DECLARE FUNCTION, CREATE PROCEDURE

Chapter 7. Procedural SQL (PSQL) Statements

336

7.7.6. BEGIN … END

Used for

Delimiting a block of statements

Available in

PSQL

Syntax

<block> ::=
 BEGIN
 [<compound_statement> ...]
 END

<compound_statement> ::= {<block> | <statement>}

The BEGIN … END construct is a two-part statement that wraps a block of statements that are
executed as one unit of code. Each block starts with the half-statement BEGIN and ends with the
other half-statement END. Blocks can be nested a maximum depth of 512 nested blocks. A block can
be empty, allowing them to act as stubs, without the need to write dummy statements.

The BEGIN and END statements have no line terminators (semicolon). However, when defining or
altering a PSQL module in the isql utility, that application requires that the last END statement be
followed by its own terminator character, that was previously switched — using SET TERM — to some
string other than a semicolon. That terminator is not part of the PSQL syntax.

The final, or outermost, END statement in a trigger terminates the trigger. What the final END
statement does in a stored procedure depends on the type of procedure:

• In a selectable procedure, the final END statement returns control to the caller, returning
SQLCODE 100, indicating that there are no more rows to retrieve

• In an executable procedure, the final END statement returns control to the caller, along with the
current values of any output parameters defined.

BEGIN … END Examples

A sample procedure from the employee.fdb database, showing simple usage of BEGIN…END blocks:

SET TERM ^;
CREATE OR ALTER PROCEDURE DEPT_BUDGET (
 DNO CHAR(3))
RETURNS (
 TOT DECIMAL(12,2))
AS
 DECLARE VARIABLE SUMB DECIMAL(12,2);
 DECLARE VARIABLE RDNO CHAR(3);
 DECLARE VARIABLE CNT INTEGER;
BEGIN

Chapter 7. Procedural SQL (PSQL) Statements

337

 TOT = 0;

 SELECT BUDGET
 FROM DEPARTMENT
 WHERE DEPT_NO = :DNO
 INTO :TOT;

 SELECT COUNT(BUDGET)
 FROM DEPARTMENT
 WHERE HEAD_DEPT = :DNO
 INTO :CNT;

 IF (CNT = 0) THEN
 SUSPEND;

 FOR SELECT DEPT_NO
 FROM DEPARTMENT
 WHERE HEAD_DEPT = :DNO
 INTO :RDNO
 DO
 BEGIN
 EXECUTE PROCEDURE DEPT_BUDGET(:RDNO)
 RETURNING_VALUES :SUMB;
 TOT = TOT + SUMB;
 END

 SUSPEND;
END^
SET TERM ;^

See also

EXIT, SET TERM

7.7.7. IF … THEN … ELSE

Used for

Conditional branching

Available in

PSQL

Syntax

IF (<condition>)
 THEN <compound_statement>
 [ELSE <compound_statement>]

Table 95. IF … THEN … ELSE Parameters

Chapter 7. Procedural SQL (PSQL) Statements

338

Argument Description

condition A logical condition returning TRUE, FALSE or UNKNOWN

compound_statement A single statement, or two or more statements wrapped in BEGIN … END

The conditional branch statement IF … THEN is used to branch the execution process in a PSQL
module. The condition is always enclosed in parentheses. If the condition returns the value TRUE,
execution branches to the statement or the block of statements after the keyword THEN. If an ELSE is
present, and the condition returns FALSE or UNKNOWN, execution branches to the statement or the
block of statements after it.

Multi-Branch Decisions

PSQL does not provide more advanced multi-branch jumps, such as CASE or SWITCH. However,
it is possible to chain IF … THEN … ELSE statements, see the example section below.
Alternatively, the CASE statement from DSQL is available in PSQL and is able to satisfy at least
some use cases in the manner of a switch:

CASE <test_expr>
 WHEN <expr> THEN <result>
 [WHEN <expr> THEN <result> ...]
 [ELSE <defaultresult>]
END

CASE
 WHEN <bool_expr> THEN <result>
 [WHEN <bool_expr> THEN <result> ...]
 [ELSE <defaultresult>]
END

Example in PSQL

...
C = CASE
 WHEN A=2 THEN 1
 WHEN A=1 THEN 3
 ELSE 0
 END;
...

IF Examples

1. An example using the IF statement. Assume that the FIRST, LINE2 and LAST variables were
declared earlier.

...

Chapter 7. Procedural SQL (PSQL) Statements

339

IF (FIRST IS NOT NULL) THEN
 LINE2 = FIRST || ' ' || LAST;
ELSE
 LINE2 = LAST;
...

2. Given IF … THEN … ELSE is a statement, it is possible to chain them together. Assume that the
INT_VALUE and STRING_VALUE variables were declared earlier.

IF (INT_VALUE = 1) THEN
 STRING_VALUE = 'one';
ELSE IF (INT_VALUE = 2) THEN
 STRING_VALUE = 'two';
ELSE IF (INT_VALUE = 3) THEN
 STRING_VALUE = 'three';
ELSE
 STRING_VALUE = 'too much';

This specific example can be replaced with a simple CASE or the DECODE function.

See also

WHILE … DO, CASE

7.7.8. WHILE … DO

Used for

Looping constructs

Available in

PSQL

Syntax

[label:]
WHILE <condition> DO
 <compound_statement>

Table 96. WHILE … DO Parameters

Argument Description

label Optional label for LEAVE and CONTINUE. Follows the rules for identifiers.

condition A logical condition returning TRUE, FALSE or UNKNOWN

compound_statement A single statement, or two or more statements wrapped in BEGIN … END

A WHILE statement implements the looping construct in PSQL. The statement or the block of
statements will be executed until the condition returns TRUE. Loops can be nested to any depth.

Chapter 7. Procedural SQL (PSQL) Statements

340

WHILE … DO Examples

A procedure calculating the sum of numbers from 1 to I shows how the looping construct is used.

CREATE PROCEDURE SUM_INT (I INTEGER)
RETURNS (S INTEGER)
AS
BEGIN
 s = 0;
 WHILE (i > 0) DO
 BEGIN
 s = s + i;
 i = i - 1;
 END
END

Executing the procedure in isql:

EXECUTE PROCEDURE SUM_INT(4);

the result is:

S
==========
10

See also

IF … THEN … ELSE, BREAK, LEAVE, CONTINUE, EXIT, FOR SELECT, FOR EXECUTE STATEMENT

7.7.9. BREAK

Used for

Exiting a loop

Available in

PSQL

Syntax

[label:]
<loop_stmt>
BEGIN
 ...
 BREAK;
 ...
END

Chapter 7. Procedural SQL (PSQL) Statements

341

<loop_stmt> ::=
 FOR <select_stmt> INTO <var_list> DO
 | FOR EXECUTE STATEMENT ... INTO <var_list> DO
 | WHILE (<condition>)} DO

Table 97. BREAK Statement Parameters

Argument Description

label Label

select_stmt SELECT statement

condition A logical condition returning TRUE, FALSE or UNKNOWN

The BREAK statement immediately terminates the inner loop of a WHILE or FOR looping statement.
Code continues to be executed from the first statement after the terminated loop block.

BREAK is similar to LEAVE, except it doesn’t support a label.

See also

LEAVE

7.7.10. LEAVE

Used for

Exiting a loop

Available in

PSQL

Syntax

[label:]
<loop_stmt>
BEGIN
 ...
 LEAVE [label];
 ...
END

<loop_stmt> ::=
 FOR <select_stmt> INTO <var_list> DO
 | FOR EXECUTE STATEMENT ... INTO <var_list> DO
 | WHILE (<condition>)} DO

Table 98. LEAVE Statement Parameters

Argument Description

label Label

select_stmt SELECT statement

Chapter 7. Procedural SQL (PSQL) Statements

342

Argument Description

condition A logical condition returning TRUE, FALSE or UNKNOWN

The LEAVE statement immediately terminates the inner loop of a WHILE or FOR looping statement.
Using the optional label parameter, LEAVE can also exit an outer loop, that is, the loop labelled with
label. Code continues to be executed from the first statement after the terminated loop block.

LEAVE Examples

1. Leaving a loop if an error occurs on an insert into the NUMBERS table. The code continues to be
executed from the line C = 0.

...
WHILE (B < 10) DO
BEGIN
 INSERT INTO NUMBERS(B)
 VALUES (:B);
 B = B + 1;
 WHEN ANY DO
 BEGIN
 EXECUTE PROCEDURE LOG_ERROR (
 CURRENT_TIMESTAMP,
 'ERROR IN B LOOP');
 LEAVE;
 END
END
C = 0;
...

2. An example using labels in the LEAVE statement. LEAVE LOOPA terminates the outer loop and LEAVE
LOOPB terminates the inner loop. Note that the plain LEAVE statement would be enough to
terminate the inner loop.

...
STMT1 = 'SELECT NAME FROM FARMS';
LOOPA:
FOR EXECUTE STATEMENT :STMT1
INTO :FARM DO
BEGIN
 STMT2 = 'SELECT NAME ' || 'FROM ANIMALS WHERE FARM = ''';
 LOOPB:
 FOR EXECUTE STATEMENT :STMT2 || :FARM || ''''
 INTO :ANIMAL DO
 BEGIN
 IF (ANIMAL = 'FLUFFY') THEN
 LEAVE LOOPB;
 ELSE IF (ANIMAL = FARM) THEN
 LEAVE LOOPA;

Chapter 7. Procedural SQL (PSQL) Statements

343

 ELSE
 SUSPEND;
 END
END
...

See also

BREAK, CONTINUE, EXIT

7.7.11. CONTINUE

Used for

Continuing with the next iteration of a loop

Available in

PSQL

Syntax

[label:]
<loop_stmt>
BEGIN
 ...
 CONTINUE [label];
 ...
END

<loop_stmt> ::=
 FOR <select_stmt> INTO <var_list> DO
 | FOR EXECUTE STATEMENT ... INTO <var_list> DO
 | WHILE (<condition>)} DO

Table 99. CONTINUE Statement Parameters

Argument Description

label Label

select_stmt SELECT statement

condition A logical condition returning TRUE, FALSE or UNKNOWN

The CONTINUE statement skips the remainder of the current block of a loop and starts the next
iteration of the current WHILE or FOR loop. Using the optional label parameter, CONTINUE can also start
the next iteration of an outer loop, that is, the loop labelled with label.

CONTINUE Examples

Using the CONTINUE statement

FOR SELECT A, D

Chapter 7. Procedural SQL (PSQL) Statements

344

 FROM ATABLE INTO achar, ddate
DO
BEGIN
 IF (ddate < current_date - 30) THEN
 CONTINUE;
 ELSE
 BEGIN
 /* do stuff */
 END
END

See also

BREAK, LEAVE, EXIT

7.7.12. EXIT

Used for

Terminating module execution

Available in

PSQL

Syntax

EXIT;

The EXIT statement causes execution of the current PSQL module to jump to the final END statement
from any point in the code, thus terminating the program.

Calling EXIT in a function will result in the function returning NULL.

EXIT Examples

Using the EXIT statement in a selectable procedure

CREATE PROCEDURE GEN_100
 RETURNS (I INTEGER)
AS
BEGIN
 I = 1;
 WHILE (1=1) DO
 BEGIN
 SUSPEND;
 IF (I=100) THEN
 EXIT;
 I = I + 1;
 END
END

Chapter 7. Procedural SQL (PSQL) Statements

345

See also

BREAK, LEAVE, CONTINUE, SUSPEND

7.7.13. SUSPEND

Used for

Passing output to the buffer and suspending execution while waiting for caller to fetch it

Available in

PSQL

Syntax

SUSPEND;

The SUSPEND statement is used in a selectable stored procedure to pass the values of output
parameters to a buffer and suspend execution. Execution remains suspended until the calling
application fetches the contents of the buffer. Execution resumes from the statement directly after
the SUSPEND statement. In practice, this is likely to be a new iteration of a looping process.

Important Notes

1. The SUSPEND statement can only occur in stored procedures or sub-procedures

2. The presence of the SUSPEND keyword defines a stored procedure as a selectable
procedure

3. Applications using interfaces that wrap the API perform the fetches from
selectable procedures transparently.

4. If a selectable procedure is executed using EXECUTE PROCEDURE, it behaves as an
executable procedure. When a SUSPEND statement is executed in such a stored
procedure, it is the same as executing the EXIT statement, resulting in
immediate termination of the procedure.

5. SUSPEND“breaks” the atomicity of the block in which it is located. If an error
occurs in a selectable procedure, statements executed after the final SUSPEND
statement will be rolled back. Statements that executed before the final SUSPEND
statement will not be rolled back unless the transaction is rolled back.

SUSPEND Examples

Using the SUSPEND statement in a selectable procedure

CREATE PROCEDURE GEN_100
 RETURNS (I INTEGER)
AS
BEGIN
 I = 1;
 WHILE (1=1) DO
 BEGIN

Chapter 7. Procedural SQL (PSQL) Statements

346

 SUSPEND;
 IF (I=100) THEN
 EXIT;
 I = I + 1;
 END
END

See also

EXIT

7.7.14. EXECUTE STATEMENT

Used for

Executing dynamically created SQL statements

Available in

PSQL

Syntax

<execute_statement> ::= EXECUTE STATEMENT <argument>
 [<option> ...]
 [INTO <variables>];

<argument> ::= <paramless_stmt>
 | (<paramless_stmt>)
 | (<stmt_with_params>) (<param_values>)

<param_values> ::= <named_values> | <positional_values>

<named_values> ::= paramname := <value_expr>
 [, paramname := <value_expr> ...]

<positional_values> ::= <value_expr> [, <value_expr> ...]

<option> ::=
 WITH {AUTONOMOUS | COMMON} TRANSACTION
 | WITH CALLER PRIVILEGES
 | AS USER user
 | PASSWORD password
 | ROLE role
 | ON EXTERNAL [DATA SOURCE] <connection_string>

<connection_string> ::=
 !! See <filespec> in the CREATE DATABASE syntax !!

<variables> ::= [:]varname [, [:]varname ...]

Table 100. EXECUTE STATEMENT Statement Parameters

Chapter 7. Procedural SQL (PSQL) Statements

347

Argument Description

paramless_stmt Literal string or variable containing a non-parameterized SQL query

stmt_with_params Literal string or variable containing a parameterized SQL query

paramname SQL query parameter name

value_expr SQL expression resolving to a value

user Username. It can be a string, CURRENT_USER or a string variable

password Password. It can be a string or a string variable

role Role. It can be a string, CURRENT_ROLE or a string variable

connection_string Connection string. It can be a string literal or a string variable

varname Variable

The statement EXECUTE STATEMENT takes a string parameter and executes it as if it were a DSQL
statement. If the statement returns data, it can be passed to local variables by way of an INTO clause.

EXECUTE STATEMENT can only produce a single row of data. Statements producing
multiple rows of data must be executed with FOR EXECUTE STATEMENT.

Parameterized Statements

You can use parameters — either named or positional — in the DSQL statement string. Each
parameter must be assigned a value.

Special Rules for Parameterized Statements

1. Named and positional parameters cannot be mixed in one query

2. If the statement has parameters, they must be enclosed in parentheses when EXECUTE STATEMENT
is called, regardless of whether they come directly as strings, as variable names or as
expressions

3. Each named parameter must be prefixed by a colon (‘:’) in the statement string itself, but not
when the parameter is assigned a value

4. Positional parameters must be assigned their values in the same order as they appear in the
query text

5. The assignment operator for parameters is the special operator “:=”, similar to the assignment
operator in Pascal

6. Each named parameter can be used in the statement more than once, but its value must be
assigned only once

7. With positional parameters, the number of assigned values must match the number of
parameter placeholders (question marks) in the statement exactly

8. A named parameter in the statement text can only be a regular identifier (it cannot be a quoted
identifier)

Chapter 7. Procedural SQL (PSQL) Statements

348

Examples of EXECUTE STATEMENT with parameters

With named parameters:

...
DECLARE license_num VARCHAR(15);
DECLARE connect_string VARCHAR (100);
DECLARE stmt VARCHAR (100) =
 'SELECT license
 FROM cars
 WHERE driver = :driver AND location = :loc';
BEGIN
 ...
 SELECT connstr
 FROM databases
 WHERE cust_id = :id
 INTO connect_string;
 ...
 FOR
 SELECT id
 FROM drivers
 INTO current_driver
 DO
 BEGIN
 FOR
 SELECT location
 FROM driver_locations
 WHERE driver_id = :current_driver
 INTO current_location
 DO
 BEGIN
 ...
 EXECUTE STATEMENT (stmt)
 (driver := current_driver,
 loc := current_location)
 ON EXTERNAL connect_string
 INTO license_num;
 ...

The same code with positional parameters:

DECLARE license_num VARCHAR (15);
DECLARE connect_string VARCHAR (100);
DECLARE stmt VARCHAR (100) =
 'SELECT license
 FROM cars
 WHERE driver = ? AND location = ?';
BEGIN
 ...
 SELECT connstr

Chapter 7. Procedural SQL (PSQL) Statements

349

 FROM databases
 WHERE cust_id = :id
 into connect_string;
 ...
 FOR
 SELECT id
 FROM drivers
 INTO current_driver
 DO
 BEGIN
 FOR
 SELECT location
 FROM driver_locations
 WHERE driver_id = :current_driver
 INTO current_location
 DO
 BEGIN
 ...
 EXECUTE STATEMENT (stmt)
 (current_driver, current_location)
 ON EXTERNAL connect_string
 INTO license_num;
 ...

WITH {AUTONOMOUS | COMMON} TRANSACTION

By default, the executed SQL statement runs within the current transaction. Using WITH AUTONOMOUS
TRANSACTION causes a separate transaction to be started, with the same parameters as the current
transaction. This separate transaction will be committed when the statement was executed without
errors and rolled back otherwise.

The clause WITH COMMON TRANSACTION uses the current transaction whenever possible; this is the
default behaviour. If the statement must run in a separate connection, an already started
transaction within that connection is used, if available. Otherwise, a new transaction is started with
the same parameters as the current transaction. Any new transactions started under the “COMMON”
regime are committed or rolled back with the current transaction.

WITH CALLER PRIVILEGES

By default, the SQL statement is executed with the privileges of the current user. Specifying WITH
CALLER PRIVILEGES combines the privileges of the calling procedure or trigger with those of the user,
just as if the statement were executed directly by the routine. WITH CALLER PRIVILEGES has no effect
if the ON EXTERNAL clause is also present.

ON EXTERNAL [DATA SOURCE]

With ON EXTERNAL [DATA SOURCE], the SQL statement is executed in a separate connection to the same
or another database, possibly even on another server. If connection_string is NULL or “''” (empty
string), the entire ON EXTERNAL [DATA SOURCE] clause is considered absent, and the statement is
executed against the current database.

Chapter 7. Procedural SQL (PSQL) Statements

350

Connection Pooling

• External connections made by statements WITH COMMON TRANSACTION (the default) will remain
open until the current transaction ends. They can be reused by subsequent calls to EXECUTE
STATEMENT, but only if connection_string is exactly the same, including case

• External connections made by statements WITH AUTONOMOUS TRANSACTION are closed as soon as the
statement has been executed

• Statements using WITH AUTONOMOUS TRANSACTION can and will re-use connections that were opened
earlier by statements WITH COMMON TRANSACTION. If this happens, the reused connection will be left
open after the statement has been executed. (It must be, because it has at least one active
transaction!)

Transaction Pooling

• If WITH COMMON TRANSACTION is in effect, transactions will be reused as much as possible. They will
be committed or rolled back together with the current transaction

• If WITH AUTONOMOUS TRANSACTION is specified, a fresh transaction will always be started for the
statement. This transaction will be committed or rolled back immediately after the statement’s
execution

Exception Handling

When ON EXTERNAL is used, the extra connection is always made via a so-called external provider,
even if the connection is to the current database. One of the consequences is that exceptions cannot
be caught in the usual way. Every exception caused by the statement is wrapped in either an
eds_connection or an eds_statement error. In order to catch them in your PSQL code, you have to use
WHEN GDSCODE eds_connection, WHEN GDSCODE eds_statement or WHEN ANY.

Without ON EXTERNAL, exceptions are caught in the usual way, even if an extra
connection is made to the current database.

Miscellaneous Notes

• The character set used for the external connection is the same as that for the current connection

• Two-phase commits are not supported

AS USER, PASSWORD and ROLE

The optional AS USER, PASSWORD and ROLE clauses allow specification of which user will execute the
SQL statement and with which role. The method of user login, and whether a separate connection is
opened, depends on the presence and values of the ON EXTERNAL [DATA SOURCE], AS USER, PASSWORD
and ROLE clauses:

• If ON EXTERNAL is present, a new connection is always opened, and:

◦ If at least one of AS USER, PASSWORD and ROLE is present, native authentication is attempted
with the given parameter values (locally or remotely, depending on connection_string). No
defaults are used for missing parameters

◦ If all three are absent, and connection_string contains no hostname, then the new

Chapter 7. Procedural SQL (PSQL) Statements

351

connection is established on the local server with the same user and role as the current
connection. The term 'local' means “on the same machine as the server” here. This is not
necessarily the location of the client

◦ If all three are absent, and connection_string contains a hostname, then trusted
authentication is attempted on the remote host (again, 'remote' from the perspective of the
server). If this succeeds, the remote operating system will provide the username (usually the
operating system account under which the Firebird process runs)

• If ON EXTERNAL is absent:

◦ If at least one of AS USER, PASSWORD and ROLE is present, a new connection to the current
database is opened with the supplied parameter values. No defaults are used for missing
parameters

◦ If all three are absent, the statement is executed within the current connection

If a parameter value is NULL or “''” (empty string), the entire parameter is
considered absent. Additionally, AS USER is considered absent if its value is equal to
CURRENT_USER, and ROLE if it is the same as CURRENT_ROLE.

Caveats with EXECUTE STATEMENT

1. There is no way to validate the syntax of the enclosed statement

2. There are no dependency checks to discover whether tables or columns have been dropped

3. Even though the performance in loops has been significantly improved in Firebird 2.5,
execution is still considerably slower than when the same statements are executed directly

4. Return values are strictly checked for data type in order to avoid unpredictable type-casting
exceptions. For example, the string '1234' would convert to an integer, 1234, but 'abc' would
give a conversion error

All in all, this feature is meant to be used very cautiously, and you should always take the caveats
into account. If you can achieve the same result with PSQL and/or DSQL, it will almost always be
preferable.

See also

FOR EXECUTE STATEMENT

7.7.15. FOR SELECT

Used for

Looping row-by-row through a selected result set

Available in

PSQL

Syntax

[label:]
FOR <select_stmt> [AS CURSOR cursor_name]

Chapter 7. Procedural SQL (PSQL) Statements

352

 DO <compound_statement>

Table 101. FOR SELECT Statement Parameters

Argument Description

label Optional label for LEAVE and CONTINUE. Follows the rules for identifiers.

select_stmt SELECT statement

cursor_name Cursor name. It must be unique among cursor names in the PSQL module
(stored procedure, stored function, trigger or PSQL block)

compound_statement A single statement, or a block of statements wrapped in BEGIN…END, that
performs all the processing for this FOR loop

The FOR SELECT statement

• retrieves each row sequentially from the result set, and executes the statement or block of
statements for each row. In each iteration of the loop, the field values of the current row are
copied into pre-declared variables.

Including the AS CURSOR clause enables positioned deletes and updates to be performed — see
notes below

• can embed other FOR SELECT statements

• can contain named parameters that must be previously declared in the DECLARE VARIABLE
statement or exist as input or output parameters of the procedure

• requires an INTO clause at the end of the SELECT … FROM … specification. In each iteration of the
loop, the field values of the current row are copied to the list of variables specified in the INTO
clause. The loop repeats until all rows are retrieved, after which it terminates

• can be terminated before all rows are retrieved by using a BREAK, LEAVE or EXIT statement

The Undeclared Cursor

The optional AS CURSOR clause surfaces the set in the FOR SELECT structure as an undeclared, named
cursor that can be operated on using the WHERE CURRENT OF clause inside the statement or block
following the DO command, in order to delete or update the current row before execution moves to
the next row. In addition, it is possible to use the cursor name as a record variable (similar to OLD
and NEW in triggers), allowing access to the columns of the result set (i.e. cursor_name.columnname).

Rules for Cursor Variables

• When accessing a cursor variable in a DML statement, the colon prefix can be added before the
cursor name (i.e. :cursor_name.columnname) for disambiguation, similar to variables.

The cursor variable can be referenced without colon prefix, but in that case, depending on the
scope of the contexts in the statement, the name may resolve in the statement context instead of
to the cursor (e.g. you select from a table with the same name as the cursor).

• Cursor variables are read-only

Chapter 7. Procedural SQL (PSQL) Statements

353

• In a FOR SELECT statement without an AS CURSOR clause, you must use the INTO clause. If an AS
CURSOR clause is specified, the INTO clause is allowed, but optional; you can access the fields
through the cursor instead.

• Reading from a cursor variable returns the current field values. This means that an UPDATE
statement (with a WHERE CURRENT OF clause) will update not only the table, but also the fields in
the cursor variable for subsequent reads. Executing a DELETE statement (with a WHERE CURRENT OF
clause) will set all fields in the cursor variable to NULL for subsequent reads

Other points to take into account regarding undeclared cursors:

1. The OPEN, FETCH and CLOSE statements cannot be applied to a cursor surfaced by the AS CURSOR
clause

2. The cursor_name argument associated with an AS CURSOR clause must not clash with any names
created by DECLARE VARIABLE or DECLARE CURSOR statements at the top of the module body, nor
with any other cursors surfaced by an AS CURSOR clause

3. The optional FOR UPDATE clause in the SELECT statement is not required for a positioned update

Examples using FOR SELECT

1. A simple loop through query results:

CREATE PROCEDURE SHOWNUMS
RETURNS (
 AA INTEGER,
 BB INTEGER,
 SM INTEGER,
 DF INTEGER)
AS
BEGIN
 FOR SELECT DISTINCT A, B
 FROM NUMBERS
 ORDER BY A, B
 INTO AA, BB
 DO
 BEGIN
 SM = AA + BB;
 DF = AA - BB;
 SUSPEND;
 END
END

2. Nested FOR SELECT loop:

CREATE PROCEDURE RELFIELDS
RETURNS (
 RELATION CHAR(32),
 POS INTEGER,

Chapter 7. Procedural SQL (PSQL) Statements

354

 FIELD CHAR(32))
AS
BEGIN
 FOR SELECT RDB$RELATION_NAME
 FROM RDB$RELATIONS
 ORDER BY 1
 INTO :RELATION
 DO
 BEGIN
 FOR SELECT
 RDB$FIELD_POSITION + 1,
 RDB$FIELD_NAME
 FROM RDB$RELATION_FIELDS
 WHERE
 RDB$RELATION_NAME = :RELATION
 ORDER BY RDB$FIELD_POSITION
 INTO :POS, :FIELD
 DO
 BEGIN
 IF (POS = 2) THEN
 RELATION = ' "';

 SUSPEND;
 END
 END
END

3. Using the AS CURSOR clause to surface a cursor for the positioned delete of a record:

CREATE PROCEDURE DELTOWN (
 TOWNTODELETE VARCHAR(24))
RETURNS (
 TOWN VARCHAR(24),
 POP INTEGER)
AS
BEGIN
 FOR SELECT TOWN, POP
 FROM TOWNS
 INTO :TOWN, :POP AS CURSOR TCUR
 DO
 BEGIN
 IF (:TOWN = :TOWNTODELETE) THEN
 -- Positional delete
 DELETE FROM TOWNS
 WHERE CURRENT OF TCUR;
 ELSE
 SUSPEND;
 END
END

Chapter 7. Procedural SQL (PSQL) Statements

355

4. Using an implicitly declared cursor as a cursor variable

EXECUTE BLOCK
 RETURNS (o CHAR(31))
AS
BEGIN
 FOR SELECT rdb$relation_name AS name
 FROM rdb$relations AS CURSOR c
 DO
 BEGIN
 o = c.name;
 SUSPEND;
 END
END

5. Disambiguating cursor variables within queries

EXECUTE BLOCK
 RETURNS (o1 CHAR(31), o2 CHAR(31))
AS
BEGIN
 FOR SELECT rdb$relation_name
 FROM rdb$relations
 WHERE
 rdb$relation_name = 'RDB$RELATIONS' AS CURSOR c
 DO
 BEGIN
 FOR SELECT
 -- with a prefix resolves as a cursor
 :c.rdb$relation_name x1,
 -- no prefix as an alias for the rdb$relations table
 c.rdb$relation_name x2
 FROM rdb$relations c
 WHERE
 rdb$relation_name = 'RDB$DATABASE' AS CURSOR d
 DO
 BEGIN
 o1 = d.x1;
 o2 = d.x2;
 SUSPEND;
 END
 END
END

See also

DECLARE .. CURSOR, BREAK, LEAVE, CONTINUE, EXIT, SELECT, UPDATE, DELETE

Chapter 7. Procedural SQL (PSQL) Statements

356

7.7.16. FOR EXECUTE STATEMENT

Used for

Executing dynamically created SQL statements that return a row set

Available in

PSQL

Syntax

[label:]
FOR <execute_statement> DO <compound_statement>

Table 102. FOR EXECUTE STATEMENT Statement Parameters

Argument Description

label Optional label for LEAVE and CONTINUE. Follows the rules for identifiers.

execute_stmt An EXECUTE STATEMENT statement

compound_statement A single statement, or a block of statements wrapped in BEGIN…END, that
performs all the processing for this FOR loop

The statement FOR EXECUTE STATEMENT is used, in a manner analogous to FOR SELECT, to loop through
the result set of a dynamically executed query that returns multiple rows.

FOR EXECUTE STATEMENT Examples

Executing a dynamically constructed SELECT query that returns a data set

CREATE PROCEDURE DynamicSampleThree (
 Q_FIELD_NAME VARCHAR(100),
 Q_TABLE_NAME VARCHAR(100)
) RETURNS(
 LINE VARCHAR(32000)
)
AS
 DECLARE VARIABLE P_ONE_LINE VARCHAR(100);
BEGIN
 LINE = '';
 FOR
 EXECUTE STATEMENT
 'SELECT T1.' || :Q_FIELD_NAME ||
 ' FROM ' || :Q_TABLE_NAME || ' T1 '
 INTO :P_ONE_LINE
 DO
 IF (:P_ONE_LINE IS NOT NULL) THEN
 LINE = :LINE || :P_ONE_LINE || ' ';
 SUSPEND;
END

Chapter 7. Procedural SQL (PSQL) Statements

357

See also

EXECUTE STATEMENT, BREAK, LEAVE, CONTINUE

7.7.17. OPEN

Used for

Opening a declared cursor

Available in

PSQL

Syntax

OPEN cursor_name;

Table 103. OPEN Statement Parameter

Argument Description

cursor_name Cursor name. A cursor with this name must be previously declared with a
DECLARE CURSOR statement

An OPEN statement opens a previously declared cursor, executes its declared SELECT statement, and
makes the first record of the result data set ready to fetch. OPEN can be applied only to cursors
previously declared in a DECLARE .. CURSOR statement.

If the SELECT statement of the cursor has parameters, they must be declared as
local variables or exist as input or output parameters before the cursor is declared.
When the cursor is opened, the parameter is assigned the current value of the
variable.

OPEN Examples

1. Using the OPEN statement:

SET TERM ^;

CREATE OR ALTER PROCEDURE GET_RELATIONS_NAMES
RETURNS (
 RNAME CHAR(31)
)
AS
 DECLARE C CURSOR FOR (
 SELECT RDB$RELATION_NAME
 FROM RDB$RELATIONS);
BEGIN
 OPEN C;
 WHILE (1 = 1) DO
 BEGIN

Chapter 7. Procedural SQL (PSQL) Statements

358

 FETCH C INTO :RNAME;
 IF (ROW_COUNT = 0) THEN
 LEAVE;
 SUSPEND;
 END
 CLOSE C;
END^

SET TERM ;^

2. A collection of scripts for creating views using a PSQL block with named cursors:

EXECUTE BLOCK
RETURNS (
 SCRIPT BLOB SUB_TYPE TEXT)
AS
 DECLARE VARIABLE FIELDS VARCHAR(8191);
 DECLARE VARIABLE FIELD_NAME TYPE OF RDB$FIELD_NAME;
 DECLARE VARIABLE RELATION RDB$RELATION_NAME;
 DECLARE VARIABLE SOURCE TYPE OF COLUMN RDB$RELATIONS.RDB$VIEW_SOURCE;
 -- named cursor
 DECLARE VARIABLE CUR_R CURSOR FOR (
 SELECT
 RDB$RELATION_NAME,
 RDB$VIEW_SOURCE
 FROM
 RDB$RELATIONS
 WHERE
 RDB$VIEW_SOURCE IS NOT NULL);
 -- named cursor with local variable
 DECLARE CUR_F CURSOR FOR (
 SELECT
 RDB$FIELD_NAME
 FROM
 RDB$RELATION_FIELDS
 WHERE
 -- Important! The variable has to be declared earlier
 RDB$RELATION_NAME = :RELATION);
BEGIN
 OPEN CUR_R;
 WHILE (1 = 1) DO
 BEGIN
 FETCH CUR_R
 INTO :RELATION, :SOURCE;
 IF (ROW_COUNT = 0) THEN
 LEAVE;

 FIELDS = NULL;
 -- The CUR_F cursor will use
 -- variable value of RELATION initialized above

Chapter 7. Procedural SQL (PSQL) Statements

359

 OPEN CUR_F;
 WHILE (1 = 1) DO
 BEGIN
 FETCH CUR_F
 INTO :FIELD_NAME;
 IF (ROW_COUNT = 0) THEN
 LEAVE;
 IF (FIELDS IS NULL) THEN
 FIELDS = TRIM(FIELD_NAME);
 ELSE
 FIELDS = FIELDS || ', ' || TRIM(FIELD_NAME);
 END
 CLOSE CUR_F;

 SCRIPT = 'CREATE VIEW ' || RELATION;

 IF (FIELDS IS NOT NULL) THEN
 SCRIPT = SCRIPT || ' (' || FIELDS || ')';

 SCRIPT = SCRIPT || ' AS ' || ASCII_CHAR(13);
 SCRIPT = SCRIPT || SOURCE;

 SUSPEND;
 END
 CLOSE CUR_R;
END

See also

DECLARE .. CURSOR, FETCH, CLOSE

7.7.18. FETCH

Used for

Fetching successive records from a data set retrieved by a cursor

Available in

PSQL

Syntax

FETCH [<fetch_scroll> FROM] cursor_name
 [INTO [:]varname [, [:]varname ...]];

<fetch_scroll> ::=
 NEXT | PRIOR | FIRST | LAST
 | RELATIVE n
 | ABSOLUTE n

Table 104. FETCH Statement Parameters

Chapter 7. Procedural SQL (PSQL) Statements

360

Argument Description

cursor_name Cursor name. A cursor with this name must be previously declared with a
DECLARE … CURSOR statement and opened by an OPEN statement.

varname Variable name

n Integer expression for the number of rows

The FETCH statement fetches the first and successive rows from the result set of the cursor and
assigns the column values to PSQL variables. The FETCH statement can be used only with a cursor
declared with the DECLARE .. CURSOR statement.

Using the optional fetch_scroll part of the FETCH statement, you can specify in which direction and
how many rows to advance the cursor position. The NEXT clause can be used for scrollable and
forward-only cursors. Other clauses are only supported for scrollable cursors.

The Scroll Options

NEXT

moves the cursor one row forward; this is the default

PRIOR

moves the cursor one record back

FIRST

moves the cursor to the first record.

LAST

moves the cursor to the last record

RELATIVE n

moves the cursor n rows from the current position; positive numbers move forward, negative
numbers move backwards; using zero (0) will not move the cursor, and ROW_COUNT will be set to
zero as no new row was fetched.

Bug: Fetching First Row Using RELATIVE

In Firebird 3.0.7 and earlier, it is not possible to fetch the first row using FETCH
RELATIVE 1 immediately after opening the cursor. As a workaround, use FETCH
(or FETCH NEXT) to fetch the first row.

This will be fixed in Firebird 3.0.8, see CORE-6486

ABSOLUTE n

moves the cursor to the specified row; n is an integer expression, where 1 indicates the first row.
For negative values, the absolute position is taken from the end of the result set, so -1 indicates
the last row, -2 the second to last row, etc. A value of zero (0) will position before the first row.

Bug: Positioning Beyond the Bounds of the Cursor

In Firebird 3.0.7 and earlier, using ABSOLUTE and RELATIVE, it is possible to position

Chapter 7. Procedural SQL (PSQL) Statements

361

http://tracker.firebirdsql.org/browse/CORE-6486

the cursor beyond the bounds of the result set — instead of immediately before the
first row or immediately after the last row. Subsequent calls to FETCH RELATIVE will
then require an offset large enough to move back within bounds, instead of just 1
or -1 to move to the first or last row.

This will be fixed in Firebird 3.0.8, see CORE-6487

The optional INTO clause gets data from the current row of the cursor and loads them into PSQL
variables. If fetch moved beyond the bounds of the result set, the variables will be set to NULL.

It is also possible to use the cursor name as a variable of a row type (similar to OLD and NEW in
triggers), allowing access to the columns of the result set (i.e. cursor_name.columnname).

Rules for Cursor Variables

• When accessing a cursor variable in a DML statement, the colon prefix can be added before the
cursor name (i.e. :cursor_name.columnname) for disambiguation, similar to variables.

The cursor variable can be referenced without colon prefix, but in that case, depending on the
scope of the contexts in the statement, the name may resolve in the statement context instead of
to the cursor (e.g. you select from a table with the same name as the cursor).

• Cursor variables are read-only

• In a FOR SELECT statement without an AS CURSOR clause, you must use the INTO clause. If an AS
CURSOR clause is specified, the INTO clause is allowed, but optional; you can access the fields
through the cursor instead.

• Reading from a cursor variable returns the current field values. This means that an UPDATE
statement (with a WHERE CURRENT OF clause) will update not only the table, but also the fields in
the cursor variable for subsequent reads. Executing a DELETE statement (with a WHERE CURRENT OF
clause) will set all fields in the cursor variable to NULL for subsequent reads

• When the cursor is not positioned on a row — it is positioned before the first row, or after the
last row — attempts to read from the cursor variable will result in error “Cursor cursor_name
is not positioned in a valid record”

For checking whether all the rows of the result set have been fetched, the context variable
ROW_COUNT returns the number of rows fetched by the statement. If a record was fetched, then
ROW_COUNT is one (1), otherwise zero (0).

FETCH Examples

1. Using the FETCH statement:

CREATE OR ALTER PROCEDURE GET_RELATIONS_NAMES
 RETURNS (RNAME CHAR(31))
AS
 DECLARE C CURSOR FOR (
 SELECT RDB$RELATION_NAME
 FROM RDB$RELATIONS);
BEGIN

Chapter 7. Procedural SQL (PSQL) Statements

362

http://tracker.firebirdsql.org/browse/CORE-6487

 OPEN C;
 WHILE (1 = 1) DO
 BEGIN
 FETCH C INTO RNAME;
 IF (ROW_COUNT = 0) THEN
 LEAVE;
 SUSPEND;
 END
 CLOSE C;
END

2. Using the FETCH statement with nested cursors:

EXECUTE BLOCK
 RETURNS (SCRIPT BLOB SUB_TYPE TEXT)
AS
 DECLARE VARIABLE FIELDS VARCHAR (8191);
 DECLARE VARIABLE FIELD_NAME TYPE OF RDB$FIELD_NAME;
 DECLARE VARIABLE RELATION RDB$RELATION_NAME;
 DECLARE VARIABLE SRC TYPE OF COLUMN RDB$RELATIONS.RDB$VIEW_SOURCE;
 -- Named cursor declaration
 DECLARE VARIABLE CUR_R CURSOR FOR (
 SELECT
 RDB$RELATION_NAME,
 RDB$VIEW_SOURCE
 FROM RDB$RELATIONS
 WHERE RDB$VIEW_SOURCE IS NOT NULL);
 -- Declaring a named cursor in which
 -- a local variable is used
 DECLARE CUR_F CURSOR FOR (
 SELECT RDB$FIELD_NAME
 FROM RDB$RELATION_FIELDS
 WHERE
 -- It is important that the variable must be declared earlier
 RDB$RELATION_NAME =: RELATION);
BEGIN
 OPEN CUR_R;
 WHILE (1 = 1) DO
 BEGIN
 FETCH CUR_R INTO RELATION, SRC;
 IF (ROW_COUNT = 0) THEN
 LEAVE;
 FIELDS = NULL;
 -- Cursor CUR_F will use the value
 -- the RELATION variable initialized above
 OPEN CUR_F;
 WHILE (1 = 1) DO
 BEGIN
 FETCH CUR_F INTO FIELD_NAME;
 IF (ROW_COUNT = 0) THEN

Chapter 7. Procedural SQL (PSQL) Statements

363

 LEAVE;
 IF (FIELDS IS NULL) THEN
 FIELDS = TRIM (FIELD_NAME);
 ELSE
 FIELDS = FIELDS || ',' || TRIM(FIELD_NAME);
 END
 CLOSE CUR_F;
 SCRIPT = 'CREATE VIEW' || RELATION;
 IF (FIELDS IS NOT NULL) THEN
 SCRIPT = SCRIPT || '(' || FIELDS || ')' ;
 SCRIPT = SCRIPT || 'AS' || ASCII_CHAR (13);
 SCRIPT = SCRIPT || SRC;
 SUSPEND;
 END
 CLOSE CUR_R;
EN

3. An example of using the FETCH statement with a scrollable cursor

EXECUTE BLOCK
 RETURNS (N INT, RNAME CHAR (31))
AS
 DECLARE C SCROLL CURSOR FOR (
 SELECT
 ROW_NUMBER() OVER (ORDER BY RDB$RELATION_NAME) AS N,
 RDB$RELATION_NAME
 FROM RDB$RELATIONS
 ORDER BY RDB$RELATION_NAME);
BEGIN
 OPEN C;
 -- move to the first record (N = 1)
 FETCH FIRST FROM C;
 RNAME = C.RDB$RELATION_NAME;
 N = C.N;
 SUSPEND;
 -- move 1 record forward (N = 2)
 FETCH NEXT FROM C;
 RNAME = C.RDB$RELATION_NAME;
 N = C.N;
 SUSPEND;
 -- move to the fifth record (N = 5)
 FETCH ABSOLUTE 5 FROM C;
 RNAME = C.RDB$RELATION_NAME;
 N = C.N;
 SUSPEND;
 -- move 1 record backward (N = 4)
 FETCH PRIOR FROM C;
 RNAME = C.RDB$RELATION_NAME;
 N = C.N;
 SUSPEND;

Chapter 7. Procedural SQL (PSQL) Statements

364

 -- move 3 records forward (N = 7)
 FETCH RELATIVE 3 FROM C;
 RNAME = C.RDB$RELATION_NAME;
 N = C.N;
 SUSPEND;
 -- move back 5 records (N = 2)
 FETCH RELATIVE -5 FROM C;
 RNAME = C.RDB$RELATION_NAME;
 N = C.N;
 SUSPEND;
 -- move to the first record (N = 1)
 FETCH FIRST FROM C;
 RNAME = C.RDB$RELATION_NAME;
 N = C.N;
 SUSPEND;
 -- move to the last entry
 FETCH LAST FROM C;
 RNAME = C.RDB$RELATION_NAME;
 N = C.N;
 SUSPEND;
 CLOSE C;
END

See also

DECLARE .. CURSOR, OPEN, CLOSE

7.7.19. CLOSE

Used for

Closing a declared cursor

Available in

PSQL

Syntax

CLOSE cursor_name;

Table 105. CLOSE Statement Parameter

Argument Description

cursor_name Cursor name. A cursor with this name must be previously declared with a
DECLARE … CURSOR statement and opened by an OPEN statement

A CLOSE statement closes an open cursor. Any cursors that are still open will be automatically closed
after the module code completes execution. Only a cursor that was declared with DECLARE .. CURSOR
can be closed with a CLOSE statement.

Chapter 7. Procedural SQL (PSQL) Statements

365

CLOSE Examples

See FETCH Examples

See also

DECLARE .. CURSOR, OPEN, FETCH

7.7.20. IN AUTONOMOUS TRANSACTION

Used for

Executing a statement or a block of statements in an autonomous transaction

Available in

PSQL

Syntax

IN AUTONOMOUS TRANSACTION DO <compound_statement>

Table 106. IN AUTONOMOUS TRANSACTION Statement Parameter

Argument Description

compound_statement A single statement, or a block of statements

The IN AUTONOMOUS TRANSACTION statement enables execution of a statement or a block of statements
in an autonomous transaction. Code running in an autonomous transaction will be committed right
after its successful execution, regardless of the status of its parent transaction. This can be used
when certain operations must not be rolled back, even if an error occurs in the parent transaction.

An autonomous transaction has the same isolation level as its parent transaction. Any exception
that is thrown in the block of the autonomous transaction code will result in the autonomous
transaction being rolled back and all changes made will be undone. If the code executes
successfully, the autonomous transaction will be committed.

IN AUTONOMOUS TRANSACTION Examples

Using an autonomous transaction in a trigger for the database ON CONNECT event, in order to log all
connection attempts, including those that failed:

CREATE TRIGGER TR_CONNECT ON CONNECT
AS
BEGIN
 -- Logging all attempts to connect to the database
 IN AUTONOMOUS TRANSACTION DO
 INSERT INTO LOG(MSG)
 VALUES ('USER ' || CURRENT_USER || ' CONNECTS.');
 IF (EXISTS(SELECT *
 FROM BLOCKED_USERS
 WHERE USERNAME = CURRENT_USER)) THEN

Chapter 7. Procedural SQL (PSQL) Statements

366

 BEGIN
 -- Logging that the attempt to connect
 -- to the database failed and sending
 -- a message about the event
 IN AUTONOMOUS TRANSACTION DO
 BEGIN
 INSERT INTO LOG(MSG)
 VALUES ('USER ' || CURRENT_USER || ' REFUSED.');
 POST_EVENT 'CONNECTION ATTEMPT BY BLOCKED USER!';
 END
 -- now calling an exception
 EXCEPTION EX_BADUSER;
 END
END

See also

Transaction Control

7.7.21. POST_EVENT

Used for

Notifying listening clients about database events in a module

Available in

PSQL

Syntax

POST_EVENT event_name;

Table 107. POST_EVENT Statement Parameter

Argument Description

event_name Event name (message) limited to 127 bytes

The POST_EVENT statement notifies the event manager about the event, which saves it to an event
table. When the transaction is committed, the event manager notifies applications that are
signalling their interest in the event.

The event name can be some sort of code, or a short message: the choice is open as it is just a string
up to 127 bytes.

The content of the string can be a string literal, a variable or any valid SQL expression that resolves
to a string.

POST_EVENT Examples

Notifying the listening applications about inserting a record into the SALES table:

Chapter 7. Procedural SQL (PSQL) Statements

367

CREATE TRIGGER POST_NEW_ORDER FOR SALES
ACTIVE AFTER INSERT POSITION 0
AS
BEGIN
 POST_EVENT 'new_order';
END

7.7.22. RETURN

Used for

Return a value from a stored function

Available in

PSQL

Syntax

RETURN value;

Table 108. RETURN Statement Parameter

Argument Description

value Expression with the value to return; Can be any expression type-
compatible with the return type of the function

The RETURN statement ends the execution of a function and returns the value of the expression
value.

RETURN can only be used in PSQL functions (stored and local functions).

RETURN Examples

See CREATE FUNCTION Examples

7.8. Trapping and Handling Errors
Firebird has a useful lexicon of PSQL statements and resources for trapping errors in modules and
for handling them. Firebird uses built-in exceptions that are raised for errors occurring when
working DML and DDL statements.

In PSQL code, exceptions are handled by means of the WHEN statement. Handling an exception in the
code involves either fixing the problem in situ, or stepping past it; either solution allows execution
to continue without returning an exception message to the client.

An exception results in execution being terminated in the current block. Instead of passing the
execution to the END statement, the procedure moves outward through levels of nested blocks,
starting from the block where the exception is caught, searching for the code of the handler that
“knows” about this exception. It stops searching when it finds the first WHEN statement that can

Chapter 7. Procedural SQL (PSQL) Statements

368

handle this exception.

7.8.1. System Exceptions

An exception is a message that is generated when an error occurs.

All exceptions handled by Firebird have predefined numeric values for context variables (symbols)
and text messages associated with them. Error messages are output in English by default. Localized
Firebird builds are available, where error messages are translated into other languages.

Complete listings of the system exceptions can be found in Appendix B: Exception Codes and
Messages:

• SQLSTATE Error Codes and Descriptions

• "GDSCODE Error Codes, SQLCODEs and Descriptions"

7.8.2. Custom Exceptions

Custom exceptions can be declared in the database as persistent objects and called in the PSQL code
to signal specific errors; for example, to enforce certain business rules. A custom exception consists
of an identifier, and a default message of 1021 bytes. For details, see CREATE EXCEPTION.

7.8.3. EXCEPTION

Used for

Throwing a user-defined exception or re-throwing an exception

Available in

PSQL

Syntax

EXCEPTION [
 exception_name
 [custom_message
 | USING (<value_list>)]
]

<value_list> ::= <val> [, <val> ...]

Table 109. EXCEPTION Statement Parameters

Argument Description

exception_name Exception name

custom_message Alternative message text to be returned to the caller interface when an
exception is thrown. Maximum length of the text message is 1,021 bytes

val Value expression that replaces parameter slots in the exception message
text

Chapter 7. Procedural SQL (PSQL) Statements

369

The EXCEPTION statement with exception_name throws the user-defined exception with the specified
name. An alternative message text of up to 1,021 bytes can optionally override the exception’s
default message text.

The default exception message can contain slots for parameters that can be filled when throwing
an exception. To pass parameter values to an exception, use the USING clause. Considering, in left-to-
right order, each parameter passed in the exception-raising statement as “the Nth”, with N starting
at 1:

• If the Nth parameter is not passed, its slot is not replaced

• If a NULL parameter is passed, the slot will be replaced with the string “*** null ***”

• If more parameters are passed than are defined in the exception message, the surplus ones are
ignored

• The maximum number of parameters is 9

• The maximum message length, including parameter values, is 1053 bytes

The status vector is generated this code combination isc_except, <exception
number>, isc_formatted_exception, <formatted exception message>, <exception
parameters>.

As a new error code (isc_formatted_exception) is used, the client must be version
3.0, or at least use the firebird.msg from version 3.0, in order to translate the status
vector to a string.

If the message contains a parameter slot number that is greater than 9, the second
and subsequent digits will be treated as literal text. For example @10 will be
interpreted as slot 1 followed by a literal ‘0’.

As an example:

CREATE EXCEPTION ex1
 'something wrong in @ 1 @ 2 @ 3 @ 4 @ 5 @ 6 @ 7 @ 8 @ 9 @ 10 @ 11';
SET TERM ^;
EXECUTE BLOCK AS
BEGIN
 EXCEPTION ex1 USING ('a' , 'b' , 'c' , 'd' , 'e' , 'f' , 'g' , 'h' ,
'i');
END^

This will produce the following output

Statement failed, SQLSTATE = HY000
exception 1
-EX1
-something wrong in abcdefghi a0 a1

Chapter 7. Procedural SQL (PSQL) Statements

370

Exceptions can be handled in a WHEN … DO statement. If an exception is not handled in a module,
then the effects of the actions executed inside this module are cancelled, and the caller program
receives the exception (either the default text, or the custom text).

Within the exception-handling block — and only within it — the caught exception can be re-thrown
by executing the EXCEPTION statement without parameters. If located outside the block, the re-
thrown EXCEPTION call has no effect.

 Custom exceptions are stored in the system table RDB$EXCEPTIONS.

EXCEPTION Examples

1. Throwing an exception upon a condition in the SHIP_ORDER stored procedure:

CREATE OR ALTER PROCEDURE SHIP_ORDER (
 PO_NUM CHAR(8))
AS
 DECLARE VARIABLE ord_stat CHAR(7);
 DECLARE VARIABLE hold_stat CHAR(1);
 DECLARE VARIABLE cust_no INTEGER;
 DECLARE VARIABLE any_po CHAR(8);
BEGIN
 SELECT
 s.order_status,
 c.on_hold,
 c.cust_no
 FROM
 sales s, customer c
 WHERE
 po_number = :po_num AND
 s.cust_no = c.cust_no
 INTO :ord_stat,
 :hold_stat,
 :cust_no;

 IF (ord_stat = 'shipped') THEN
 EXCEPTION order_already_shipped;
 /* Other statements */
END

2. Throwing an exception upon a condition and replacing the original message with an alternative
message:

CREATE OR ALTER PROCEDURE SHIP_ORDER (
 PO_NUM CHAR(8))
AS
 DECLARE VARIABLE ord_stat CHAR(7);
 DECLARE VARIABLE hold_stat CHAR(1);
 DECLARE VARIABLE cust_no INTEGER;

Chapter 7. Procedural SQL (PSQL) Statements

371

 DECLARE VARIABLE any_po CHAR(8);
BEGIN
 SELECT
 s.order_status,
 c.on_hold,
 c.cust_no
 FROM
 sales s, customer c
 WHERE
 po_number = :po_num AND
 s.cust_no = c.cust_no
 INTO :ord_stat,
 :hold_stat,
 :cust_no;

 IF (ord_stat = 'shipped') THEN
 EXCEPTION order_already_shipped
 'Order status is "' || ord_stat || '"';
 /* Other statements */
END

3. Using a parameterized exception:

CREATE EXCEPTION EX_BAD_SP_NAME
 'Name of procedures must start with' '@ 1' ':' '@ 2' '' ;
...
CREATE TRIGGER TRG_SP_CREATE BEFORE CREATE PROCEDURE
AS
 DECLARE SP_NAME VARCHAR(255);
BEGIN
 SP_NAME = RDB$GET_CONTEXT ('DDL_TRIGGER' , 'OBJECT_NAME');
 IF (SP_NAME NOT STARTING 'SP_') THEN
 EXCEPTION EX_BAD_SP_NAME USING ('SP_', SP_NAME);
END

4. Logging an error and re-throwing it in the WHEN block:

CREATE PROCEDURE ADD_COUNTRY (
 ACountryName COUNTRYNAME,
 ACurrency VARCHAR(10))
AS
BEGIN
 INSERT INTO country (country,
 currency)
 VALUES (:ACountryName,
 :ACurrency);
 WHEN ANY DO
 BEGIN
 -- write an error in log

Chapter 7. Procedural SQL (PSQL) Statements

372

 IN AUTONOMOUS TRANSACTION DO
 INSERT INTO ERROR_LOG (PSQL_MODULE,
 GDS_CODE,
 SQL_CODE,
 SQL_STATE)
 VALUES ('ADD_COUNTRY',
 GDSCODE,
 SQLCODE,
 SQLSTATE);
 -- Re-throw exception
 EXCEPTION;
 END
END

See also

CREATE EXCEPTION, WHEN … DO

7.8.4. WHEN … DO

Used for

Catching an exception and handling the error

Available in

PSQL

Syntax

WHEN {<error> [, <error> ...] | ANY}
DO <compound_statement>

<error> ::=
 { EXCEPTION exception_name
 | SQLCODE number
 | GDSCODE errcode
 | SQLSTATE sqlstate_code }

Table 110. WHEN … DO Statement Parameters

Argument Description

exception_name Exception name

number SQLCODE error code

errcode Symbolic GDSCODE error name

sqlstate_code String literal with the SQLSTATE error code

compound_statement A single statement, or a block of statements

The WHEN … DO statement handles Firebird errors and user-defined exceptions. The statement
catches all errors and user-defined exceptions listed after the keyword WHEN keyword. If WHEN is

Chapter 7. Procedural SQL (PSQL) Statements

373

followed by the keyword ANY, the statement catches any error or user-defined exception, even if
they have already been handled in a WHEN block located higher up.

The WHEN … DO block must be located at the very end of a block of statements, before the block’s END
statement.

The keyword DO is followed by a statement, or a block of statements inside a BEGIN … END block, that
handles the exception. The SQLCODE, GDSCODE, and SQLSTATE context variables are available in the
context of this statement or block. The EXCEPTION statement, without parameters, can also be used in
this context to re-throw the error or exception.

Targeting GDSCODE

The argument for the WHEN GDSCODE clause is the symbolic name associated with the internally-
defined exception, such as grant_obj_notfound for GDS error 335544551.

In statement or block of statements of the DO clause, a GDSCODE context variable, containing the
numeric code, becomes available. That numeric code is required if you want to compare a
GDSCODE exception with a targeted error. To compare it with a specific error, you need to use a
numeric values, for example 335544551 for grant_obj_notfound.

Similar context variables are available for SQLCODE and SQLSTATE.

The WHEN … DO statement or block is only executed when one of the events targeted by its
conditions occurs at run-time. If the WHEN … DO statement is executed, even if it actually does
nothing, execution will continue as if no error occurred: the error or user-defined exception
neither terminates nor rolls back the operations of the trigger or stored procedure.

However, if the WHEN … DO statement or block does nothing to handle or resolve the error, the DML
statement (SELECT, INSERT, UPDATE, DELETE, MERGE) that caused the error will be rolled back and none of
the statements below it in the same block of statements are executed.

1. If the error is not caused by one of the DML statements (SELECT, INSERT, UPDATE,
DELETE, MERGE), the entire block of statements will be rolled back, not just the
one that caused an error. Any operations in the WHEN … DO statement will be
rolled back as well. The same limitation applies to the EXECUTE PROCEDURE
statement. Read an interesting discussion of the phenomenon in Firebird
Tracker ticket CORE-4483.

2. In selectable stored procedures, output rows that were already passed to the
client in previous iterations of a FOR SELECT … DO … SUSPEND loop remain
available to the client if an exception is thrown subsequently in the process of
retrieving rows.

Scope of a WHEN … DO Statement

A WHEN … DO statement catches errors and exceptions in the current block of statements. It also
catches similar exceptions in nested blocks, if those exceptions have not been handled in those
nested blocks.

Chapter 7. Procedural SQL (PSQL) Statements

374

http://tracker.firebirdsql.org/browse/CORE-4483

All changes made before the statement that caused the error are visible to a WHEN … DO statement.
However, if you try to log them in an autonomous transaction, those changes are unavailable,
because the transaction where the changes took place is not committed at the point when the
autonomous transaction is started. Example 4, below, demonstrates this behaviour.

When handling exceptions, it is sometimes desirable to handle the exception by
writing a log message to mark the fault and having execution continue past the
faulty record. Logs can be written to regular tables, but there is a problem with
that: the log records will “disappear” if an unhandled error causes the module to
stop executing, and a rollback is performed. Use of external tables can be useful
here, as data written to them is transaction-independent. The linked external file
will still be there, regardless of whether the overall process succeeds or not.

Examples using WHEN…DO

1. Replacing the standard error with a custom one:

CREATE EXCEPTION COUNTRY_EXIST '';
SET TERM ^;
CREATE PROCEDURE ADD_COUNTRY (
 ACountryName COUNTRYNAME,
 ACurrency VARCHAR(10))
AS
BEGIN
 INSERT INTO country (country, currency)
 VALUES (:ACountryName, :ACurrency);

 WHEN SQLCODE -803 DO
 EXCEPTION COUNTRY_EXIST 'Country already exists!';
END^
SET TERM ^;

2. Logging an error and re-throwing it in the WHEN block:

CREATE PROCEDURE ADD_COUNTRY (
 ACountryName COUNTRYNAME,
 ACurrency VARCHAR(10))
AS
BEGIN
 INSERT INTO country (country,
 currency)
 VALUES (:ACountryName,
 :ACurrency);
 WHEN ANY DO
 BEGIN
 -- write an error in log
 IN AUTONOMOUS TRANSACTION DO
 INSERT INTO ERROR_LOG (PSQL_MODULE,

Chapter 7. Procedural SQL (PSQL) Statements

375

 GDS_CODE,
 SQL_CODE,
 SQL_STATE)
 VALUES ('ADD_COUNTRY',
 GDSCODE,
 SQLCODE,
 SQLSTATE);
 -- Re-throw exception
 EXCEPTION;
 END
END

3. Handling several errors in one WHEN block

...
WHEN GDSCODE GRANT_OBJ_NOTFOUND,
 GDSCODE GRANT_FLD_NOTFOUND,
 GDSCODE GRANT_NOPRIV,
 GDSCODE GRANT_NOPRIV_ON_BASE
DO
BEGIN
 EXECUTE PROCEDURE LOG_GRANT_ERROR(GDSCODE);
 EXIT;
END
...

4. Catching errors using the SQLSTATE code

EXECUTE BLOCK
AS
 DECLARE VARIABLE I INT;
BEGIN
 BEGIN
 I = 1/0;
 WHEN SQLSTATE '22003' DO
 EXCEPTION E_CUSTOM_EXCEPTION
 'Numeric value out of range.';
 WHEN SQLSTATE '22012' DO
 EXCEPTION E_CUSTOM_EXCEPTION
 'Division by zero.';
 WHEN SQLSTATE '23000' DO
 EXCEPTION E_CUSTOM_EXCEPTION
 'Integrity constraint violation.';
 END
END

See also

EXCEPTION, CREATE EXCEPTION, SQLCODE and GDSCODE Error Codes and Message Texts and SQLSTATE

Chapter 7. Procedural SQL (PSQL) Statements

376

Codes and Message Texts, GDSCODE, SQLCODE, SQLSTATE

Chapter 7. Procedural SQL (PSQL) Statements

377

Chapter 8. Built-in Scalar Functions

Upgraders: PLEASE READ!

Many functions that were implemented as external functions (UDFs) in earlier versions of
Firebird have been progressively re-implemented as internal (built-in) functions. If some
external function of the same name as a built-in one is declared in your database, it will
remain there and it will override any internal function of the same name.

To make the internal function available, you need either to DROP the UDF, or to use ALTER
EXTERNAL FUNCTION to change the declared name of the UDF.

8.1. Context Functions

8.1.1. RDB$GET_CONTEXT()

Available in

DSQL, PSQL * As a declared UDF it should be available in ESQL

Result type

VARCHAR(255)

Syntax

RDB$GET_CONTEXT ('<namespace>', <varname>)

<namespace> ::= SYSTEM | USER_SESSION | USER_TRANSACTION | DDL_TRIGGER
<varname> ::= A case-sensitive quoted string of max. 80 characters

Table 111. RDB$GET_CONTEXT Function Parameters

Parameter Description

namespace Namespace

varname Variable name. Case-sensitive. Maximum length is 80 characters

Retrieves the value of a context variable from one of the namespaces SYSTEM, USER_SESSION and
USER_TRANSACTION.

The namespaces

The USER_SESSION and USER_TRANSACTION namespaces are initially empty. The user can create and set
variables in them with RDB$SET_CONTEXT() and retrieve them with RDB$GET_CONTEXT(). The SYSTEM
namespace is read-only. The DDL_TRIGGER namespace is only valid in DDL triggers, and is read-only.
It contains a number of predefined variables, shown below.

Return values and error behaviour

If the polled variable exists in the given namespace, its value will be returned as a string of max.

Chapter 8. Built-in Scalar Functions

378

255 characters. If the namespace doesn’t exist or if you try to access a non-existing variable in the
SYSTEM namespace, an error is raised. If you request a non-existing variable in one of the other
namespaces, NULL is returned. Both namespace and variable names must be given as single-quoted,
case-sensitive, non-NULL strings.

The SYSTEM Namespace

Context variables in the SYSTEM namespace

CLIENT_ADDRESS

For TCP, this is the IP address. For XNET, the local process ID. For all other protocols this variable
is NULL.

CLIENT_HOST

The wire protocol host name of remote client. Value is returned for all supported protocols.

CLIENT_PID

Process ID of remote client application.

CLIENT_PROCESS

Process name of remote client application.

CURRENT_ROLE

Same as global CURRENT_ROLE variable.

CURRENT_USER

Same as global CURRENT_USER variable.

DB_NAME

Either the full path to the database or — if connecting via the path is disallowed — its alias.

ENGINE_VERSION

The Firebird engine (server) version.

ISOLATION_LEVEL

The isolation level of the current transaction: 'READ COMMITTED', 'SNAPSHOT' or 'CONSISTENCY'.

LOCK_TIMEOUT

Lock timeout of the current transaction.

NETWORK_PROTOCOL

The protocol used for the connection: 'TCPv4', 'TCPv6', 'WNET', 'XNET' or NULL.

READ_ONLY

Returns 'TRUE' if current transaction is read-only and 'FALSE' otherwise.

SESSION_ID

Same as global CURRENT_CONNECTION variable.

Chapter 8. Built-in Scalar Functions

379

TRANSACTION_ID

Same as global CURRENT_TRANSACTION variable.

WIRE_COMPRESSED

Compression status of the current connection. If the connection is compressed, returns TRUE; if it
is not compressed, returns FALSE. Returns NULL if the connection is embedded.

Introduced in Firebird 3.0.4.

WIRE_ENCRYPTED

Encryption status of the current connection. If the connection is encrypted, returns TRUE; if it is
not encrypted, returns FALSE. Returns NULL if the connection is embedded.

Introduced in Firebird 3.0.4.

The DDL_TRIGGER Namespace

The DDL_TRIGGER namespace is valid only when a DDL trigger is running. Its use is also valid in
stored procedures and functions called by DDL triggers.

The DDL_TRIGGER context works like a stack. Before a DDL trigger is fired, the values relative to the
executed command are pushed onto this stack. After the trigger finishes, the values are popped. So
in the case of cascade DDL statements, when a user DDL command fires a DDL trigger and this
trigger executes another DDL command with EXECUTE STATEMENT, the values of the DDL_TRIGGER
namespace are the ones relative to the command that fired the last DDL trigger on the call stack.

Context variables in the DDL_TRIGGER namespace

EVENT_TYPE

event type (CREATE, ALTER, DROP)

OBJECT_TYPE

object type (TABLE, VIEW, etc)

DDL_EVENT

event name (<ddl event item>), where <ddl_event_item> is EVENT_TYPE || ' ' || OBJECT_TYPE

OBJECT_NAME

metadata object name

OLD_OBJECT_NAME

for tracking the renaming of a domain (see note)

NEW_OBJECT_NAME

for tracking the renaming of a domain (see note)

SQL_TEXT

sql statement text

 ALTER DOMAIN old-name TO new-name sets OLD_OBJECT_NAME and NEW_OBJECT_NAME in

Chapter 8. Built-in Scalar Functions

380

both BEFORE and AFTER triggers. For this command, OBJECT_NAME will have the old
object name in BEFORE triggers, and the new object name in AFTER triggers.

Examples

select rdb$get_context('SYSTEM', 'DB_NAME') from rdb$database

New.UserAddr = rdb$get_context('SYSTEM', 'CLIENT_ADDRESS');

insert into MyTable (TestField)
 values (rdb$get_context('USER_SESSION', 'MyVar'))

See also

RDB$SET_CONTEXT()

8.1.2. RDB$SET_CONTEXT()

Available in

DSQL, PSQL * As a declared UDF it should be available in ESQL

Result type

INTEGER

Syntax

RDB$SET_CONTEXT ('<namespace>', <varname>, <value> | NULL)

<namespace> ::= USER_SESSION | USER_TRANSACTION
<varname> ::= A case-sensitive quoted string of max. 80 characters
<value> ::= A value of any type, as long as it's castable
 to a VARCHAR(255)

Table 112. RDB$SET_CONTEXT Function Parameters

Parameter Description

namespace Namespace

varname Variable name. Case-sensitive. Maximum length is 80 characters

value Data of any type provided it can be cast to VARCHAR(255)

Creates, sets or unsets a variable in one of the user-writable namespaces USER_SESSION and
USER_TRANSACTION.

The namespaces

The USER_SESSION and USER_TRANSACTION namespaces are initially empty. The user can create and set
variables in them with RDB$SET_CONTEXT() and retrieve them with RDB$GET_CONTEXT(). The
USER_SESSION context is bound to the current connection. Variables in USER_TRANSACTION only exist in
the transaction in which they have been set. When the transaction ends, the context and all the

Chapter 8. Built-in Scalar Functions

381

variables defined in it are destroyed.

Return values and error behaviour

The function returns 1 when the variable already existed before the call and 0 when it didn’t. To
remove a variable from a context, set it to NULL. If the given namespace doesn’t exist, an error is
raised. Both namespace and variable names must be entered as single-quoted, case-sensitive, non-
NULL strings.

• The maximum number of variables in any single context is 1000.

• All USER_TRANSACTION variables will survive a ROLLBACK RETAIN (see ROLLBACK
Options) or ROLLBACK TO SAVEPOINT unaltered, no matter at which point during
the transaction they were set.

• Due to its UDF-like nature, RDB$SET_CONTEXT can — in PSQL only — be called like
a void function, without assigning the result, as in the second example above.
Regular internal functions don’t allow this type of use.

Examples

select rdb$set_context('USER_SESSION', 'MyVar', 493) from rdb$database

rdb$set_context('USER_SESSION', 'RecordsFound', RecCounter);

select rdb$set_context('USER_TRANSACTION', 'Savepoints', 'Yes')
 from rdb$database

See also

RDB$GET_CONTEXT()

8.2. Mathematical Functions

8.2.1. ABS()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

Numerical

Syntax

ABS (number)

Table 113. ABS Function Parameter

Chapter 8. Built-in Scalar Functions

382

Parameter Description

number An expression of a numeric type

Returns the absolute value of the argument.

8.2.2. ACOS()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

DOUBLE PRECISION

Syntax

ACOS (number)

Table 114. ACOS Function Parameter

Parameter Description

number An expression of a numeric type within the range [-1, 1]

Returns the arc cosine of the argument.

• The result is an angle in the range [0, pi].

See also

COS(), ASIN(), ATAN()

8.2.3. ACOSH()

Available in

DSQL, PSQL

Result type

DOUBLE PRECISION

Syntax

ACOSH (number)

Table 115. ACOSH Function Parameter

Parameter Description

number Any non-NULL value in the range [1, INF].

Chapter 8. Built-in Scalar Functions

383

Returns the inverse hyperbolic cosine of the argument.

• The result is in the range [0, INF].

See also

COSH(), ASINH(), ATANH()

8.2.4. ASIN()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

DOUBLE PRECISION

Syntax

ASIN (number)

Table 116. ASIN Function Parameter

Parameter Description

number An expression of a numeric type within the range [-1, 1]

Returns the arc sine of the argument.

• The result is an angle in the range [-pi/2, pi/2].

See also

SIN(), ACOS(), ATAN()

8.2.5. ASINH()

Available in

DSQL, PSQL

Result type

DOUBLE PRECISION

Syntax

ASINH (number)

Table 117. ASINH Function Parameter

Chapter 8. Built-in Scalar Functions

384

Parameter Description

number Any non-NULL value in the range [-INF, INF].

Returns the inverse hyperbolic sine of the argument.

• The result is in the range [-INF, INF].

See also

SINH(), ACOSH(), ATANH()

8.2.6. ATAN()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

DOUBLE PRECISION

Syntax

ATAN (number)

Table 118. ATAN Function Parameter

Parameter Description

number An expression of a numeric type

The function ATAN returns the arc tangent of the argument. The result is an angle in the range <-pi/2,
pi/2>.

See also

ATAN2(), TAN(), ACOS(), ASIN()

8.2.7. ATAN2()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

DOUBLE PRECISION

Chapter 8. Built-in Scalar Functions

385

Syntax

ATAN2 (y, x)

Table 119. ATAN2 Function Parameters

Parameter Description

y An expression of a numeric type

x An expression of a numeric type

Returns the angle whose sine-to-cosine ratio is given by the two arguments, and whose sine and
cosine signs correspond to the signs of the arguments. This allows results across the entire circle,
including the angles -pi/2 and pi/2.

• The result is an angle in the range [-pi, pi].

• If x is negative, the result is pi if y is 0, and -pi if y is -0.

• If both y and x are 0, the result is meaningless. Starting with Firebird 3.0, an error will be raised
if both arguments are 0. At v.2.5.4, it is still not fixed in lower versions. For more details, visit
Tracker ticket CORE-3201.

• A fully equivalent description of this function is the following: ATAN2(y, x) is the angle
between the positive X-axis and the line from the origin to the point (x, y). This also makes
it obvious that ATAN2(0, 0) is undefined.

• If x is greater than 0, ATAN2(y, x) is the same as ATAN(y/x).

• If both sine and cosine of the angle are already known, ATAN2(sin, cos) gives the angle.

8.2.8. ATANH()

Available in

DSQL, PSQL

Result type

DOUBLE PRECISION

Syntax

ATANH (number)

Table 120. ATANH Function Parameter

Parameter Description

number Any non-NULL value in the range <-1, 1>.

Returns the inverse hyperbolic tangent of the argument.

Chapter 8. Built-in Scalar Functions

386

http://tracker.firebirdsql.org/browse/CORE-3201

• The result is a number in the range [-INF, INF].

See also

TANH(), ACOSH(), ASINH()

8.2.9. CEIL(), CEILING()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details (Affects CEILING only)

Result type

BIGINT for exact numeric number, or DOUBLE PRECISION for floating point number

Syntax

CEIL[ING] (number)

Table 121. CEIL[ING] Function Parameters

Parameter Description

number An expression of a numeric type

Returns the smallest whole number greater than or equal to the argument.

See also

FLOOR(), ROUND(), TRUNC()

8.2.10. COS()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

DOUBLE PRECISION

Syntax

COS (angle)

Table 122. COS Function Parameter

Chapter 8. Built-in Scalar Functions

387

Parameter Description

angle An angle in radians

Returns an angle’s cosine. The argument must be given in radians.

• Any non-NULL result is — obviously — in the range [-1, 1].

See also

ACOS(), COT(), SIN(), TAN()

8.2.11. COSH()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

DOUBLE PRECISION

Syntax

COSH (number)

Table 123. COSH Function Parameter

Parameter Description

number A number of a numeric type

Returns the hyperbolic cosine of the argument.

• Any non-NULL result is in the range [1, INF].

See also

ACOSH(), SINH(), TANH()

8.2.12. COT()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

DOUBLE PRECISION

Chapter 8. Built-in Scalar Functions

388

Syntax

COT (angle)

Table 124. COT Function Parameter

Parameter Description

angle An angle in radians

Returns an angle’s cotangent. The argument must be given in radians.

See also

COS(), SIN(), TAN()

8.2.13. EXP()

Available in

DSQL, PSQL

Result type

DOUBLE PRECISION

Syntax

EXP (number)

Table 125. EXP Function Parameter

Parameter Description

number A number of a numeric type

Returns the natural exponential, enumber

See also

LN()

8.2.14. FLOOR()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

BIGINT for exact numeric number, or DOUBLE PRECISION for floating point number

Chapter 8. Built-in Scalar Functions

389

Syntax

FLOOR (number)

Table 126. FLOOR Function Parameter

Parameter Description

number An expression of a numeric type

Returns the largest whole number smaller than or equal to the argument.

See also

CEIL(), CEILING(), ROUND(), TRUNC()

8.2.15. LN()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

DOUBLE PRECISION

Syntax

LN (number)

Table 127. LN Function Parameter

Parameter Description

number An expression of a numeric type

Returns the natural logarithm of the argument.

• An error is raised if the argument is negative or 0.

See also

EXP(), LOG(), LOG10()

8.2.16. LOG()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Chapter 8. Built-in Scalar Functions

390

Result type

DOUBLE PRECISION

Syntax

LOG (x, y)

Table 128. LOG Function Parameters

Parameter Description

x Base. An expression of a numeric type

y An expression of a numeric type

Returns the x-based logarithm of y.

• If either argument is 0 or below, an error is raised. (Before 2.5, this would result in NaN, +/-INF or
0, depending on the exact values of the arguments.)

• If both arguments are 1, NaN is returned.

• If x = 1 and y < 1, -INF is returned.

• If x = 1 and y > 1, INF is returned.

See also

POWER(), LN(), LOG10()

8.2.17. LOG10()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

DOUBLE PRECISION

Syntax

LOG10 (number)

Table 129. LOG10 Function Parameter

Parameter Description

number An expression of a numeric type

Returns the 10-based logarithm of the argument.

• An error is raised if the argument is negative or 0. (In versions prior to 2.5, such values would

Chapter 8. Built-in Scalar Functions

391

result in NaN and -INF, respectively.)

See also

POWER(), LN(), LOG()

8.2.18. MOD()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

SMALLINT, INTEGER or BIGINT depending on the type of a. If a is a floating-point type, the result is a
BIGINT.

Syntax

MOD (a, b)

Table 130. MOD Function Parameters

Parameter Description

a An expression of a numeric type

b An expression of a numeric type

Returns the remainder of an integer division.

• Non-integer arguments are rounded before the division takes place. So, “mod(7.5, 2.5)” gives 2
(“mod(8, 3)”), not 0.

8.2.19. PI()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

DOUBLE PRECISION

Syntax

PI ()

Returns an approximation of the value of pi.

Chapter 8. Built-in Scalar Functions

392

8.2.20. POWER()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

DOUBLE PRECISION

Syntax

POWER (x, y)

Table 131. POWER Function Parameters

Parameter Description

x An expression of a numeric type

y An expression of a numeric type

Returns x to the power of y (xy).

See also

EXP(), LOG(), LOG10(), SQRT()

8.2.21. RAND()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

DOUBLE PRECISION

Syntax

RAND ()

Returns a random number between 0 and 1.

8.2.22. ROUND()

Available in

DSQL, PSQL

Chapter 8. Built-in Scalar Functions

393

Possible name conflict

YES → Read details

Result type

INTEGER, (scaled) BIGINT or DOUBLE PRECISION

Syntax

ROUND (number [, scale])

Table 132. ROUND Function Parameters

Parameter Description

number An expression of a numeric type

scale An integer specifying the number of decimal places toward which
rounding is to be performed, e.g.:

• 2 for rounding to the nearest multiple of 0.01

• 1 for rounding to the nearest multiple of 0.1

• 0 for rounding to the nearest whole number

• -1 for rounding to the nearest multiple of 10

• -2 for rounding to the nearest multiple of 100

Rounds a number to the nearest integer. If the fractional part is exactly 0.5, rounding is upward for
positive numbers and downward for negative numbers. With the optional scale argument, the
number can be rounded to powers-of-ten multiples (tens, hundreds, tenths, hundredths, etc.)
instead of just integers.

If you are used to the behaviour of the external function ROUND, please notice that
the internal function always rounds halves away from zero, i.e. downward for
negative numbers.

ROUND Examples

If the scale argument is present, the result usually has the same scale as the first argument:

ROUND(123.654, 1) -- returns 123.700 (not 123.7)
ROUND(8341.7, -3) -- returns 8000.0 (not 8000)
ROUND(45.1212, 0) -- returns 45.0000 (not 45)

Otherwise, the result scale is 0:

ROUND(45.1212) -- returns 45

See also

Chapter 8. Built-in Scalar Functions

394

CEIL(), CEILING(), FLOOR(), TRUNC()

8.2.23. SIGN()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

SMALLINT

Syntax

SIGN (number)

Table 133. SIGN Function Parameter

Parameter Description

number An expression of a numeric type

Returns the sign of the argument: -1, 0 or 1.

8.2.24. SIN()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

DOUBLE PRECISION

Syntax

SIN (angle)

Table 134. SIN Function Parameter

Parameter Description

angle An angle, in radians

Returns an angle’s sine. The argument must be given in radians.

• Any non-NULL result is — obviously — in the range [-1, 1].

See also

Chapter 8. Built-in Scalar Functions

395

ASIN(), COS(), COT(), TAN()

8.2.25. SINH()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

DOUBLE PRECISION

Syntax

SINH (number)

Table 135. SINH Function Parameter

Parameter Description

number An expression of a numeric type

Returns the hyperbolic sine of the argument.

See also

ASINH(), COSH(), TANH()

8.2.26. SQRT()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

DOUBLE PRECISION

Syntax

SQRT (number)

Table 136. SQRT Function Parameter

Parameter Description

number An expression of a numeric type

Returns the square root of the argument.

Chapter 8. Built-in Scalar Functions

396

• If number is negative, an error is raised.

See also

POWER()

8.2.27. TAN()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

DOUBLE PRECISION

Syntax

TAN (angle)

Table 137. TAN Function Parameter

Parameter Description

angle An angle, in radians

Returns an angle’s tangent. The argument must be given in radians.

See also

ATAN(), ATAN2(), COS(), COT(), SIN(), TAN()

8.2.28. TANH()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

DOUBLE PRECISION

Syntax

TANH (number)

Table 138. TANH Function Parameters

Parameter Description

number An expression of a numeric type

Chapter 8. Built-in Scalar Functions

397

Returns the hyperbolic tangent of the argument.

• Due to rounding, any non-NULL result is in the range [-1, 1] (mathematically, it’s <-1, 1>).

See also

ATANH(), COSH(), TANH()

8.2.29. TRUNC()

Available in

DSQL, PSQL

Result type

INTEGER, (scaled) BIGINT or DOUBLE PRECISION

Syntax

TRUNC (number [, scale])

Table 139. TRUNC Function Parameters

Parameter Description

number An expression of a numeric type

scale An integer specifying the number of decimal places toward which
truncating is to be performed, e.g.:

• 2 for truncating to the nearest multiple of 0.01

• 1 for truncating to the nearest multiple of 0.1

• 0 for truncating to the nearest whole number

• -1 for truncating to the nearest multiple of 10

• -2 for truncating to the nearest multiple of 100

Returns the integer part of a number. With the optional scale argument, the number can be
truncated to powers-of-ten multiples (tens, hundreds, tenths, hundredths, etc.) instead of just
integers.

• If the scale argument is present, the result usually has the same scale as the
first argument, e.g.

◦ TRUNC(789.2225, 2) returns 789.2200 (not 789.22)

◦ TRUNC(345.4, -2) returns 300.0 (not 300)

◦ TRUNC(-163.41, 0) returns -163.00 (not -163)

• Otherwise, the result scale is 0:

◦ TRUNC(-163.41) returns -163

Chapter 8. Built-in Scalar Functions

398

If you are used to the behaviour of the external function TRUNCATE, please notice
that the internal function TRUNC always truncates toward zero, i.e. upward for
negative numbers.

See also

CEIL(), CEILING(), FLOOR(), ROUND()

8.3. String Functions

8.3.1. ASCII_CHAR()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

CHAR(1) CHARACTER SET NONE

Syntax

ASCII_CHAR (code)

Table 140. ASCII_CHAR Function Parameter

Parameter Description

code An integer within the range from 0 to 255

Returns the ASCII character corresponding to the number passed in the argument.

• If you are used to the behaviour of the ASCII_CHAR UDF, which returns an empty

string if the argument is 0, please notice that the internal function correctly
returns a character with ASCII code 0 here.

8.3.2. ASCII_VAL()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

SMALLINT

Chapter 8. Built-in Scalar Functions

399

https://www.firebirdsql.org/file/documentation/reference_manuals/reference_material/html/langrefupd25-udf-truncate.html
https://www.firebirdsql.org/file/documentation/reference_manuals/reference_material/html/langrefupd25-udf-truncate.html

Syntax

ASCII_VAL (ch)

Table 141. ASCII_VAL Function Parameter

Parameter Description

ch A string of the [VAR]CHAR data type or a text BLOB with the maximum size
of 32,767 bytes

Returns the ASCII code of the character passed in.

• If the argument is a string with more than one character, the ASCII code of the first character is
returned.

• If the argument is an empty string, 0 is returned.

• If the argument is NULL, NULL is returned.

• If the first character of the argument string is multi-byte, an error is raised. (A bug in Firebird
2.1 - 2.1.3 and 2.5.0 causes an error to be raised if any character in the string is multi-byte. This
is fixed in versions 2.1.4 and 2.5.1.)

8.3.3. BIT_LENGTH()

Available in

DSQL, PSQL

Result type

INTEGER

Syntax

BIT_LENGTH (string)

Table 142. BIT_LENGTH Function Parameter

Parameter Description

string An expression of a string type

Gives the length in bits of the input string. For multi-byte character sets, this may be less than the
number of characters times 8 times the “formal” number of bytes per character as found in
RDB$CHARACTER_SETS.

With arguments of type CHAR, this function takes the entire formal string length (i.e.
the declared length of a field or variable) into account. If you want to obtain the
“logical” bit length, not counting the trailing spaces, right-TRIM the argument before
passing it to BIT_LENGTH.

BLOB support

Chapter 8. Built-in Scalar Functions

400

Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.

BIT_LENGTH Examples

select bit_length('Hello!') from rdb$database
-- returns 48

select bit_length(_iso8859_1 'Grüß di!') from rdb$database
-- returns 64: ü and ß take up one byte each in ISO8859_1

select bit_length
 (cast (_iso8859_1 'Grüß di!' as varchar(24) character set utf8))
from rdb$database
-- returns 80: ü and ß take up two bytes each in UTF8

select bit_length
 (cast (_iso8859_1 'Grüß di!' as char(24) character set utf8))
from rdb$database
-- returns 208: all 24 CHAR positions count, and two of them are 16-bit

See also

OCTET_LENGTH(), CHAR_LENGTH(), CHARACTER_LENGTH()

8.3.4. CHAR_LENGTH(), CHARACTER_LENGTH()

Available in

DSQL, PSQL

Result type

INTEGER

Syntax

 CHAR_LENGTH (string)
| CHARACTER_LENGTH (string)

Table 143. CHAR[ACTER]_LENGTH Function Parameter

Parameter Description

string An expression of a string type

Gives the length in characters of the input string.

• With arguments of type CHAR, this function returns the formal string length (i.e.
the declared length of a field or variable). If you want to obtain the “logical”
length, not counting the trailing spaces, right-TRIM the argument before passing
it to CHAR[ACTER]_LENGTH.

• BLOB support: Since Firebird 2.1, this function fully supports text BLOBs of any

Chapter 8. Built-in Scalar Functions

401

length and character set.

CHAR_LENGTH Examples

select char_length('Hello!') from rdb$database
-- returns 6

select char_length(_iso8859_1 'Grüß di!') from rdb$database
-- returns 8

select char_length
 (cast (_iso8859_1 'Grüß di!' as varchar(24) character set utf8))
from rdb$database
-- returns 8; the fact that ü and ß take up two bytes each is irrelevant

select char_length
 (cast (_iso8859_1 'Grüß di!' as char(24) character set utf8))
from rdb$database
-- returns 24: all 24 CHAR positions count

See also

BIT_LENGTH(), OCTET_LENGTH()

8.3.5. HASH()

Available in

DSQL, PSQL

Result type

BIGINT

Syntax

HASH (string)

Table 144. HASH Function Parameter

Parameter Description

string An expression of a string type

Returns a hash value for the input string. This function fully supports text BLOBs of any length and
character set.

8.3.6. LEFT()

Available in

DSQL, PSQL

Chapter 8. Built-in Scalar Functions

402

Result type

VARCHAR or BLOB

Syntax

LEFT (string, length)

Table 145. LEFT Function Parameters

Parameter Description

string An expression of a string type

length Integer expression. Defines the number of characters to return

Returns the leftmost part of the argument string. The number of characters is given in the second
argument.

• This function fully supports text BLOBs of any length, including those with a multi-byte character
set.

• If string is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with n the length of
the input string.

• If the length argument exceeds the string length, the input string is returned unchanged.

• If the length argument is not a whole number, bankers' rounding (round-to-even) is applied, i.e.
0.5 becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

See also

RIGHT()

8.3.7. LOWER()

Available in

DSQL, ESQL, PSQL

Possible name conflict

YES → Read details below

Result type

(VAR)CHAR or BLOB

Syntax

LOWER (string)

Table 146. LOWER Function ParameterS

Parameter Description

string An expression of a string type

Chapter 8. Built-in Scalar Functions

403

Returns the lower-case equivalent of the input string. The exact result depends on the character set.
With ASCII or NONE for instance, only ASCII characters are lowercased; with OCTETS, the entire string
is returned unchanged. Since Firebird 2.1 this function also fully supports text BLOBs of any length
and character set.

Name Clash

Because LOWER is a reserved word, the internal function will take precedence even
if the external function by that name has also been declared. To call the (inferior!)
external function, use double-quotes and the exact capitalisation, as in
"LOWER"(string).

LOWER Examples

select Sheriff from Towns
 where lower(Name) = 'cooper''s valley'

See also

UPPER()

8.3.8. LPAD()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

VARCHAR or BLOB

Syntax

LPAD (str, endlen [, padstr])

Table 147. LPAD Function Parameters

Parameter Description

str An expression of a string type

endlen Output string length

padstr The character or string to be used to pad the source string up to the
specified length. Default is space (“' '”)

Left-pads a string with spaces or with a user-supplied string until a given length is reached.

• This function fully supports text BLOBs of any length and character set.

• If str is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(endlen).

Chapter 8. Built-in Scalar Functions

404

• If padstr is given and equals '' (empty string), no padding takes place.

• If endlen is less than the current string length, the string is truncated to endlen, even if padstr is
the empty string.

In Firebird 2.1-2.1.3, all non-BLOB results were of type VARCHAR(32765), which made
it advisable to cast them to a more modest size. This is no longer the case.

When used on a BLOB, this function may need to load the entire object into memory.
Although it does try to limit memory consumption, this may affect performance if
huge BLOBs are involved.

LPAD Examples

lpad ('Hello', 12) -- returns ' Hello'
lpad ('Hello', 12, '-') -- returns '-------Hello'
lpad ('Hello', 12, '') -- returns 'Hello'
lpad ('Hello', 12, 'abc') -- returns 'abcabcaHello'
lpad ('Hello', 12, 'abcdefghij') -- returns 'abcdefgHello'
lpad ('Hello', 2) -- returns 'He'
lpad ('Hello', 2, '-') -- returns 'He'
lpad ('Hello', 2, '') -- returns 'He'

See also

RPAD()

8.3.9. OCTET_LENGTH()

Available in

DSQL, PSQL

Result type

INTEGER

Syntax

OCTET_LENGTH (string)

Table 148. OCTET_LENGTH Function Parameter

Parameter Description

string An expression of a string type

Gives the length in bytes (octets) of the input string. For multi-byte character sets, this may be less
than the number of characters times the “formal” number of bytes per character as found in
RDB$CHARACTER_SETS.

 With arguments of type CHAR, this function takes the entire formal string length (i.e.

Chapter 8. Built-in Scalar Functions

405

the declared length of a field or variable) into account. If you want to obtain the
“logical” byte length, not counting the trailing spaces, right-TRIM the argument
before passing it to OCTET_LENGTH.

BLOB support

Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.

OCTET_LENGTH Examples

select octet_length('Hello!') from rdb$database
-- returns 6

select octet_length(_iso8859_1 'Grüß di!') from rdb$database
-- returns 8: ü and ß take up one byte each in ISO8859_1

select octet_length
 (cast (_iso8859_1 'Grüß di!' as varchar(24) character set utf8))
from rdb$database
-- returns 10: ü and ß take up two bytes each in UTF8

select octet_length
 (cast (_iso8859_1 'Grüß di!' as char(24) character set utf8))
from rdb$database
-- returns 26: all 24 CHAR positions count, and two of them are 2-byte

See also

BIT_LENGTH(), CHAR_LENGTH(), CHARACTER_LENGTH()

8.3.10. OVERLAY()

Available in

DSQL, PSQL

Result type

VARCHAR or BLOB

Syntax

OVERLAY (string PLACING replacement FROM pos [FOR length])

Table 149. OVERLAY Function Parameters

Parameter Description

string The string into which the replacement takes place

replacement Replacement string

pos The position from which replacement takes place (starting position)

Chapter 8. Built-in Scalar Functions

406

Parameter Description

length The number of characters that are to be overwritten

OVERLAY() overwrites part of a string with another string. By default, the number of characters
removed from (overwritten in) the host string equals the length of the replacement string. With the
optional fourth argument, a different number of characters can be specified for removal.

• This function supports BLOBs of any length.

• If string or replacement is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with n
the sum of the lengths of string and replacement.

• As usual in SQL string functions, pos is 1-based.

• If pos is beyond the end of string, replacement is placed directly after string.

• If the number of characters from pos to the end of string is smaller than the length of
replacement (or than the length argument, if present), string is truncated at pos and replacement
placed after it.

• The effect of a “FOR 0” clause is that replacement is simply inserted into string.

• If any argument is NULL, the result is NULL.

• If pos or length is not a whole number, bankers' rounding (round-to-even) is applied, i.e. 0.5
becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

When used on a BLOB, this function may need to load the entire object into memory.
This may affect performance if huge BLOBs are involved.

OVERLAY Examples

overlay ('Goodbye' placing 'Hello' from 2) -- returns 'GHelloe'
overlay ('Goodbye' placing 'Hello' from 5) -- returns 'GoodHello'
overlay ('Goodbye' placing 'Hello' from 8) -- returns 'GoodbyeHello'
overlay ('Goodbye' placing 'Hello' from 20) -- returns 'GoodbyeHello'

overlay ('Goodbye' placing 'Hello' from 2 for 0) -- r. 'GHellooodbye'
overlay ('Goodbye' placing 'Hello' from 2 for 3) -- r. 'GHellobye'
overlay ('Goodbye' placing 'Hello' from 2 for 6) -- r. 'GHello'
overlay ('Goodbye' placing 'Hello' from 2 for 9) -- r. 'GHello'

overlay ('Goodbye' placing '' from 4) -- returns 'Goodbye'
overlay ('Goodbye' placing '' from 4 for 3) -- returns 'Gooe'
overlay ('Goodbye' placing '' from 4 for 20) -- returns 'Goo'

overlay ('' placing 'Hello' from 4) -- returns 'Hello'
overlay ('' placing 'Hello' from 4 for 0) -- returns 'Hello'
overlay ('' placing 'Hello' from 4 for 20) -- returns 'Hello'

See also

REPLACE()

Chapter 8. Built-in Scalar Functions

407

8.3.11. POSITION()

Available in

DSQL, PSQL

Result type

INTEGER

Syntax

 POSITION (substr IN string)
| POSITION (substr, string [, startpos])

Table 150. POSITION Function Parameters

Parameter Description

substr The substring whose position is to be searched for

string The string which is to be searched

startpos The position in string where the search is to start

Returns the (1-based) position of the first occurrence of a substring in a host string. With the
optional third argument, the search starts at a given offset, disregarding any matches that may
occur earlier in the string. If no match is found, the result is 0.

• The optional third argument is only supported in the second syntax (comma
syntax).

• The empty string is considered a substring of every string. Therefore, if substr
is '' (empty string) and string is not NULL, the result is:

◦ 1 if startpos is not given;

◦ startpos if startpos lies within string;

◦ 0 if startpos lies beyond the end of string.

Notice: A bug in Firebird 2.1 - 2.1.3 and 2.5.0 causes POSITION to always return 1
if substr is the empty string. This is fixed in 2.1.4 and 2.5.1.

• This function fully supports text BLOBs of any size and character set.

When used on a BLOB, this function may need to load the entire object into memory.
This may affect performance if huge BLOBs are involved.

POSITION Examples

position ('be' in 'To be or not to be') -- returns 4
position ('be', 'To be or not to be') -- returns 4
position ('be', 'To be or not to be', 4) -- returns 4

Chapter 8. Built-in Scalar Functions

408

position ('be', 'To be or not to be', 8) -- returns 17
position ('be', 'To be or not to be', 18) -- returns 0
position ('be' in 'Alas, poor Yorick!') -- returns 0

See also

SUBSTRING()

8.3.12. REPLACE()

Available in

DSQL, PSQL

Result type

VARCHAR or BLOB

Syntax

REPLACE (str, find, repl)

Table 151. REPLACE Function Parameters

Parameter Description

str The string in which the replacement is to take place

find The string to search for

repl The replacement string

Replaces all occurrences of a substring in a string.

• This function fully supports text BLOBs of any length and character set.

• If any argument is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with n
calculated from the lengths of str, find and repl in such a way that even the maximum possible
number of replacements won’t overflow the field.

• If find is the empty string, str is returned unchanged.

• If repl is the empty string, all occurrences of find are deleted from str.

• If any argument is NULL, the result is always NULL, even if nothing would have been replaced.

When used on a BLOB, this function may need to load the entire object into memory.
This may affect performance if huge BLOBs are involved.

REPLACE Examples

replace ('Billy Wilder', 'il', 'oog') -- returns 'Boogly Woogder'
replace ('Billy Wilder', 'il', '') -- returns 'Bly Wder'
replace ('Billy Wilder', null, 'oog') -- returns NULL
replace ('Billy Wilder', 'il', null) -- returns NULL

Chapter 8. Built-in Scalar Functions

409

replace ('Billy Wilder', 'xyz', null) -- returns NULL (!)
replace ('Billy Wilder', 'xyz', 'abc') -- returns 'Billy Wilder'
replace ('Billy Wilder', '', 'abc') -- returns 'Billy Wilder'

See also

OVERLAY(), SUBSTRING(), POSITION(), CHAR_LENGTH(), CHARACTER_LENGTH()

8.3.13. REVERSE()

Available in

DSQL, PSQL

Result type

VARCHAR

Syntax

REVERSE (string)

Table 152. REVERSE Function Parameter

Parameter Description

string An expression of a string type

Returns a string backwards.

REVERSE Examples

reverse ('spoonful') -- returns 'lufnoops'
reverse ('Was it a cat I saw?') -- returns '?was I tac a ti saW'

This function comes in very handy if you want to group, search or order on string
endings, e.g. when dealing with domain names or email addresses:

create index ix_people_email on people
 computed by (reverse(email));

select * from people
 where reverse(email) starting with reverse('.br');

8.3.14. RIGHT()

Available in

DSQL, PSQL

Possible name conflict

Chapter 8. Built-in Scalar Functions

410

YES → Read details

Result type

VARCHAR or BLOB

Syntax

RIGHT (string, length)

Table 153. RIGHT Function Parameters

Parameter Description

string An expression of a string type

length Integer. Defines the number of characters to return

Returns the rightmost part of the argument string. The number of characters is given in the second
argument.

• This function supports text BLOBs of any length, but has a bug in versions 2.1 - 2.1.3 and 2.5.0 that
makes it fail with text BLOBs larger than 1024 bytes that have a multi-byte character set. This has
been fixed in versions 2.1.4 and 2.5.1.

• If string is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with n the length of
the input string.

• If the length argument exceeds the string length, the input string is returned unchanged.

• If the length argument is not a whole number, bankers' rounding (round-to-even) is applied, i.e.
0.5 becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

When used on a BLOB, this function may need to load the entire object into memory.
This may affect performance if huge BLOBs are involved.

See also

LEFT(), SUBSTRING()

8.3.15. RPAD()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

VARCHAR or BLOB

Chapter 8. Built-in Scalar Functions

411

Syntax

RPAD (str, endlen [, padstr])

Table 154. RPAD Function Parameters

Parameter Description

str An expression of a string type

endlen Output string length

endlen The character or string to be used to pad the source string up to the
specified length. Default is space (' ')

Right-pads a string with spaces or with a user-supplied string until a given length is reached.

• This function fully supports text BLOBs of any length and character set.

• If str is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(endlen).

• If padstr is given and equals '' (empty string), no padding takes place.

• If endlen is less than the current string length, the string is truncated to endlen, even if padstr is
the empty string.

In Firebird 2.1-2.1.3, all non-BLOB results were of type VARCHAR(32765), which made
it advisable to cast them to a more modest size. This is no longer the case.

When used on a BLOB, this function may need to load the entire object into memory.
Although it does try to limit memory consumption, this may affect performance if
huge BLOBs are involved.

RPAD Examples

rpad ('Hello', 12) -- returns 'Hello '
rpad ('Hello', 12, '-') -- returns 'Hello-------'
rpad ('Hello', 12, '') -- returns 'Hello'
rpad ('Hello', 12, 'abc') -- returns 'Helloabcabca'
rpad ('Hello', 12, 'abcdefghij') -- returns 'Helloabcdefg'
rpad ('Hello', 2) -- returns 'He'
rpad ('Hello', 2, '-') -- returns 'He'
rpad ('Hello', 2, '') -- returns 'He'

See also

LPAD()

8.3.16. SUBSTRING()

Available in

DSQL, PSQL

Chapter 8. Built-in Scalar Functions

412

Result types

VARCHAR or BLOB

Syntax

SUBSTRING (<substring-args>)

<substring-args> ::=
 str FROM startpos [FOR length]
 | str SIMILAR <similar-pattern> ESCAPE <escape>

<similar-pattern> ::=
 <similar-pattern-R1>
 <escape> " <similar-pattern-R2> <escape> "
 <similar-pattern-R3>

Table 155. SUBSTRING Function Parameters

Parameter Description

str An expression of a string type

startpos Integer expression, the position from which to start retrieving the
substring

length The number of characters to retrieve after the startpos

similar-pattern SQL regular expression pattern to search for the substring

escape Escape character

Returns a string’s substring starting at the given position, either to the end of the string or with a
given length, or extracts a substring using an SQL regular expression pattern.

If any argument is NULL, the result is also NULL.

When used on a BLOB, this function may need to load the entire object into memory.
Although it does try to limit memory consumption, this may affect performance if
huge BLOBs are involved.

Positional SUBSTRING

In its simple, positional form (with FROM), this function returns the substring starting at character
position startpos (the first position being 1). Without the FOR argument, it returns all the remaining
characters in the string. With FOR, it returns length characters or the remainder of the string,
whichever is shorter.

The function fully supports binary and text BLOBs of any length, and with any character set. If str is
a BLOB, the result is also a BLOB. For any other argument type, the result is a VARCHAR.

For non-BLOB arguments, the width of the result field is always equal to the length of str, regardless
of startpos and length. So, substring('pinhead' from 4 for 2) will return a VARCHAR(7) containing

Chapter 8. Built-in Scalar Functions

413

the string 'he'.

Example

insert into AbbrNames(AbbrName)
 select substring(LongName from 1 for 3) from LongNames

Regular Expression SUBSTRING

In the regular expression form (with SIMILAR), the SUBSTRING function returns part of the string
matching an SQL regular expression pattern. If no match is found, NULL is returned.

The SIMILAR pattern is formed from three SQL regular expression patterns, R1, R2 and R3. The
entire pattern takes the form of R1 || '<escape>"' || R2 || '<escape>"' || R3, where <escape> is
the escape character defined in the ESCAPE clause. R2 is the pattern that matches the substring to
extract, and is enclosed between escaped double quotes (<escape>", e.g. “#"” with escape character ‘
#’). R1 matches the prefix of the string, and R3 the suffix of the string. Both R1 and R3 are optional
(they can be empty), but the pattern must match the entire string. In other words, it is not sufficient
to specify a pattern that only finds the substring to extract.

The escaped double quotes around R2 can be compared to defining a single
capture group in more common regular expression syntax like PCRE. That is, the
full pattern is equivalent to R1(R2)R3, which must match the entire input string,
and the capture group is the substring to be returned.

If any one of R1, R2, or R3 is not a zero-length string and does not have the format
of an SQL regular expression, then an exception is raised.

The full SQL regular expression format is described in Syntax: SQL Regular Expressions

Examples

substring('abcabc' similar 'a#"bcab#"c' escape '#') -- bcab
substring('abcabc' similar 'a#"%#"c' escape '#') -- bcab
substring('abcabc' similar '_#"%#"_' escape '#') -- bcab
substring('abcabc' similar '#"(abc)*#"' escape '#') -- abcabc
substring('abcabc' similar '#"abc#"' escape '#') -- <null>

See also

POSITION(), LEFT(), RIGHT(), CHAR_LENGTH(), CHARACTER_LENGTH(), SIMILAR TO

8.3.17. TRIM()

Available in

DSQL, PSQL

Result type

VARCHAR or BLOB

Chapter 8. Built-in Scalar Functions

414

Syntax

TRIM ([<adjust>] str)

<adjust> ::= {[<where>] [what]} FROM

<where> ::= BOTH | LEADING | TRAILING

Table 156. TRIM Function Parameters

Parameter Description

str An expression of a string type

where The position the substring is to be removed from — BOTH | LEADING |
TRAILING. BOTH is the default

what The substring that should be removed (multiple times if there are several
matches) from the beginning, the end, or both sides of the input string str.
By default it is space (' ')

Removes leading and/or trailing spaces (or optionally other strings) from the input string. Since
Firebird 2.1 this function fully supports text BLOBs of any length and character set.

• If str is a BLOB, the result is a BLOB. Otherwise, it is a VARCHAR(n) with n the
formal length of str.

• Since Firebird 3.0, the maximum size of what — if a `BLOB — was increased to
4GB, in previous versions the value of what could not exceed 32767 bytes.

When used on a BLOB, this function may need to load the entire object into memory.
This may affect performance if huge BLOBs are involved.

TRIM Examples

select trim (' Waste no space ') from rdb$database
-- returns 'Waste no space'

select trim (leading from ' Waste no space ') from rdb$database
-- returns 'Waste no space '

select trim (leading '.' from ' Waste no space ') from rdb$database
-- returns ' Waste no space '

select trim (trailing '!' from 'Help!!!!') from rdb$database
-- returns 'Help'

select trim ('la' from 'lalala I love you Ella') from rdb$database
-- returns ' I love you El'

select trim ('la' from 'Lalala I love you Ella') from rdb$database

Chapter 8. Built-in Scalar Functions

415

-- returns 'Lalala I love you El'

8.3.18. UPPER()

Available in

DSQL, ESQL, PSQL

Result type

(VAR)CHAR or BLOB

Syntax

UPPER (str)

Table 157. UPPER Function Parameter

Parameter Description

str An expression of a string type

Returns the upper-case equivalent of the input string. The exact result depends on the character set.
With ASCII or NONE for instance, only ASCII characters are uppercased; with OCTETS, the entire string
is returned unchanged. Since Firebird 2.1 this function also fully supports text BLOBs of any length
and character set.

UPPER Examples

select upper(_iso8859_1 'Débâcle')
from rdb$database
-- returns 'DÉBÂCLE' (before Firebird 2.0: 'DéBâCLE')

select upper(_iso8859_1 'Débâcle' collate fr_fr)
from rdb$database
-- returns 'DEBACLE', following French uppercasing rules

See also

LOWER()

8.4. Date and Time Functions

8.4.1. DATEADD()

Available in

DSQL, PSQL

Result type

DATE, TIME or TIMESTAMP

Chapter 8. Built-in Scalar Functions

416

Syntax

DATEADD (<args>)

<args> ::=
 <amount> <unit> TO <datetime>
 | <unit>, <amount>, <datetime>

<amount> ::= an integer expression (negative to subtract)
<unit> ::=
 YEAR | MONTH | WEEK | DAY
 | HOUR | MINUTE | SECOND | MILLISECOND
<datetime> ::= a DATE, TIME or TIMESTAMP expression

Table 158. DATEADD Function Parameters

Parameter Description

amount An integer expression of the SMALLINT, INTEGER or BIGINT type. For unit
MILLISECOND, the type is NUMERIC(18, 1). A negative value is subtracted.

unit Date/time unit

datetime An expression of the DATE, TIME or TIMESTAMP type

Adds the specified number of years, months, weeks, days, hours, minutes, seconds or milliseconds
to a date/time value.

• The result type is determined by the third argument.

• With TIMESTAMP and DATE arguments, all units can be used.

• With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND can be used.

Examples of DATEADD

dateadd (28 day to current_date)
dateadd (-6 hour to current_time)
dateadd (month, 9, DateOfConception)
dateadd (-38 week to DateOfBirth)
dateadd (minute, 90, time 'now')
dateadd (? year to date '11-Sep-1973')

select
 cast(dateadd(-1 * extract(millisecond from ts) millisecond to ts) as varchar(30)) as
t,
 extract(millisecond from ts) as ms
from (
 select timestamp '2014-06-09 13:50:17.4971' as ts
 from rdb$database
) a

Chapter 8. Built-in Scalar Functions

417

T MS
------------------------ ------
2014-06-09 13:50:17.0000 497.1

See also

DATEDIFF(), Operations Using Date and Time Values

8.4.2. DATEDIFF()

Available in

DSQL, PSQL

Result type

BIGINT, or — since Firebird 3.0.8 — NUMERIC(18,1) for MILLISECOND

Syntax

DATEDIFF (<args>)

<args> ::=
 <unit> FROM <moment1> TO <moment2>
 | <unit>, <moment1>, <moment2>

<unit> ::=
 YEAR | MONTH | WEEK | DAY
 | HOUR | MINUTE | SECOND | MILLISECOND
<momentN> ::= a DATE, TIME or TIMESTAMP expression

Table 159. DATEDIFF Function Parameters

Parameter Description

unit Date/time unit

moment1 An expression of the DATE, TIME or TIMESTAMP type

moment2 An expression of the DATE, TIME or TIMESTAMP type

Returns the number of years, months, weeks, days, hours, minutes, seconds or milliseconds elapsed
between two date/time values. (The WEEK unit is new in 2.5.)

• DATE and TIMESTAMP arguments can be combined. No other mixes are allowed.

• With TIMESTAMP and DATE arguments, all units can be used. (Prior to Firebird 2.5, units smaller
than DAY were disallowed for DATEs.)

• With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND can be used.

Computation

• DATEDIFF doesn’t look at any smaller units than the one specified in the first argument. As a
result,

Chapter 8. Built-in Scalar Functions

418

◦ datediff (year, date '1-Jan-2009', date '31-Dec-2009') returns 0, but

◦ datediff (year, date '31-Dec-2009', date '1-Jan-2010') returns 1

• It does, however, look at all the bigger units. So:

◦ datediff (day, date '26-Jun-1908', date '11-Sep-1973') returns 23818

• A negative result value indicates that moment2 lies before moment1.

DATEDIFF Examples

datediff (hour from current_timestamp to timestamp '12-Jun-2059 06:00')
datediff (minute from time '0:00' to current_time)
datediff (month, current_date, date '1-1-1900')
datediff (day from current_date to cast(? as date))

See also

DATEADD(), Operations Using Date and Time Values

8.4.3. EXTRACT()

Available in

DSQL, ESQL, PSQL

Result type

SMALLINT or NUMERIC

Syntax

EXTRACT (<part> FROM <datetime>)

<part> ::=
 YEAR | MONTH | WEEK
 | DAY | WEEKDAY | YEARDAY
 | HOUR | MINUTE | SECOND | MILLISECOND
<datetime> ::= a DATE, TIME or TIMESTAMP expression

Table 160. EXTRACT Function Parameters

Parameter Description

part Date/time unit

datetime An expression of the DATE, TIME or TIMESTAMP type

Extracts and returns an element from a DATE, TIME or TIMESTAMP expression. This function was
already added in InterBase 6, but not documented in the Language Reference at the time.

Returned Data Types and Ranges

The returned data types and possible ranges are shown in the table below. If you try to extract a

Chapter 8. Built-in Scalar Functions

419

part that isn’t present in the date/time argument (e.g. SECOND from a DATE or YEAR from a TIME), an
error occurs.

Table 161. Types and ranges of EXTRACT results

Part Type Range Comment

YEAR SMALLINT 1-9999

MONTH SMALLINT 1-12

WEEK SMALLINT 1-53

DAY SMALLINT 1-31

WEEKDAY SMALLINT 0-6 0 = Sunday

YEARDAY SMALLINT 0-365 0 = January 1

HOUR SMALLINT 0-23

MINUTE SMALLINT 0-59

SECOND NUMERIC(9,4) 0.0000-59.9999 includes millisecond as fraction

MILLISECOND NUMERIC(9,1) 0.0-999.9 broken in 2.1, 2.1.1

MILLISECOND

Firebird 2.1 and up support extraction of the millisecond from a TIME or TIMESTAMP. The datatype
returned is NUMERIC(9,1).

If you extract the millisecond from CURRENT_TIME, be aware that this variable
defaults to seconds precision, so the result will always be 0. Extract from
CURRENT_TIME(3) or CURRENT_TIMESTAMP to get milliseconds precision.

WEEK

Firebird 2.1 and up support extraction of the ISO-8601 week number from a DATE or TIMESTAMP. ISO-
8601 weeks start on a Monday and always have the full seven days. Week 1 is the first week that has
a majority (at least 4) of its days in the new year. The first 1-3 days of the year may belong to the last
week (52 or 53) of the previous year. Likewise, a year’s final 1-3 days may belong to week 1 of the
following year.

Be careful when combining WEEK and YEAR results. For instance, 30 December 2008
lies in week 1 of 2009, so extract(week from date '30 Dec 2008') returns 1.
However, extracting YEAR always gives the calendar year, which is 2008. In this
case, WEEK and YEAR are at odds with each other. The same happens when the first
days of January belong to the last week of the previous year.

Please also notice that WEEKDAY is not ISO-8601 compliant: it returns 0 for Sunday,
whereas ISO-8601 specifies 7.

See also

Data Types for Dates and Times

Chapter 8. Built-in Scalar Functions

420

8.5. Type Casting Functions

8.5.1. CAST()

Available in

DSQL, ESQL, PSQL

Result type

As specified by target_type

Syntax

CAST (<expression> AS <target_type>)

<target_type> ::= <domain_or_non_array_type> | <array_datatype>

<domain_or_non_array_type> ::=
 !! See Scalar Data Types Syntax !!

<array_datatype> ::=
 !! See Array Data Types Syntax !!

Table 162. CAST Function Parameters

Parameter Description

expression SQL expression

sql_datatype SQL data type

CAST converts an expression to the desired datatype or domain. If the conversion is not possible, an
error is raised.

Casting BLOBs

Successful casting to and from BLOBs is possible since Firebird 2.1.

“Shorthand” Syntax

Alternative syntax, supported only when casting a string literal to a DATE, TIME or TIMESTAMP:

datatype 'date/timestring'

This syntax was already available in InterBase, but was never properly documented. In the SQL
standard, this feature is called “datetime literals”.

The short syntax is evaluated immediately at parse time, causing the value to stay
the same until the statement is unprepared. For datetime literals like '12-Oct-2012'
this makes no difference. For the pseudo-variables 'NOW', 'YESTERDAY', 'TODAY' and
'TOMORROW', this may not be what you want. If you need the value to be evaluated at

Chapter 8. Built-in Scalar Functions

421

every call, use the full CAST() syntax.

Firebird 4 will disallow the use of 'NOW', 'YESTERDAY' and 'TOMORROW' in the
shorthand cast, and only allow literals defining a fixed moment in time.

Allowed Type Conversions

The following table shows the type conversions possible with CAST.

Table 163. Possible Type-castings
with CAST

From To

Numeric types Numeric types
[VAR]CHAR
BLOB

[VAR]CHAR
BLOB

[VAR]CHAR
BLOB
Numeric types
DATE
TIME
TIMESTAMP

DATE
TIME

[VAR]CHAR
BLOB
TIMESTAMP

TIMESTAMP [VAR]CHAR
BLOB
DATE
TIME

Keep in mind that sometimes information is lost, for instance when you cast a TIMESTAMP to a DATE.
Also, the fact that types are CAST-compatible is in itself no guarantee that a conversion will succeed.
“CAST(123456789 as SMALLINT)” will definitely result in an error, as will “CAST('Judgement Day' as
DATE)”.

Casting Parameters

Since Firebird 2.0, you can cast statement parameters to a datatype:

cast (? as integer)

This gives you control over the type of the parameter set up by the engine. Please notice that with
statement parameters, you always need a full-syntax cast — shorthand casts are not supported.

Casting to a Domain or its Type

Firebird 2.1 and above support casting to a domain or its base type. When casting to a domain, any

Chapter 8. Built-in Scalar Functions

422

constraints (NOT NULL and/or CHECK) declared for the domain must be satisfied, or the cast will fail.
Please be aware that a CHECK passes if it evaluates to TRUE or NULL! So, given the following statements:

create domain quint as int check (value >= 5000);
select cast (2000 as quint) from rdb$database; ①
select cast (8000 as quint) from rdb$database; ②
select cast (null as quint) from rdb$database; ③

only cast number 1 will result in an error.

When the TYPE OF modifier is used, the expression is cast to the base type of the domain, ignoring
any constraints. With domain quint defined as above, the following two casts are equivalent and
will both succeed:

select cast (2000 as type of quint) from rdb$database;
select cast (2000 as int) from rdb$database;

If TYPE OF is used with a (VAR)CHAR type, its character set and collation are retained:

create domain iso20 varchar(20) character set iso8859_1;
create domain dunl20 varchar(20) character set iso8859_1 collate du_nl;
create table zinnen (zin varchar(20));
commit;
insert into zinnen values ('Deze');
insert into zinnen values ('Die');
insert into zinnen values ('die');
insert into zinnen values ('deze');

select cast(zin as type of iso20) from zinnen order by 1;
-- returns Deze -> Die -> deze -> die

select cast(zin as type of dunl20) from zinnen order by 1;
-- returns deze -> Deze -> die -> Die

If a domain’s definition is changed, existing CASTs to that domain or its type may
become invalid. If these CASTs occur in PSQL modules, their invalidation may be
detected. See the note The RDB$VALID_BLR field, in Appendix A.

Casting to a Column’s Type

In Firebird 2.5 and above, it is possible to cast expressions to the type of an existing table or view
column. Only the type itself is used; in the case of string types, this includes the character set but
not the collation. Constraints and default values of the source column are not applied.

create table ttt (
 s varchar(40) character set utf8 collate unicode_ci_ai

Chapter 8. Built-in Scalar Functions

423

);
commit;

select cast ('Jag har många vänner' as type of column ttt.s)
from rdb$database;

Warnings

If a column’s definition is altered, existing CASTs to that column’s type may become
invalid. If these CASTs occur in PSQL modules, their invalidation may be detected.
See the note The RDB$VALID_BLR field, in Appendix A.

Cast Examples

A full-syntax cast:

select cast ('12' || '-June-' || '1959' as date) from rdb$database

A shorthand string-to-date cast:

update People set AgeCat = 'Old'
 where BirthDate < date '1-Jan-1943'

Notice that you can drop even the shorthand cast from the example above, as the engine will
understand from the context (comparison to a DATE field) how to interpret the string:

update People set AgeCat = 'Old'
 where BirthDate < '1-Jan-1943'

But this is not always possible. The cast below cannot be dropped, otherwise the engine would find
itself with an integer to be subtracted from a string:

select date 'today' - 7 from rdb$database

8.6. Bitwise Functions

8.6.1. BIN_AND()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Chapter 8. Built-in Scalar Functions

424

Result type

SMALLINT, INTEGER or BIGINT

SMALLINT result is returned only if all the arguments are explicit SMALLINTs or
NUMERIC(n, 0) with n <= 4; otherwise small integers return an INTEGER result.

Syntax

BIN_AND (number, number [, number ...])

Table 164. BIN_AND Function Parameters

Parameter Description

number Any integer number (literal, smallint/integer/bigint, numeric/decimal
with scale 0)

Returns the result of the bitwise AND operation on the argument(s).

See also

BIN_OR(), BIN_XOR()

8.6.2. BIN_NOT()

Available in

DSQL, PSQL

Result type

SMALLINT, INTEGER or BIGINT

SMALLINT result is returned only if all the arguments are explicit SMALLINTs or
NUMERIC(n, 0) with n <= 4; otherwise small integers return an INTEGER result.

Syntax

BIN_NOT (number)

Table 165. BIN_NOT Function Parameter

Parameter Description

number Any integer number (literal, smallint/integer/bigint, numeric/decimal
with scale 0)

Returns the result of the bitwise NOT operation on the argument, i.e. one’s complement.

See also

BIN_OR(), BIN_XOR() and others in this set.

Chapter 8. Built-in Scalar Functions

425

8.6.3. BIN_OR()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

SMALLINT, INTEGER or BIGINT

SMALLINT result is returned only if all the arguments are explicit SMALLINTs or
NUMERIC(n, 0) with n <= 4; otherwise small integers return an INTEGER result.

Syntax

BIN_OR (number, number [, number ...])

Table 166. BIN_OR Function Parameters

Parameter Description

number Any integer number (literal, smallint/integer/bigint, numeric/decimal
with scale 0)

Returns the result of the bitwise OR operation on the argument(s).

See also

BIN_AND(), BIN_XOR()

8.6.4. BIN_SHL()

Available in

DSQL, PSQL

Result type

BIGINT

Syntax

BIN_SHL (number, shift)

Table 167. BIN_SHL Function Parameters

Parameter Description

number A number of an integer type

shift The number of bits the number value is shifted by

Returns the first argument bitwise left-shifted by the second argument, i.e. a << b or a·2b.

Chapter 8. Built-in Scalar Functions

426

See also

BIN_SHR()

8.6.5. BIN_SHR()

Available in

DSQL, PSQL

Result type

BIGINT

Syntax

BIN_SHR (number, shift)

Table 168. BIN_SHR Function Parameters

Parameter Description

number A number of an integer type

shift The number of bits the number value is shifted by

Returns the first argument bitwise right-shifted by the second argument, i.e. a >> b or a/2b.

• The operation performed is an arithmetic right shift (SAR), meaning that the sign of the first
operand is always preserved.

See also

BIN_SHL()

8.6.6. BIN_XOR()

Available in

DSQL, PSQL

Possible name conflict

YES → Read details

Result type

SMALLINT, INTEGER or BIGINT

SMALLINT result is returned only if all the arguments are explicit SMALLINTs or
NUMERIC(n, 0) with n <= 4; otherwise small integers return an INTEGER result.

Syntax

BIN_XOR (number, number [, number ...])

Table 169. BIN_XOR Function Parameters

Chapter 8. Built-in Scalar Functions

427

Parameter Description

number Any integer number (literal, smallint/integer/bigint, numeric/decimal
with scale 0)

Returns the result of the bitwise XOR operation on the argument(s).

See also

BIN_AND(), BIN_OR()

8.7. UUID Functions

8.7.1. CHAR_TO_UUID()

Available in

DSQL, PSQL

Result type

CHAR(16) CHARACTER SET OCTETS

Syntax

CHAR_TO_UUID (ascii_uuid)

Table 170. CHAR_TO_UUID Function Parameter

Parameter Description

ascii_uuid A 36-character representation of UUID. ‘-’ (hyphen) in positions 9, 14, 19
and 24; valid hexadecimal digits in any other positions, e.g. 'A0bF4E45-
3029-2a44-D493-4998c9b439A3'

Converts a human-readable 36-char UUID string to the corresponding 16-byte UUID.

CHAR_TO_UUID Examples

select char_to_uuid('A0bF4E45-3029-2a44-D493-4998c9b439A3') from rdb$database
-- returns A0BF4E4530292A44D4934998C9B439A3 (16-byte string)

select char_to_uuid('A0bF4E45-3029-2A44-X493-4998c9b439A3') from rdb$database
-- error: -Human readable UUID argument for CHAR_TO_UUID must
-- have hex digit at position 20 instead of "X (ASCII 88)"

See also

UUID_TO_CHAR(), GEN_UUID()

Chapter 8. Built-in Scalar Functions

428

8.7.2. GEN_UUID()

Available in

DSQL, PSQL

Result type

CHAR(16) CHARACTER SET OCTETS

Syntax

GEN_UUID ()

Returns a universally unique ID as a 16-byte character string.

GEN_UUID Example

select gen_uuid() from rdb$database
-- returns e.g. 017347BFE212B2479C00FA4323B36320 (16-byte string)

See also

UUID_TO_CHAR(), CHAR_TO_UUID()

8.7.3. UUID_TO_CHAR()

Available in

DSQL, PSQL

Result type

CHAR(36)

Syntax

UUID_TO_CHAR (uuid)

Table 171. UUID_TO_CHAR Function Parameters

Parameter Description

uuid 16-byte UUID

Converts a 16-byte UUID to its 36-character, human-readable ASCII representation.

UUID_TO_CHAR Examples

select uuid_to_char(x'876C45F4569B320DBCB4735AC3509E5F') from rdb$database
-- returns '876C45F4-569B-320D-BCB4-735AC3509E5F'

select uuid_to_char(gen_uuid()) from rdb$database

Chapter 8. Built-in Scalar Functions

429

-- returns e.g. '680D946B-45FF-DB4E-B103-BB5711529B86'

select uuid_to_char('Firebird swings!') from rdb$database
-- returns '46697265-6269-7264-2073-77696E677321'

See also

CHAR_TO_UUID(), GEN_UUID()

8.8. Functions for Sequences (Generators)

8.8.1. GEN_ID()

Available in

DSQL, ESQL, PSQL

Result type

BIGINT

Syntax

GEN_ID (generator-name, step)

Table 172. GEN_ID Function Parameters

Parameter Description

generator-name Name of a generator (sequence) that exists. If it has been defined in
double quotes with a case-sensitive identifier, it must be used in the same
form unless the name is all upper-case.

step An integer expression

Increments a generator or sequence and returns its new value. If step equals 0, the function will
leave the value of the generator unchanged and return its current value.

• From Firebird 2.0 onward, the SQL-compliant NEXT VALUE FOR syntax is preferred, except when
an increment other than 1 is needed.

If the value of the step parameter is less than zero, it will decrease the value of the
generator. Attention! You should be extremely cautious with such manipulations
in the database, as they could compromise data integrity.

GEN_ID Example

new.rec_id = gen_id(gen_recnum, 1);

See also

NEXT VALUE FOR, CREATE SEQUENCE (GENERATOR)

Chapter 8. Built-in Scalar Functions

430

8.9. Conditional Functions

8.9.1. COALESCE()

Available in

DSQL, PSQL

Result type

Depends on input

Syntax

COALESCE (<exp1>, <exp2> [, <expN> ...])

Table 173. COALESCE Function Parameters

Parameter Description

exp1, exp2 … expN A list of expressions of any compatible types

The COALESCE function takes two or more arguments and returns the value of the first non-NULL
argument. If all the arguments evaluate to NULL, the result is NULL.

COALESCE Examples

This example picks the Nickname from the Persons table. If it happens to be NULL, it goes on to
FirstName. If that too is NULL, “'Mr./Mrs.'” is used. Finally, it adds the family name. All in all, it tries
to use the available data to compose a full name that is as informal as possible. Notice that this
scheme only works if absent nicknames and first names are really NULL: if one of them is an empty
string instead, COALESCE will happily return that to the caller.

select
 coalesce (Nickname, FirstName, 'Mr./Mrs.') || ' ' || LastName
 as FullName
from Persons

See also

IIF(), NULLIF(), CASE

8.9.2. DECODE()

Available in

DSQL, PSQL

Result type

Depends on input

Chapter 8. Built-in Scalar Functions

431

Syntax

DECODE(<testexpr>,
 <expr1>, <result1>
 [<expr2>, <result2> …]
 [, <defaultresult>])

The equivalent CASE construct:

CASE <testexpr>
 WHEN <expr1> THEN <result1>
 [WHEN <expr2> THEN <result2> …]
 [ELSE <defaultresult>]
END

Table 174. DECODE Function Parameters

Parameter Description

testexpr An expression of any compatible type that is compared to the expressions
expr1, expr2 … exprN

expr1, expr2, … exprN Expressions of any compatible types, to which the testexpr expression is
compared

result1, result2, …
resultN

Returned values of any type

defaultresult The expression to be returned if none of the conditions is met

DECODE is a shorthand for the so-called “simple CASE” construct, in which a given expression is
compared to a number of other expressions until a match is found. The result is determined by the
value listed after the matching expression. If no match is found, the default result is returned, if
present. Otherwise, NULL is returned.

Matching is done with the ‘=’ operator, so if testexpr is NULL, it won’t match any of
the exprs, not even those that are NULL.

DECODE Examples

select name,
 age,
 decode(upper(sex),
 'M', 'Male',
 'F', 'Female',
 'Unknown'),
 religion
from people

See also

Chapter 8. Built-in Scalar Functions

432

CASE, Simple CASE

8.9.3. IIF()

Available in

DSQL, PSQL

Result type

Depends on input

Syntax

IIF (<condition>, ResultT, ResultF)

Table 175. IIF Function Parameters

Parameter Description

condition A true|false expression

resultT The value returned if the condition is true

resultF The value returned if the condition is false

IIF takes three arguments. If the first evaluates to true, the second argument is returned; otherwise
the third is returned.

IIF could be likened to the ternary “?:” operator in C-like languages.

IIF(<Cond>, Result1, Result2) is a shorthand for “CASE WHEN <Cond> THEN Result1
ELSE Result2 END”.

IIF Examples

select iif(sex = 'M', 'Sir', 'Madam') from Customers

See also

CASE, DECODE()

8.9.4. MAXVALUE()

Available in

DSQL, PSQL

Result type

Varies according to input — result will be of the same data type as the first expression in the list
(expr1).

Chapter 8. Built-in Scalar Functions

433

Syntax

MAXVALUE (<expr1> [, ... , <exprN>])

Table 176. MAXVALUE Function Parameters

Parameter Description

expr1 … exprN List of expressions of compatible types

Returns the maximum value from a list of numerical, string, or date/time expressions. This function
fully supports text BLOBs of any length and character set.

If one or more expressions resolve to NULL, MAXVALUE returns NULL. This behaviour differs from the
aggregate function MAX.

MAXVALUE Examples

SELECT MAXVALUE(PRICE_1, PRICE_2) AS PRICE
 FROM PRICELIST

See also

MINVALUE()

8.9.5. MINVALUE()

Available in

DSQL, PSQL

Result type

Varies according to input — result will be of the same data type as the first expression in the list
(expr1).

Syntax

MINVALUE (<expr1> [, ... , <exprN>])

Table 177. MINVALUE Function Parameters

Parameter Description

expr1 … exprN List of expressions of compatible types

Returns the minimum value from a list of numerical, string, or date/time expressions. This function
fully supports text BLOBs of any length and character set.

If one or more expressions resolve to NULL, MINVALUE returns NULL. This behaviour differs from the
aggregate function MIN.

Chapter 8. Built-in Scalar Functions

434

MINVALUE Examples

SELECT MINVALUE(PRICE_1, PRICE_2) AS PRICE
 FROM PRICELIST

See also

MAXVALUE()

8.9.6. NULLIF()

Available in

DSQL, PSQL

Result type

Depends on input

Syntax

NULLIF (<exp1>, <exp2>)

Table 178. NULLIF Function Parameters

Parameter Description

exp1 An expression

exp2 Another expression of a data type compatible with exp1

NULLIF returns the value of the first argument, unless it is equal to the second. In that case, NULL is
returned.

NULLIF Example

select avg(nullif(Weight, -1)) from FatPeople

This will return the average weight of the persons listed in FatPeople, excluding those having a
weight of -1, since AVG skips NULL data. Presumably, -1 indicates “weight unknown” in this table. A
plain AVG(Weight) would include the -1 weights, thus skewing the result.

See also

COALESCE(), DECODE(), IIF(), CASE

Chapter 8. Built-in Scalar Functions

435

Chapter 9. Aggregate Functions
Aggregate functions operate on groups of records, rather than on individual records or variables.
They are often used in combination with a GROUP BY clause.

The aggregate functions can also be used as window functions with the OVER () clause. See Window
(Analytical) Functions for more information.

9.1. General-purpose Aggregate Functions

9.1.1. AVG()

Available in

DSQL, ESQL, PSQL

Result type

A numeric data type, the same as the data type of the argument.

Syntax

AVG ([ALL | DISTINCT] <expr>)

Table 179. AVG Function Parameters

Parameter Description

expr Expression. It may contain a table column, a constant, a variable, an
expression, a non-aggregate function or a UDF that returns a numeric
data type. Aggregate functions are not allowed as expressions

AVG returns the average argument value in the group. NULL is ignored.

• Parameter ALL (the default) applies the aggregate function to all values.

• Parameter DISTINCT directs the AVG function to consider only one instance of each unique value,
no matter how many times this value occurs.

• If the set of retrieved records is empty or contains only NULL, the result will be NULL.

AVG Examples

SELECT
 dept_no,
 AVG(salary)
FROM employee
GROUP BY dept_no

See also

SELECT

Chapter 9. Aggregate Functions

436

9.1.2. COUNT()

Available in

DSQL, ESQL, PSQL

Result type

BIGINT

Syntax

COUNT ([ALL | DISTINCT] <expr> | *)

Table 180. COUNT Function Parameters

Parameter Description

expr Expression. It may contain a table column, a constant, a variable, an
expression, a non-aggregate function or a UDF that returns a numeric
data type. Aggregate functions are not allowed as expressions

COUNT returns the number of non-null values in a group.

• ALL is the default: it simply counts all values in the set that are not NULL.

• If DISTINCT is specified, duplicates are excluded from the counted set.

• If COUNT (*) is specified instead of the expression expr, all rows will be counted. COUNT (*) — 

◦ does not accept parameters

◦ cannot be used with the keyword DISTINCT

◦ does not take an expr argument, since its context is column-unspecific by definition

◦ counts each row separately and returns the number of rows in the specified table or group
without omitting duplicate rows

◦ counts rows containing NULL

• If the result set is empty or contains only NULL in the specified column(s), the returned count is
zero.

COUNT Examples

SELECT
 dept_no,
 COUNT(*) AS cnt,
 COUNT(DISTINCT name) AS cnt_name
FROM employee
GROUP BY dept_no

See also

SELECT.

Chapter 9. Aggregate Functions

437

9.1.3. LIST()

Available in

DSQL, PSQL

Result type

BLOB

Syntax

LIST ([ALL | DISTINCT] <expr> [, separator])

Table 181. LIST Function Parameters

Parameter Description

expr Expression. It may contain a table column, a constant, a variable, an
expression, a non-aggregate function or a UDF that returns the string
data type or a BLOB. Fields of numeric and date/time types are converted
to strings. Aggregate functions are not allowed as expressions.

separator Optional alternative separator, a string expression. Comma is the default
separator

LIST returns a string consisting of the non-NULL argument values in the group, separated either by a
comma or by a user-supplied separator. If there are no non-NULL values (this includes the case
where the group is empty), NULL is returned.

• ALL (the default) results in all non-NULL values being listed. With DISTINCT, duplicates are
removed, except if expr is a BLOB.

• In Firebird 2.5 and up, the optional separator argument may be any string expression. This
makes it possible to specify e.g. ascii_char(13) as a separator. (This improvement has also been
backported to 2.1.4.)

• The expr and separator arguments support BLOBs of any size and character set.

• Date/time and numeric arguments are implicitly converted to strings before concatenation.

• The result is a text BLOB, except when expr is a BLOB of another subtype.

• The ordering of the list values is undefined — the order in which the strings are concatenated is
determined by read order from the source set which, in tables, is not generally defined. If
ordering is important, the source data can be pre-sorted using a derived table or similar.

This is a trick/workaround, and it depends on implementation details of the
optimizer/execution order. This trick doesn’t always work, and it is not
guaranteed to work across versions.

LIST Examples

1. Retrieving the list, order undefined:

Chapter 9. Aggregate Functions

438

SELECT LIST (display_name, '; ') FROM GR_WORK;

2. Retrieving the list in alphabetical order, using a derived table:

SELECT LIST (display_name, '; ')
FROM (SELECT display_name
 FROM GR_WORK
 ORDER BY display_name);

See also

SELECT

9.1.4. MAX()

Available in

DSQL, ESQL, PSQL

Result type

Returns a result of the same data type the input expression.

Syntax

MAX ([ALL | DISTINCT] <expr>)

Table 182. MAX Function Parameters

Parameter Description

expr Expression. It may contain a table column, a constant, a variable, an
expression, a non-aggregate function or a UDF. Aggregate functions are
not allowed as expressions.

MAX returns the maximum non-NULL element in the result set.

• If the group is empty or contains only NULLs, the result is NULL.

• If the input argument is a string, the function will return the value that will be sorted last if
COLLATE is used.

• This function fully supports text BLOBs of any size and character set.

The DISTINCT parameter makes no sense if used with MAX() and is implemented
only for compliance with the standard.

MAX Examples

SELECT
 dept_no,

Chapter 9. Aggregate Functions

439

 MAX(salary)
FROM employee
GROUP BY dept_no

See also

MIN(), SELECT

9.1.5. MIN()

Available in

DSQL, ESQL, PSQL

Result type

Returns a result of the same data type the input expression.

Syntax

MIN ([ALL | DISTINCT] <expr>)

Table 183. MIN Function Parameters

Parameter Description

expr Expression. It may contain a table column, a constant, a variable, an
expression, a non-aggregate function or a UDF. Aggregate functions are
not allowed as expressions.

MIN returns the minimum non-NULL element in the result set.

• If the group is empty or contains only NULLs, the result is NULL.

• If the input argument is a string, the function will return the value that will be sorted first if
COLLATE is used.

• This function fully supports text BLOBs of any size and character set.

The DISTINCT parameter makes no sense if used with MIN() and is implemented
only for compliance with the standard.

MIN Examples

SELECT
 dept_no,
 MIN(salary)
FROM employee
GROUP BY dept_no

See also

MAX(), SELECT

Chapter 9. Aggregate Functions

440

9.1.6. SUM()

Available in

DSQL, ESQL, PSQL

Result type

Depends on the input type

Syntax

SUM ([ALL | DISTINCT] <expr>)

Table 184. SUM Function Parameters

Parameter Description

expr Numeric expression. It may contain a table column, a constant, a
variable, an expression, a non-aggregate function or a UDF. Aggregate
functions are not allowed as expressions.

SUM calculates and returns the sum of non-null values in the group.

• If the group is empty or contains only NULLs, the result is NULL.

• ALL is the default option — all values in the set that are not NULL are processed. If DISTINCT is
specified, duplicates are removed from the set and the SUM evaluation is done afterward.

The result type of SUM depends on the input type:

FLOAT, DOUBLE PRECISION DOUBLE PRECISION

SMALLINT, INTEGER, BIGINT BIGINT

DECIMAL/NUMERIC(p, n) DECIMAL/NUMERIC(18, n)

SUM Examples

SELECT
 dept_no,
 SUM (salary),
FROM employee
GROUP BY dept_no

See also

SELECT

9.2. Statistical Aggregate Functions

Chapter 9. Aggregate Functions

441

9.2.1. CORR

Available in

DSQL, PSQL

Result type

DOUBLE PRECISION

Syntax

CORR (<expr1>, <expr2>)

Table 185. CORR Function Parameters

Parameter Description

exprN Numeric expression. It may contain a table column, a constant, a
variable, an expression, a non-aggregate function or a UDF. Aggregate
functions are not allowed as expressions.

The CORR function return the correlation coefficient for a pair of numerical expressions.

The function CORR(<expr1>, <expr2>) is equivalent to

COVAR_POP(<expr1>, <expr2>) / (STDDEV_POP(<expr2>) * STDDEV_POP(<expr1>))

This is also known as the Pearson correlation coefficient.

In a statistical sense, correlation is the degree of to which a pair of variables are linearly related. A
linear relation between variables means that the value of one variable can to a certain extent
predict the value of the other. The correlation coefficient represents the degree of correlation as a
number ranging from -1 (high inverse correlation) to 1 (high correlation). A value of 0 corresponds
to no correlation.

If the group or window is empty, or contains only NULL values, the result will be NULL.

CORR Examples

select
 corr(alength, aheight) AS c_corr
from measure

See also

COVAR_POP, STDDEV_POP

9.2.2. COVAR_POP

Available in

Chapter 9. Aggregate Functions

442

DSQL, PSQL

Result type

DOUBLE PRECISION

Syntax

COVAR_POP (<expr1>, <expr2>)

Table 186. COVAR_POP Function Parameters

Parameter Description

exprN Numeric expression. It may contain a table column, a constant, a
variable, an expression, a non-aggregate function or a UDF. Aggregate
functions are not allowed as expressions.

The function COVAR_POP returns the population covariance for a pair of numerical expressions.

The function COVAR_POP(<expr1>, <expr2>) is equivalent to

(SUM(<expr1> * <expr2>) - SUM(<expr1>) * SUM(<expr2>) / COUNT(*)) / COUNT(*)

If the group or window is empty, or contains only NULL values, the result will be NULL.

COVAR_POP Examples

select
 covar_pop(alength, aheight) AS c_covar_pop
from measure

See also

COVAR_SAMP, SUM(), COUNT()

9.2.3. COVAR_SAMP

Available in

DSQL, PSQL

Result type

DOUBLE PRECISION

Syntax

COVAR_SAMP (<expr1>, <expr2>)

Table 187. COVAR_SAMP Function Parameters

Chapter 9. Aggregate Functions

443

Parameter Description

exprN Numeric expression. It may contain a table column, a constant, a
variable, an expression, a non-aggregate function or a UDF. Aggregate
functions are not allowed as expressions.

The function COVAR_SAMP returns the sample covariance for a pair of numerical expressions.

The function COVAR_SAMP(<expr1>, <expr2>) is equivalent to

(SUM(<expr1> * <expr2>) - SUM(<expr1>) * SUM(<expr2>) / COUNT(*)) / (COUNT(*) - 1)

If the group or window is empty, contains only 1 row, or contains only NULL values, the result will be
NULL.

COVAR_SAMP Examples

select
 covar_samp(alength, aheight) AS c_covar_samp
from measure

See also

COVAR_POP, SUM(), COUNT()

9.2.4. STDDEV_POP

Available in

DSQL, PSQL

Result type

DOUBLE PRECISION or NUMERIC depending on the type of expr

Syntax

STDDEV_POP (<expr>)

Table 188. STDDEV_POP Function Parameters

Parameter Description

expr Numeric expression. It may contain a table column, a constant, a
variable, an expression, a non-aggregate function or a UDF. Aggregate
functions are not allowed as expressions.

The function STDDEV_POP returns the population standard deviation for a group or window. NULL
values are skipped.

The function STDDEV_POP(<expr>) is equivalent to

Chapter 9. Aggregate Functions

444

SQRT(VAR_POP(<expr>))

If the group or window is empty, or contains only NULL values, the result will be NULL.

STDDEV_POP Examples

select
 dept_no
 stddev_pop(salary)
from employee
group by dept_no

See also

STDDEV_SAMP, VAR_POP, SQRT

9.2.5. STDDEV_SAMP

Available in

DSQL, PSQL

Result type

DOUBLE PRECISION or NUMERIC depending on the type of expr

Syntax

STDDEV_POP (<expr>)

Table 189. STDDEV_SAMP Function Parameters

Parameter Description

expr Numeric expression. It may contain a table column, a constant, a
variable, an expression, a non-aggregate function or a UDF. Aggregate
functions are not allowed as expressions.

The function STDDEV_SAMP returns the sample standard deviation for a group or window. NULL values
are skipped.

The function STDDEV_SAMP(<expr>) is equivalent to

SQRT(VAR_SAMP(<expr>))

If the group or window is empty, contains only 1 row, or contains only NULL values, the result will be
NULL.

Chapter 9. Aggregate Functions

445

STDDEV_SAMP Examples

select
 dept_no
 stddev_samp(salary)
from employee
group by dept_no

See also

STDDEV_POP, VAR_SAMP, SQRT

9.2.6. VAR_POP

Available in

DSQL, PSQL

Result type

DOUBLE PRECISION or NUMERIC depending on the type of expr

Syntax

VAR_POP (<expr>)

Table 190. VAR_POP Function Parameters

Parameter Description

expr Numeric expression. It may contain a table column, a constant, a
variable, an expression, a non-aggregate function or a UDF. Aggregate
functions are not allowed as expressions.

The function VAR_POP returns the population variance for a group or window. NULL values are
skipped.

The function VAR_POP(<expr>) is equivalent to

(SUM(<expr> * <expr>) - SUM (<expr>) * SUM (<expr>) / COUNT(<expr>))
 / COUNT (<expr>)

If the group or window is empty, or contains only NULL values, the result will be NULL.

VAR_POP Examples

select
 dept_no
 var_pop(salary)
from employee

Chapter 9. Aggregate Functions

446

group by dept_no

See also

VAR_SAMP, SUM(), COUNT()

9.2.7. VAR_SAMP

Available in

DSQL, PSQL

Result type

DOUBLE PRECISION or NUMERIC depending on the type of expr

Syntax

VAR_SAMP (<expr>)

Table 191. VAR_SAMP Function Parameters

Parameter Description

expr Numeric expression. It may contain a table column, a constant, a
variable, an expression, a non-aggregate function or a UDF. Aggregate
functions are not allowed as expressions.

The function VAR_POP returns the sample variance for a group or window. NULL values are skipped.

The function VAR_SAMP(<expr>) is equivalent to

(SUM(<expr> * <expr>) - SUM(<expr>) * SUM (<expr>) / COUNT (<expr>))
 / (COUNT(<expr>) - 1)

If the group or window is empty, contains only 1 row, or contains only NULL values, the result will be
NULL.

VAR_SAMP Examples

select
 dept_no
 var_samp(salary)
from employee
group by dept_no

See also

VAR_POP, SUM(), COUNT()

Chapter 9. Aggregate Functions

447

9.3. Linear Regression Aggregate Functions
Linear regression functions are useful for trend line continuation. The trend or regression line is
usually a pattern followed by a set of values. Linear regression is useful to predict future values. To
continue the regression line, you need to know the slope and the point of intersection with the y-
axis. As set of linear functions can be used for calculating these values.

In the function syntax, y is interpreted as an x-dependent variable.

The linear regression aggregate functions take a pair of arguments, the dependent variable
expression (y) and the independent variable expression (x), which are both numeric value
expressions. Any row in which either argument evaluates to NULL is removed from the rows that
qualify. If there are no rows that qualify, then the result of REGR_COUNT is 0 (zero), and the other
linear regression aggregate functions result in NULL.

9.3.1. REGR_AVGX

Available in

DSQL, PSQL

Result type

DOUBLE PRECISION

Syntax

REGR_AVGX (<y>, <x>)

Table 192. REGR_AVGX Function Parameters

Parameter Description

y Dependent variable of the regression line. It may contain a table column,
a constant, a variable, an expression, a non-aggregate function or a UDF.
Aggregate functions are not allowed as expressions.

x Independent variable of the regression line. It may contain a table
column, a constant, a variable, an expression, a non-aggregate function
or a UDF. Aggregate functions are not allowed as expressions.

The function REGR_AVGX calculates the average of the independent variable (x) of the regression line.

The function REGR_AVGX(<y>, <x>) is equivalent to

SUM(<exprX>) / REGR_COUNT(<y>, <x>)

<exprX> :==
 CASE WHEN <x> IS NOT NULL AND <y> IS NOT NULL THEN <x> END

See also

Chapter 9. Aggregate Functions

448

REGR_AVGY, REGR_COUNT, SUM()

9.3.2. REGR_AVGY

Available in

DSQL, PSQL

Result type

DOUBLE PRECISION

Syntax

REGR_AVGY (<y>, <x>)

Table 193. REGR_AVGY Function Parameters

Parameter Description

y Dependent variable of the regression line. It may contain a table column,
a constant, a variable, an expression, a non-aggregate function or a UDF.
Aggregate functions are not allowed as expressions.

x Independent variable of the regression line. It may contain a table
column, a constant, a variable, an expression, a non-aggregate function
or a UDF. Aggregate functions are not allowed as expressions.

The function REGR_AVGY calculates the average of the dependent variable (y) of the regression line.

The function REGR_AVGY(<y>, <x>) is equivalent to

SUM(<exprY>) / REGR_COUNT(<y>, <x>)

<exprY> :==
 CASE WHEN <x> IS NOT NULL AND <y> IS NOT NULL THEN <y> END

See also

REGR_AVGX, REGR_COUNT, SUM()

9.3.3. REGR_COUNT

Available in

DSQL, PSQL

Result type

DOUBLE PRECISION

Syntax

REGR_COUNT (<y>, <x>)

Chapter 9. Aggregate Functions

449

Table 194. REGR_COUNT Function Parameters

Parameter Description

y Dependent variable of the regression line. It may contain a table column,
a constant, a variable, an expression, a non-aggregate function or a UDF.
Aggregate functions are not allowed as expressions.

x Independent variable of the regression line. It may contain a table
column, a constant, a variable, an expression, a non-aggregate function
or a UDF. Aggregate functions are not allowed as expressions.

The function REGR_COUNT counts the number of non-empty pairs of the regression line.

The function REGR_COUNT(<y>, <x>) is equivalent to

SUM(<exprXY>)

<exprXY> :==
 CASE WHEN <x> IS NOT NULL AND <y> IS NOT NULL THEN 1 END

See also

SUM()

9.3.4. REGR_INTERCEPT

Available in

DSQL, PSQL

Result type

DOUBLE PRECISION

Syntax

REGR_INTERCEPT (<y>, <x>)

Table 195. REGR_INTERCEPT Function Parameters

Parameter Description

y Dependent variable of the regression line. It may contain a table column,
a constant, a variable, an expression, a non-aggregate function or a UDF.
Aggregate functions are not allowed as expressions.

x Independent variable of the regression line. It may contain a table
column, a constant, a variable, an expression, a non-aggregate function
or a UDF. Aggregate functions are not allowed as expressions.

The function REGR_INTERCEPT calculates the point of intersection of the regression line with the y-
axis.

Chapter 9. Aggregate Functions

450

The function REGR_INTERCEPT(<y>, <x>) is equivalent to

REGR_AVGY(<y>, <x>) - REGR_SLOPE(<y>, <x>) * REGR_AVGX(<y>, <x>)

REGR_INTERCEPT Examples

Forecasting sales volume

with recursive years (byyear) as (
 select 1991
 from rdb$database
 union all
 select byyear + 1
 from years
 where byyear < 2020
),
s as (
 select
 extract(year from order_date) as byyear,
 sum(total_value) as total_value
 from sales
 group by 1
),
regr as (
 select
 regr_intercept(total_value, byyear) as intercept,
 regr_slope(total_value, byyear) as slope
 from s
)
select
 years.byyear as byyear,
 intercept + (slope * years.byyear) as total_value
from years
cross join regr

BYYEAR TOTAL_VALUE
------ ------------
 1991 118377.35
 1992 414557.62
 1993 710737.89
 1994 1006918.16
 1995 1303098.43
 1996 1599278.69
 1997 1895458.96
 1998 2191639.23
 1999 2487819.50
 2000 2783999.77

Chapter 9. Aggregate Functions

451

...

See also

REGR_AVGX, REGR_AVGY, REGR_SLOPE

9.3.5. REGR_R2

Available in

DSQL, PSQL

Result type

DOUBLE PRECISION

Syntax

REGR_R2 (<y>, <x>)

Table 196. REGR_R2 Function Parameters

Parameter Description

y Dependent variable of the regression line. It may contain a table column,
a constant, a variable, an expression, a non-aggregate function or a UDF.
Aggregate functions are not allowed as expressions.

x Independent variable of the regression line. It may contain a table
column, a constant, a variable, an expression, a non-aggregate function
or a UDF. Aggregate functions are not allowed as expressions.

The REGR_R2 function calculates the coefficient of determination, or R-squared, of the regression
line.

The function REGR_R2(<y>, <x>) is equivalent to

POWER(CORR(<y>, <x>), 2)

See also

CORR, POWER

9.3.6. REGR_SLOPE

Available in

DSQL, PSQL

Result type

DOUBLE PRECISION

Chapter 9. Aggregate Functions

452

Syntax

REGR_SLOPE (<y>, <x>)

Table 197. REGR_SLOPE Function Parameters

Parameter Description

y Dependent variable of the regression line. It may contain a table column,
a constant, a variable, an expression, a non-aggregate function or a UDF.
Aggregate functions are not allowed as expressions.

x Independent variable of the regression line. It may contain a table
column, a constant, a variable, an expression, a non-aggregate function
or a UDF. Aggregate functions are not allowed as expressions.

The function REGR_SLOPE calculates the slope of the regression line.

The function REGR_SLOPE(<y>, <x>) is equivalent to

COVAR_POP(<y>, <x>) / VAR_POP(<exprX>)

<exprX> :==
 CASE WHEN <x> IS NOT NULL AND <y> IS NOT NULL THEN <x> END

See also

COVAR_POP, VAR_POP

9.3.7. REGR_SXX

Available in

DSQL, PSQL

Result type

DOUBLE PRECISION

Syntax

REGR_SXX (<y>, <x>)

Table 198. REGR_SXX Function Parameters

Parameter Description

y Dependent variable of the regression line. It may contain a table column,
a constant, a variable, an expression, a non-aggregate function or a UDF.
Aggregate functions are not allowed as expressions.

Chapter 9. Aggregate Functions

453

Parameter Description

x Independent variable of the regression line. It may contain a table
column, a constant, a variable, an expression, a non-aggregate function
or a UDF. Aggregate functions are not allowed as expressions.

The function REGR_SXX calculates the sum of squares of the independent expression variable (x).

The function REGR_SXX(<y>, <x>) is equivalent to

REGR_COUNT(<y>, <x>) * VAR_POP(<exprX>)

<exprX> :==
 CASE WHEN <x> IS NOT NULL AND <y> IS NOT NULL THEN <x> END

See also

REGR_COUNT, VAR_POP

9.3.8. REGR_SXY

Available in

DSQL, PSQL

Result type

DOUBLE PRECISION

Syntax

REGR_SXY (<y>, <x>)

Table 199. REGR_SXY Function Parameters

Parameter Description

y Dependent variable of the regression line. It may contain a table column,
a constant, a variable, an expression, a non-aggregate function or a UDF.
Aggregate functions are not allowed as expressions.

x Independent variable of the regression line. It may contain a table
column, a constant, a variable, an expression, a non-aggregate function
or a UDF. Aggregate functions are not allowed as expressions.

The function REGR_SXY calculates the sum of products of independent variable expression (x) times
dependent variable expression (y).

The function REGR_SXY(<y>, <x>) is equivalent to

REGR_COUNT(<y>, <x>) * COVAR_POP(<y>, <x>)

Chapter 9. Aggregate Functions

454

See also

COVAR_POP, REGR_COUNT

9.3.9. REGR_SYY

Available in

DSQL, PSQL

Result type

DOUBLE PRECISION

Syntax

REGR_SYY (<y>, <x>)

Table 200. REGR_SYY Function Parameters

Parameter Description

y Dependent variable of the regression line. It may contain a table column,
a constant, a variable, an expression, a non-aggregate function or a UDF.
Aggregate functions are not allowed as expressions.

x Independent variable of the regression line. It may contain a table
column, a constant, a variable, an expression, a non-aggregate function
or a UDF. Aggregate functions are not allowed as expressions.

The function REGR_SYY calculates the sum of squares of the dependent variable (y).

The function REGR_SYY(<y>, <x>) is equivalent to

REGR_COUNT(<y>, <x>) * VAR_POP(<exprY>)

<exprY> :==
 CASE WHEN <x> IS NOT NULL AND <y> IS NOT NULL THEN <y> END

See also

REGR_COUNT, VAR_POP

Chapter 9. Aggregate Functions

455

Chapter 10. Window (Analytical) Functions
According to the SQL specification, window functions (also known as analytical functions) are a
kind of aggregation, but one that does not “filter” the result set of a query. The rows of aggregated
data are mixed with the query result set.

The window functions are used with the OVER clause. They may appear only in the SELECT list or the
ORDER BY clause of a query.

Besides the OVER clause, Firebird window functions may be partitioned and ordered.

Syntax

<window-function> ::=
 <window-function-name> ([<expr> [, <expr> ...]]) OVER <window-specification>

<window-function-name> ::=
 <aggregate-function>
 | <ranking-function>
 | <navigational-function>

<ranking-function> ::=
 RANK | DENSE_RANK | ROW_NUMBER

<navigational-function>
 LEAD | LAG | FIRST_VALUE | LAST_VALUE | NTH_VALUE

<window-specification> ::=
 ([<window-partition>] [<window-order>])

<window-partition> ::=
 [PARTITION BY <expr> [, <expr> ...]]

<window-order> ::=
 [ORDER BY
 <expr> [<direction>] [<nulls placement>]
 [, <expr> [<direction>] [<nulls placement>] ...]

<direction> ::= {ASC | DESC}

<nulls placement> ::= NULLS {FIRST | LAST}

Table 201. Window Function Arguments

Argument Description

expr Expression. May contain a table column, constant, variable, expression,
scalar or aggregate function. Window functions are not allowed as an
expression.

aggregate_function An aggregate function used as a window function

Chapter 10. Window (Analytical) Functions

456

10.1. Aggregate Functions as Window Functions
All aggregate functions can be used as window functions, by adding the OVER clause.

Imagine a table EMPLOYEE with columns ID, NAME and SALARY, and the need to show each employee
with his respective salary and the percentage of his salary over the payroll.

A normal query could achieve this, as follows:

select
 id,
 department,
 salary,
 salary / (select sum(salary) from employee) portion
 from employee
 order by id;

Results

id department salary portion
-- ---------- ------ ----------
1 R & D 10.00 0.2040
2 SALES 12.00 0.2448
3 SALES 8.00 0.1632
4 R & D 9.00 0.1836
5 R & D 10.00 0.2040

The query is repetitive and lengthy to run, especially if EMPLOYEE happens to be a complex view.

The same query could be specified in a much faster and more elegant way using a window
function:

select
 id,
 department,
 salary,
 salary / sum(salary) OVER () portion
 from employee
 order by id;

Here, sum(salary) over () is computed with the sum of all SALARY from the query (the EMPLOYEE
table).

10.2. Partitioning
Like aggregate functions, that may operate alone or in relation to a group, window functions may
also operate on a group, which is called a “partition”.

Chapter 10. Window (Analytical) Functions

457

Syntax

<window function>(...) OVER (PARTITION BY <expr> [, <expr> ...])

Aggregation over a group could produce more than one row, so the result set generated by a
partition is joined with the main query using the same expression list as the partition.

Continuing the EMPLOYEE example, instead of getting the portion of each employee’s salary over the
all-employees total, we would like to get the portion based on just the employees in the same
department:

select
 id,
 department,
 salary,
 salary / sum(salary) OVER (PARTITION BY department) portion
 from employee
 order by id;

Results

id department salary portion
-- ---------- ------ ----------
1 R & D 10.00 0.3448
2 SALES 12.00 0.6000
3 SALES 8.00 0.4000
4 R & D 9.00 0.3103
5 R & D 10.00 0.3448

10.3. Ordering
The ORDER BY sub-clause can be used with or without partitions. The ORDER BY clause within OVER
specifies the order in which the window function will process rows. This order does not have to be
the same as the order rows appear in the output.

There is an important concept associated with window functions: for each row there is a set of rows
in its partition called the window frame. By default, when specifying ORDER BY, the frame consists of
all lines from the beginning of the partition to the current row and rows equal to the current ORDER
BY expression. Without ORDER BY, the default frame consists of all rows in the partition.

As a result, for standard aggregate functions, the ORDER BY clause produces partial aggregation
results as rows are processed.

Example

select
 id,
 salary,

Chapter 10. Window (Analytical) Functions

458

 sum(salary) over (order by salary) cumul_salary
 from employee
 order by salary;

Results

id salary cumul_salary
-- ------ ------------
3 8.00 8.00
4 9.00 17.00
1 10.00 37.00
5 10.00 37.00
2 12.00 49.00

Then cumul_salary returns the partial/accumulated (or running) aggregation (of the SUM function). It
may appear strange that 37.00 is repeated for the ids 1 and 5, but that is how it should work. The
ORDER BY keys are grouped together and the aggregation is computed once (but summing the two
10.00). To avoid this, you can add the ID field to the end of the ORDER BY clause.

It’s possible to use multiple windows with different orders, and ORDER BY parts like ASC/DESC and
NULLS FIRST/LAST.

With a partition, ORDER BY works the same way, but at each partition boundary the aggregation is
reset.

All aggregation functions can use ORDER BY, except for LIST().

10.4. Ranking Functions
The ranking functions compute the ordinal rank of a row within the window partition.

These functions can be used with or without partioning and ordering. However, using them
without ordering almost never makes sense.

The ranking functions can be used to create different type of incremental counters. Consider SUM(1)
OVER (ORDER BY SALARY) as an example of what they can do, each of them in a different way.
Following is an example query, also comparing with the SUM behavior.

select
 id,
 salary,
 dense_rank() over (order by salary),
 rank() over (order by salary),
 row_number() over (order by salary),
 sum(1) over (order by salary)
 from employee
 order by salary;

Chapter 10. Window (Analytical) Functions

459

Results

id salary dense_rank rank row_number sum
-- ------ ---------- ---- ---------- ---
3 8.00 1 1 1 1
4 9.00 2 2 2 2
1 10.00 3 3 3 4
5 10.00 3 3 4 4
2 12.00 4 5 5 5

The difference between DENSE_RANK and RANK is that there is a gap related to duplicate rows (relative
to the window ordering) only in RANK. DENSE_RANK continues assigning sequential numbers after the
duplicate salary. On the other hand, ROW_NUMBER always assigns sequential numbers, even when
there are duplicate values.

10.4.1. DENSE_RANK

Available in

DSQL, PSQL

Result type

BIGINT

Syntax

DENSE_RANK () OVER <window-specification>

Returns the rank of rows in a partition of a result set without ranking gaps. Rows with the same
window-order values get the same rank within the partition window-partition, if specified. The
dense rank of a row is equal to the number of different rank values in the partition preceding the
current row, plus one.

DENSE_RANK Examples

select
 id,
 salary,
 dense_rank() over (order by salary)
from employee
order by salary;

Result

id salary dense_rank
- ------ -----------
3 8.00 1
4 9.00 2
1 10.00 3

Chapter 10. Window (Analytical) Functions

460

5 10.00 3
2 12.00 4

10.4.2. RANK

Available in

DSQL, PSQL

Result type

BIGINT

Syntax

RANK () OVER <window-specification>

Returns the rank of each row in a partition of the result set. Rows with the same values of window-
order get the same rank with in the partition _window-partition, if specified. The rank of a row is
equal to the number of rank values in the partition preceding the current row, plus one.

RANK Examples

select
 id,
 salary,
 rank() over (order by salary)
from employee
order by salary;

Result

id salary rank
- ------ -----
3 8.00 1
4 9.00 2
1 10.00 3
5 10.00 3
2 12.00 5

See also

DENSE_RANK, ROW_NUMBER

10.4.3. ROW_NUMBER

Available in

DSQL, PSQL

Result type

Chapter 10. Window (Analytical) Functions

461

BIGINT

Syntax

ROW_NUMBER () OVER <window-specification>

Returns the sequential row number in the partition of the result set, where 1 is the first row in each
of the partitions.

ROW_NUMBER Examples

select
 id,
 salary,
 row_number() over (order by salary)
from employee
order by salary;

Result

id salary rank
- ------ -----
3 8.00 1
4 9.00 2
1 10.00 3
5 10.00 4
2 12.00 5

See also

DENSE_RANK, RANK

10.5. Navigational Functions
The navigational functions get the simple (non-aggregated) value of an expression from another
row of the query, within the same partition.

FIRST_VALUE, LAST_VALUE and NTH_VALUE also operate on a window frame. Currently,
Firebird always applies a frame from the first to the current row of the partition,
not to the last. This is equivalent to using the SQL standard syntax (currently not
supported by Firebird):

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

This is likely to produce strange or unexpected results for NTH_VALUE and especially
LAST_VALUE.

Chapter 10. Window (Analytical) Functions

462

Firebird 4 will introduce support for specifying the window frame.

Example of Navigational Functions

select
 id,
 salary,
 first_value(salary) over (order by salary),
 last_value(salary) over (order by salary),
 nth_value(salary, 2) over (order by salary),
 lag(salary) over (order by salary),
 lead(salary) over (order by salary)
 from employee
 order by salary;

Results

id salary first_value last_value nth_value lag lead
-- ------ ----------- ---------- --------- ------ ------
3 8.00 8.00 8.00 <null> <null> 9.00
4 9.00 8.00 9.00 9.00 8.00 10.00
1 10.00 8.00 10.00 9.00 9.00 10.00
5 10.00 8.00 10.00 9.00 10.00 12.00
2 12.00 8.00 12.00 9.00 10.00 <null>

10.5.1. FIRST_VALUE

Available in

DSQL, PSQL

Result type

The same as type as expr

Syntax

FIRST_VALUE (<expr>) OVER <window-specification>

Table 202. Arguments of FIRST_VALUE

Argument Description

expr Expression. May contain a table column, constant, variable, expression,
scalar function. Aggregate functions are not allowed as an expression.

Returns the first value from the current partition.

See also

LAST_VALUE, NTH_VALUE

Chapter 10. Window (Analytical) Functions

463

10.5.2. LAG

Available in

DSQL, PSQL

Result type

The same as type as expr

Syntax

LAG (<expr> [, <offset [, <default>]])
 OVER <window-specification>

Table 203. Arguments of LAG

Argument Description

expr Expression. May contain a table column, constant, variable, expression,
scalar function. Aggregate functions are not allowed as an expression.

offset The offset in rows before the current row to get the value identified by
expr. If offset is not specified, the default is 1. offset can be a column,
subquery or other expression that results in a positive integer value, or
another type that can be implicitly converted to BIGINT. offset cannot be
negative (use LEAD instead).

default The default value to return if offset points outside the partition. Default is
NULL.

The LAG function provides access to the row in the current partition with a given offset before the
current row.

If offset points outside the current partition, default will be returned, or NULL if no default was
specified.

offset can be a parameter, but explicit casting to INTEGER or BIGINT is currently
required (eg LAG(somecolumn, cast(? as bigint))). See CORE-6421

LAG Examples

Suppose you have RATE table that stores the exchange rate for each day. To trace the change of the
exchange rate over the past five days you can use the following query.

select
 bydate,
 cost,
 cost - lag(cost) over (order by bydate) as change,
 100 * (cost - lag(cost) over (order by bydate)) /
 lag(cost) over (order by bydate) as percent_change
from rate
where bydate between dateadd(-4 day to current_date)

Chapter 10. Window (Analytical) Functions

464

http://tracker.firebirdsql.org/browse/CORE-6421

and current_date
order by bydate

Result

bydate cost change percent_change
---------- ------ ------ --------------
27.10.2014 31.00 <null> <null>
28.10.2014 31.53 0.53 1.7096
29.10.2014 31.40 -0.13 -0.4123
30.10.2014 31.67 0.27 0.8598
31.10.2014 32.00 0.33 1.0419

See also

LEAD

10.5.3. LAST_VALUE

Available in

DSQL, PSQL

Result type

The same as type as expr

Syntax

LAST_VALUE (<expr>) OVER <window-specification>

Table 204. Arguments of LAST_VALUE

Argument Description

expr Expression. May contain a table column, constant, variable, expression,
scalar function. Aggregate functions are not allowed as an expression.

Returns the last value from the current partition.

See also

FIRST_VALUE, NTH_VALUE

10.5.4. LEAD

Available in

DSQL, PSQL

Result type

The same as type as expr

Chapter 10. Window (Analytical) Functions

465

Syntax

LEAD (<expr> [, <offset [, <default>]])
 OVER <window-specification>

Table 205. Arguments of LEAD

Argument Description

expr Expression. May contain a table column, constant, variable, expression,
scalar function. Aggregate functions are not allowed as an expression.

offset The offset in rows after the current row to get the value identified by
expr. If offset is not specified, the default is 1. offset can be a column,
subquery or other expression that results in a positive integer value, or
another type that can be implicitly converted to BIGINT. offset cannot be
negative (use LAG instead).

default The default value to return if offset points outside the partition. Default is
NULL.

The LEAD function provides access to the row in the current partition with a given offset after the
current row.

If offset points outside the current partition, default will be returned, or NULL if no default was
specified.

offset can be a parameter, but explicit casting to INTEGER or BIGINT is currently
required (eg LEAD(somecolumn, cast(? as bigint))). See CORE-6421

See also

LAG

10.5.5. NTH_VALUE

Available in

DSQL, PSQL

Result type

The same as type as expr

Syntax

NTH_VALUE (<expr>, <offset>)
 [FROM {FIRST | LAST}]
 OVER <window-specification>

Table 206. Arguments of NTH_VALUE

Chapter 10. Window (Analytical) Functions

466

http://tracker.firebirdsql.org/browse/CORE-6421

Argument Description

expr Expression. May contain a table column, constant, variable, expression,
scalar function. Aggregate functions are not allowed as an expression.

offset The offset in rows from the start (FROM FIRST) or the last (FROM LAST) to get
the value identified by expr. offset can be a column, subquery or other
expression that results in a positive integer value, or another type that
can be implicitly converted to BIGINT. offset cannot be zero or negative.

The NTH_VALUE function returns the Nth value starting from the first (FROM FIRST) or the last (FROM
LAST) row of the current frame, see also note on frame for navigational functions. Offset 1 with FROM
FIRST is equivalent to FIRST_VALUE, and offset 1 with FROM LAST is equivalent to LAST_VALUE.

offset can be a parameter, but explicit casting to INTEGER or BIGINT is currently
required (eg LEAD(somecolumn, cast(? as bigint))). See CORE-6421

See also

FIRST_VALUE, LAST_VALUE

10.6. Aggregate Functions Inside Window Specification
It is possible to use aggregate functions (but not window functions) inside the OVER clause. In that
case, first the aggregate function is applied to determine the windows, and only then the window
functions are applied on those windows.

When using aggregate functions inside OVER, all columns not used in aggregate
functions must be specified in the GROUP BY clause of the SELECT.

Using an Aggregate Function in a Window Specification

select
 code_employee_group,
 avg(salary) as avg_salary,
 rank() over (order by avg(salary)) as salary_rank
from employee
group by code_employee_group

Chapter 10. Window (Analytical) Functions

467

http://tracker.firebirdsql.org/browse/CORE-6421

Chapter 11. Context Variables

11.1. CURRENT_CONNECTION
Available in

DSQL, PSQL

Type

BIGINT

Syntax

CURRENT_CONNECTION

CURRENT_CONNECTION contains the unique identifier of the current connection.

Its value is derived from a counter on the database header page, which is incremented for each
new connection. When a database is restored, this counter is reset to zero.

Examples

select current_connection from rdb$database

execute procedure P_Login(current_connection)

11.2. CURRENT_DATE
Available in

DSQL, PSQL, ESQL

Type

DATE

Syntax

CURRENT_DATE

CURRENT_DATE returns the current server date.

Within a PSQL module (procedure, trigger or executable block), the value of
CURRENT_DATE will remain constant every time it is read. If multiple modules call or
trigger each other, the value will remain constant throughout the duration of the
outermost module. If you need a progressing value in PSQL (e.g. to measure time
intervals), use 'TODAY'.

Chapter 11. Context Variables

468

Examples

select current_date from rdb$database
-- returns e.g. 2011-10-03

11.3. CURRENT_ROLE
Available in

DSQL, PSQL

Type

VARCHAR(31)

Syntax

CURRENT_ROLE

CURRENT_ROLE is a context variable containing the role of the currently connected user. If there is no
active role, CURRENT_ROLE is 'NONE'.

CURRENT_ROLE always represents a valid role or 'NONE'. If a user connects with a non-existing role,
the engine silently resets it to 'NONE' without returning an error.

Example

if (current_role <> 'MANAGER')
 then exception only_managers_may_delete;
else
 delete from Customers where custno = :custno;

11.4. CURRENT_TIME
Available in

DSQL, PSQL, ESQL

Type

TIME

Syntax

CURRENT_TIME [(<precision>)]

<precision> ::= 0 | 1 | 2 | 3

The optional precision argument is not supported in ESQL.

Table 207. CURRENT_TIME Parameter

Chapter 11. Context Variables

469

Parameter Description

precision Precision. The default value is 0. Not supported in ESQL

CURRENT_TIME returns the current server time. The default is 0 decimals, i.e. seconds precision.

• CURRENT_TIME has a default precision of 0 decimals, where CURRENT_TIMESTAMP has
a default precision of 3 decimals. As a result, CURRENT_TIMESTAMP is not the exact
sum of CURRENT_DATE and CURRENT_TIME, unless you explicitly specify a precision
(i.e. CURRENT_TIME(3) or CURRENT_TIMESTAMP(0)).

• Within a PSQL module (procedure, trigger or executable block), the value of
CURRENT_TIME will remain constant every time it is read. If multiple modules call
or trigger each other, the value will remain constant throughout the duration
of the outermost module. If you need a progressing value in PSQL (e.g. to
measure time intervals), use 'NOW'.

CURRENT_TIME and Firebird 4 time zone support

Firebird 4 will support time zones. As part of this support, there will be an
incompatibility with the CURRENT_TIME expression.

In Firebird 4, CURRENT_TIME will return the new TIME WITH TIME ZONE type. In order
for your queries to be compatible with database code of future Firebird versions,
Firebird 3.0.4 introduced the LOCALTIME expression. In Firebird 3.0, LOCALTIME is a
synonym for CURRENT_TIME.

In Firebird 4, LOCALTIME will continue to work as it does now (returning TIME
[WITHOUT TIME ZONE]), while CURRENT_TIME will return a different data type, TIME
WITH TIME ZONE.

Unless you need to be able to downgrade your database to Firebird 3.0.3 or earlier,
we recommend to start using LOCALTIME instead of CURRENT_TIME.

Examples

select current_time from rdb$database
-- returns e.g. 14:20:19.0000

select current_time(2) from rdb$database
-- returns e.g. 14:20:23.1200

See also

CURRENT_TIMESTAMP, LOCALTIME, LOCALTIMESTAMP

11.5. CURRENT_TIMESTAMP
Available in

DSQL, PSQL, ESQL

Chapter 11. Context Variables

470

Type

TIMESTAMP

Syntax

CURRENT_TIMESTAMP [(<precision>)]

<precision> ::= 0 | 1 | 2 | 3

The optional precision argument is not supported in ESQL.

Table 208. CURRENT_TIMESTAMP Parameter

Parameter Description

precision Precision. The default value is 3. Not supported in ESQL

CURRENT_TIMESTAMP returns the current server date and time. The default is 3 decimals, i.e.
milliseconds precision.

• The default precision of CURRENT_TIME is 0 decimals, so CURRENT_TIMESTAMP is not
the exact sum of CURRENT_DATE and CURRENT_TIME, unless you explicitly specify a
precision (i.e. CURRENT_TIME(3) or CURRENT_TIMESTAMP(0)).

• Within a PSQL module (procedure, trigger or executable block), the value of
CURRENT_TIMESTAMP will remain constant every time it is read. If multiple
modules call or trigger each other, the value will remain constant throughout
the duration of the outermost module. If you need a progressing value in PSQL
(e.g. to measure time intervals), use 'NOW'.

CURRENT_TIMESTAMP and Firebird 4 time zone support

Firebird 4 will support time zones. As part of this support, there will be an
incompatibility with the CURRENT_TIMESTAMP expression.

In Firebird 4, CURRENT_TIMESTAMP will return the new TIMESTAMP WITH TIME ZONE type.
In order for your queries to be compatible with database code of future Firebird
versions, Firebird 3.0.4 introduced the LOCALTIMESTAMP expression. In Firebird 3.0,
LOCALTIMESTAMP is a synonym for CURRENT_TIMESTAMP.

In Firebird 4, LOCALTIMESTAMP will continue to work as it does now (returning
TIMESTAMP [WITHOUT TIME ZONE]), while CURRENT_TIMESTAMP will return a different
data type, TIMESTAMP WITH TIME ZONE.

Unless you need to be able to downgrade your database to Firebird 3.0.3 or earlier,
we recommend to start using LOCALTIMESTAMP instead of CURRENT_TIMESTAMP.

Examples

select current_timestamp from rdb$database
-- returns e.g. 2008-08-13 14:20:19.6170

Chapter 11. Context Variables

471

select current_timestamp(2) from rdb$database
-- returns e.g. 2008-08-13 14:20:23.1200

See also

CURRENT_TIME, LOCALTIME, LOCALTIMESTAMP

11.6. CURRENT_TRANSACTION
Available in

DSQL, PSQL

Type

BIGINT

Syntax

CURRENT_TRANSACTION

CURRENT_TRANSACTION contains the unique identifier of the current transaction.

Its value is derived from a counter on the database header page, which is incremented for each
new transaction. When a database is restored, this counter is reset to zero.

Examples

select current_transaction from rdb$database

New.Txn_ID = current_transaction;

11.7. CURRENT_USER
Available in

DSQL, PSQL

Type

VARCHAR(31)

Syntax

CURRENT_USER

CURRENT_USER is a context variable containing the name of the currently connected user. It is fully
equivalent to USER.

Chapter 11. Context Variables

472

Example

create trigger bi_customers for customers before insert as
begin
 New.added_by = CURRENT_USER;
 New.purchases = 0;
end

11.8. DELETING
Available in

PSQL

Type

BOOLEAN

Syntax

DELETING

Available in triggers only, DELETING indicates if the trigger fired for a DELETE operation. Intended for
use in multi-action triggers.

Example

if (deleting) then
begin
 insert into Removed_Cars (id, make, model, removed)
 values (old.id, old.make, old.model, current_timestamp);
end

11.9. GDSCODE
Available in

PSQL

Type

INTEGER

Syntax

GDSCODE

In a “WHEN … DO” error handling block, the GDSCODE context variable contains the numerical
representation of the current Firebird error code. Prior to Firebird 2.0, GDSCODE was only set in WHEN
GDSCODE handlers. Now it may also be non-zero in WHEN ANY, WHEN SQLCODE, WHEN SQLSTATE and WHEN
EXCEPTION blocks, provided that the condition raising the error corresponds with a Firebird error

Chapter 11. Context Variables

473

code. Outside error handlers, GDSCODE is always 0. Outside PSQL, it doesn’t exist at all.

After WHEN GDSCODE, you must use symbolic names like grant_obj_notfound etc. But
the GDSCODE context variable is an INTEGER. If you want to compare it against a
specific error, the numeric value must be used, e.g. 335544551 for
grant_obj_notfound.

Example

when gdscode grant_obj_notfound, gdscode grant_fld_notfound,
 gdscode grant_nopriv, gdscode grant_nopriv_on_base
do
begin
 execute procedure log_grant_error(gdscode);
 exit;
end

11.10. INSERTING
Available in

PSQL

Type

BOOLEAN

Syntax

INSERTING

Available in triggers only, INSERTING indicates if the trigger fired because of an INSERT operation.
Intended for use in multi-action triggers.

Example

if (inserting or updating) then
begin
 if (new.serial_num is null) then
 new.serial_num = gen_id(gen_serials, 1);
end

11.11. LOCALTIME
Available in

DSQL, PSQL, ESQL

Type

TIME

Chapter 11. Context Variables

474

Syntax

LOCALTIME [(<precision>)]

<precision> ::= 0 | 1 | 2 | 3

The optional precision argument is not supported in ESQL.

Table 209. LOCALTIME Parameter

Parameter Description

precision Precision. The default value is 0. Not supported in ESQL

LOCALTIME returns the current server time. The default is 0 decimals, i.e. seconds precision.

• LOCALTIME was introduced in Firebird 3.0.4 as an alias of CURRENT_TIME. In
Firebird 4, CURRENT_TIME will return a TIME WITH TIME ZONE instead of a TIME
[WITHOUT TIME ZONE], while LOCALTIME will continue to return TIME [WITHOUT TIME
ZONE]. It is recommended to switch from CURRENT_TIME to LOCALTIME for forward-
compatibility with Firebird 4.

• LOCALTIME has a default precision of 0 decimals, where LOCALTIMESTAMP has a
default precision of 3 decimals. As a result, LOCALTIMESTAMP is not the exact sum
of CURRENT_DATE and LOCALTIME, unless you explicitly specify a precision (i.e.
LOCALTIME(3) or LOCALTIMESTAMP(0)).

• Within a PSQL module (procedure, trigger or executable block), the value of
LOCALTIME will remain constant every time it is read. If multiple modules call or
trigger each other, the value will remain constant throughout the duration of
the outermost module. If you need a progressing value in PSQL (e.g. to measure
time intervals), use 'NOW'.

Examples

select localtime from rdb$database
-- returns e.g. 14:20:19.0000

select localtime(2) from rdb$database
-- returns e.g. 14:20:23.1200

See also

CURRENT_TIME, LOCALTIMESTAMP

11.12. LOCALTIMESTAMP
Available in

DSQL, PSQL, ESQL

Type

Chapter 11. Context Variables

475

TIMESTAMP

Syntax

LOCALTIMESTAMP [(<precision>)]

<precision> ::= 0 | 1 | 2 | 3

The optional precision argument is not supported in ESQL.

Table 210. LOCALTIMESTAMP Parameter

Parameter Description

precision Precision. The default value is 3. Not supported in ESQL

LOCALTIMESTAMP returns the current server date and time. The default is 3 decimals, i.e. milliseconds
precision.

• LOCALTIMESTAMP was introduced in Firebird 3.0.4 as a synonym of
CURRENT_TIMESTAMP. In Firebird 4, CURRENT_TIMESTAMP will return a TIMESTAMP WITH
TIME ZONE instead of a TIMESTAMP [WITHOUT TIME ZONE], while LOCALTIMESTAMP will
continue to return TIMESTAMP [WITHOUT TIME ZONE]. It is recommended to switch
from CURRENT_TIMESTAMP to LOCALTIMESTAMP for forward-compatibility with
Firebird 4.

• The default precision of LOCALTIME is 0 decimals, so LOCALTIMESTAMP is not the
exact sum of CURRENT_DATE and LOCALTIME, unless you explicitly specify a
precision (i.e. LOCATIME(3) or LOCALTIMESTAMP(0)).

• Within a PSQL module (procedure, trigger or executable block), the value of
LOCALTIMESTAMP will remain constant every time it is read. If multiple modules
call or trigger each other, the value will remain constant throughout the
duration of the outermost module. If you need a progressing value in PSQL (e.g.
to measure time intervals), use 'NOW'.

Examples

select localtimestamp from rdb$database
-- returns e.g. 2008-08-13 14:20:19.6170

select localtimestamp(2) from rdb$database
-- returns e.g. 2008-08-13 14:20:23.1200

See also

CURRENT_TIMESTAMP, LOCALTIME

11.13. NEW
Available in

Chapter 11. Context Variables

476

PSQL, triggers only

Type

Record type

Syntax

NEW.column_name

Table 211. NEW Parameters

Parameter Description

column_name Column name to access

NEW contains the new version of a database record that has just been inserted or updated. Starting
with Firebird 2.0 it is read-only in AFTER triggers.

In multi-action triggers — introduced in Firebird 1.5 — NEW is always available.
However, if the trigger is fired by a DELETE, there will be no new version of the
record. In that situation, reading from NEW will always return NULL; writing to it will
cause a runtime exception.

11.14. 'NOW'
Available in

DSQL, PSQL, ESQL

Type

CHAR(3)

'NOW' is not a variable but a string literal. It is, however, special in the sense that when you CAST() it
to a date/time type, you will get the current date and/or time. Since Firebird 2.0 the precision is 3
decimals, i.e. milliseconds. 'NOW' is case-insensitive, and the engine ignores leading or trailing
spaces when casting.

Please be advised that the shorthand expressions are evaluated immediately at
parse time and stay the same as long as the statement remains prepared. Thus,
even if a query is executed multiple times, the value for e.g. “timestamp 'now'”
won’t change, no matter how much time passes. If you need the value to progress
(i.e. be evaluated upon every call), use a full cast.

• 'NOW' always returns the actual date/time, even in PSQL modules, where
CURRENT_DATE, CURRENT_TIME and CURRENT_TIMESTAMP return the same value
throughout the duration of the outermost routine. This makes 'NOW' useful for
measuring time intervals in triggers, procedures and executable blocks.

• Except in the situation mentioned above, reading CURRENT_DATE, CURRENT_TIME
and CURRENT_TIMESTAMP is generally preferable to casting 'NOW'. Be aware though

Chapter 11. Context Variables

477

that CURRENT_TIME defaults to seconds precision; to get milliseconds precision,
use CURRENT_TIME(3).

Examples

select 'Now' from rdb$database
-- returns 'Now'

select cast('Now' as date) from rdb$database
-- returns e.g. 2008-08-13

select cast('now' as time) from rdb$database
-- returns e.g. 14:20:19.6170

select cast('NOW' as timestamp) from rdb$database
-- returns e.g. 2008-08-13 14:20:19.6170

Shorthand syntax for the last three statements:

select date 'Now' from rdb$database
select time 'now' from rdb$database
select timestamp 'NOW' from rdb$database

11.15. OLD
Available in

PSQL, triggers only

Type

Record type

Syntax

OLD.column_name

Table 212. OLD Parameters

Parameter Description

column_name Column name to access

OLD contains the existing version of a database record just before a deletion or update. Starting with
Firebird 2.0 it is read-only.

In multi-action triggers — introduced in Firebird 1.5 — OLD is always available.
However, if the trigger is fired by an INSERT, there is obviously no pre-existing
version of the record. In that situation, reading from OLD will always return NULL;

Chapter 11. Context Variables

478

writing to it will cause a runtime exception.

11.16. ROW_COUNT
Available in

PSQL

Type

INTEGER

Syntax

ROW_COUNT

The ROW_COUNT context variable contains the number of rows affected by the most recent DML
statement (INSERT, UPDATE, DELETE, SELECT or FETCH) in the current trigger, stored procedure or
executable block.

Behaviour with SELECT and FETCH

• After a singleton SELECT, ROW_COUNT is 1 if a data row was retrieved and 0 otherwise.

• In a FOR SELECT loop, ROW_COUNT is incremented with every iteration (starting at 0 before the
first).

• After a FETCH from a cursor, ROW_COUNT is 1 if a data row was retrieved and 0 otherwise. Fetching
more records from the same cursor does not increment ROW_COUNT beyond 1.

• In Firebird 1.5.x, ROW_COUNT is 0 after any type of SELECT statement.

ROW_COUNT cannot be used to determine the number of rows affected by an EXECUTE
STATEMENT or EXECUTE PROCEDURE command.

Example

update Figures set Number = 0 where id = :id;
if (row_count = 0) then
 insert into Figures (id, Number) values (:id, 0);

11.17. SQLCODE
Available in

PSQL

Deprecated in

2.5.1

Type

INTEGER

Chapter 11. Context Variables

479

Syntax

SQLCODE

In a “WHEN … DO” error handling block, the SQLCODE context variable contains the current SQL error
code. Prior to Firebird 2.0, SQLCODE was only set in WHEN SQLCODE and WHEN ANY handlers. Now it may
also be non-zero in WHEN GDSCODE, WHEN SQLSTATE and WHEN EXCEPTION blocks, provided that the
condition raising the error corresponds with an SQL error code. Outside error handlers, SQLCODE is
always 0. Outside PSQL, it doesn’t exist at all.

SQLCODE is now deprecated in favour of the SQL-2003-compliant SQLSTATE status
code. Support for SQLCODE and WHEN SQLCODE will be discontinued in some future
version of Firebird.

Example

when any
do
begin
 if (sqlcode <> 0) then
 Msg = 'An SQL error occurred!';
 else
 Msg = 'Something bad happened!';
 exception ex_custom Msg;
end

11.18. SQLSTATE
Available in

PSQL

Added in

2.5.1

Type

CHAR(5)

Syntax

SQLSTATE

In a “WHEN … DO” error handler, the SQLSTATE context variable contains the 5-character, SQL-2003-
compliant status code resulting from the statement that raised the error. Outside error handlers,
SQLSTATE is always '00000'. Outside PSQL, it is not available at all.

• SQLSTATE is destined to replace SQLCODE. The latter is now deprecated in Firebird

and will disappear in some future version.

Chapter 11. Context Variables

480

• Firebird does not (yet) support the syntax “WHEN SQLSTATE … DO”. You have to
use WHEN ANY and test the SQLSTATE variable within the handler.

• Each SQLSTATE code is the concatenation of a 2-character class and a 3-character
subclass. Classes 00 (successful completion), 01 (warning) and 02 (no data)
represent completion conditions. Every status code outside these classes is an
exception. Because classes 00, 01 and 02 don’t raise an error, they won’t ever
show up in the SQLSTATE variable.

• For a complete listing of SQLSTATE codes, consult the SQLSTATE Codes and
Message Texts section in Appendix B: Exception Handling, Codes and Messages.

Example

when any
do
begin
 Msg = case sqlstate
 when '22003' then 'Numeric value out of range.'
 when '22012' then 'Division by zero.'
 when '23000' then 'Integrity constraint violation.'
 else 'Something bad happened! SQLSTATE = ' || sqlstate
 end;
 exception ex_custom Msg;
end

11.19. 'TODAY'
Available in

DSQL, PSQL, ESQL

Type

CHAR(5)

'TODAY' is not a variable, but a string literal. It is, however, special in the sense that when you CAST()
it to a date/time type, you will get the current date. 'TODAY' is case-insensitive, and the engine
ignores leading or trailing spaces when casting.

• 'TODAY' always returns the actual date, even in PSQL modules, where
CURRENT_DATE, CURRENT_TIME and CURRENT_TIMESTAMP return the same value
throughout the duration of the outermost routine. This makes 'TODAY' useful
for measuring time intervals in triggers, procedures and executable blocks (at
least if your procedures are running for days).

• Except in the situation mentioned above, reading CURRENT_DATE, is generally
preferable to casting 'NOW'.

Examples

select 'Today' from rdb$database

Chapter 11. Context Variables

481

-- returns 'Today'

select cast('Today' as date) from rdb$database
-- returns e.g. 2011-10-03

select cast('TODAY' as timestamp) from rdb$database
-- returns e.g. 2011-10-03 00:00:00.0000

Shorthand syntax for the last two statements:

select date 'Today' from rdb$database;
select timestamp 'TODAY' from rdb$database;

11.20. 'TOMORROW'
Available in

DSQL, PSQL, ESQL

Type

CHAR(8)

'TOMORROW' is not a variable, but a string literal. It is, however, special in the sense that when you
CAST() it to a date/time type, you will get the date of the next day. See also 'TODAY'.

Examples

select 'Tomorrow' from rdb$database
-- returns 'Tomorrow'

select cast('Tomorrow' as date) from rdb$database
-- returns e.g. 2011-10-04

select cast('TOMORROW' as timestamp) from rdb$database
-- returns e.g. 2011-10-04 00:00:00.0000

Shorthand syntax for the last two statements:

select date 'Tomorrow' from rdb$database;
select timestamp 'TOMORROW' from rdb$database;

11.21. UPDATING
Available in

PSQL

Type

Chapter 11. Context Variables

482

BOOLEAN

Syntax

UPDATING

Available in triggers only, UPDATING indicates if the trigger fired because of an UPDATE operation.
Intended for use in multi-action triggers.

Example

if (inserting or updating) then
begin
 if (new.serial_num is null) then
 new.serial_num = gen_id(gen_serials, 1);
end

11.22. 'YESTERDAY'
Available in

DSQL, PSQL, ESQL

Type

CHAR(9)

'YESTERDAY' is not a variable, but a string literal. It is, however, special in the sense that when you
CAST() it to a date/time type, you will get the date of the day before. See also 'TODAY'.

Examples

select 'Yesterday' from rdb$database
-- returns 'Yesterday'

select cast('Yesterday as date) from rdb$database
-- returns e.g. 2011-10-02

select cast('YESTERDAY' as timestamp) from rdb$database
-- returns e.g. 2011-10-02 00:00:00.0000

Shorthand syntax for the last two statements:

select date 'Yesterday' from rdb$database;
select timestamp 'YESTERDAY' from rdb$database;

11.23. USER
Available in

Chapter 11. Context Variables

483

DSQL, PSQL

Type

VARCHAR(31)

Syntax

USER

USER is a context variable containing the name of the currently connected user. It is fully equivalent
to CURRENT_USER.

Example

create trigger bi_customers for customers before insert as
begin
 New.added_by = USER;
 New.purchases = 0;
end

Chapter 11. Context Variables

484

Chapter 12. Transaction Control
Everything in Firebird happens in transactions. Units of work are isolated between a start point
and end point. Changes to data remain reversible until the moment the client application instructs
the server to commit them.

12.1. Transaction Statements
Firebird has a small lexicon of SQL statements that are used by client applications to start, manage,
commit and reverse (roll back) the transactions that form the boundaries of all database tasks:

SET TRANSACTION

for configuring and starting a transaction

COMMIT

to signal the end of a unit of work and write changes permanently to the database

ROLLBACK

to reverse the changes performed in the transaction

SAVEPOINT

to mark a position in the log of work done, in case a partial rollback is needed

RELEASE SAVEPOINT

to erase a savepoint

12.1.1. SET TRANSACTION

Used for

Configuring and starting a transaction

Available in

DSQL, ESQL

Syntax

SET TRANSACTION
 [NAME tr_name]
 [<tr_option> ...]

<tr_option> ::=
 READ {ONLY | WRITE}
 | [NO] WAIT
 | [ISOLATION LEVEL]
 { SNAPSHOT [TABLE [STABILITY]]
 | READ {UNCOMMITED | COMMITTED }
 [[NO] RECORD_VERSION] }
 | NO AUTO UNDO

Chapter 12. Transaction Control

485

 | RESTART REQUESTS
 | IGNORE LIMBO
 | LOCK TIMEOUT seconds
 | RESERVING <tables>
 | USING <dbhandles>

<tables> ::= <table_spec> [, <table_spec> ...]

<table_spec> ::= tablename [, tablename ...]
 [FOR [SHARED | PROTECTED] {READ | WRITE}]

<dbhandles> ::= dbhandle [, dbhandle ...]

Table 213. SET TRANSACTION Statement Parameters

Parameter Description

tr_name Transaction name. Available only in ESQL

tr_option Optional transaction option. Each option should be specified at most
once, some options are mutually exclusive (e.g. READ ONLY vs READ WRITE,
WAIT vs NO WAIT)

seconds The time in seconds for the statement to wait in case a conflict occurs.
Has to be greater than or equal to 0.

tables The list of tables to reserve

dbhandles The list of databases the database can access. Available only in ESQL

table_spec Table reservation specification

tablename The name of the table to reserve

dbhandle The handle of the database the database can access. Available only in
ESQL

The SET TRANSACTION statement configures the transaction and starts it. As a rule, only client
applications start transactions. The exceptions are the occasions when the server starts an
autonomous transaction or transactions for certain background system threads/processes, such as
sweeping.

A client application can start any number of concurrently running transactions. A single connection
can have multiple concurrent active transactions (though not all drivers or access components
support this). A limit does exist, for the total number of running transactions in all client
applications working with one particular database from the moment the database was restored
from its backup copy or from the moment the database was created originally. The limit is 2
48 — 281,474,976,710,656 — in Firebird 3, and 231-1 — or 2,147,483,647 — in earlier versions.

All clauses in the SET TRANSACTION statement are optional. If the statement starting a transaction has
no clauses specified in it, it the transaction will be started with default values for access mode, lock
resolution mode and isolation level, which are:

SET TRANSACTION

Chapter 12. Transaction Control

486

 READ WRITE
 WAIT
 ISOLATION LEVEL SNAPSHOT;

Database drivers or access components may use different defaults. Check their
documentation for details.

The server assigns integer numbers to transactions sequentially. Whenever a client starts any
transaction, either explicitly defined or by default, the server sends the transaction ID to the client.
This number can be retrieved in SQL using the context variable CURRENT_TRANSACTION.

Some database drivers — or their governing specifications — require that you
configure and start transaction through API methods. In that case, using SET
TRANSACTION is either not supported, or may result in unspecified behaviour. An
example of this is JDBC and the Firebird JDBC driver Jaybird.

Check the documentation of your driver for details.

The NAME and USING clauses are only valid in ESQL.

Transaction Name

The optional NAME attribute defines the name of a transaction. Use of this attribute is available only
in Embedded SQL. In ESQL applications, named transactions make it possible to have several
transactions active simultaneously in one application. If named transactions are used, a host-
language variable with the same name must be declared and initialized for each named
transaction. This is a limitation that prevents dynamic specification of transaction names and thus,
rules out transaction naming in DSQL.

Transaction Parameters

The main parameters of a transaction are:

• data access mode (READ WRITE, READ ONLY)

• lock resolution mode (WAIT, NO WAIT) with an optional LOCK TIMEOUT specification

• isolation level (READ COMMITTED, SNAPSHOT, SNAPSHOT TABLE STABILITY).

The READ UNCOMMITTED isolation level is a synonym for READ COMMITTED, and
provided only for syntax compatibility. It provides the exact same semantics as
READ COMMITTED, and does not allow you to view uncommitted changes of other
transactions.

• a mechanism for reserving or releasing tables (the RESERVING clause)

Access Mode

The two database access modes for transactions are READ WRITE and READ ONLY.

Chapter 12. Transaction Control

487

• If the access mode is READ WRITE, operations in the context of this transaction can be both read
operations and data update operations. This is the default mode.

• If the access mode is READ ONLY, only SELECT operations can be executed in the context of this
transaction. Any attempt to change data in the context of such a transaction will result in
database exceptions. However, this does not apply to global temporary tables (GTT), which are
allowed to be changed in READ ONLY transactions, see Global Temporary Tables (GTT) in Chapter
Data Definition (DDL) Statements for details.

Lock Resolution Mode

When several client processes work with the same database, locks may occur when one process
makes uncommitted changes in a table row, or deletes a row, and another process tries to update or
delete the same row. Such locks are called update conflicts.

Locks may occur in other situations when multiple transaction isolation levels are used.

The two lock resolution modes are WAIT and NO WAIT.

WAIT Mode

In the WAIT mode (the default mode), if a conflict occurs between two parallel processes executing
concurrent data updates in the same database, a WAIT transaction will wait till the other transaction
has finished — by committing (COMMIT) or rolling back (ROLLBACK). The client application with the
WAIT transaction will be put on hold until the conflict is resolved.

If a LOCK TIMEOUT is specified for the WAIT transaction, waiting will continue only for the number of
seconds specified in this clause. If the lock is unresolved at the end of the specified interval, the
error message “Lock time-out on wait transaction” is returned to the client.

Lock resolution behaviour can vary a little, depending on the transaction isolation level.

NO WAIT Mode

In the NO WAIT mode, a transaction will immediately throw a database exception if a conflict occurs.

LOCK TIMEOUT is a separate transaction option, but can only be used for WAIT
transactions. Specifying LOCK TIMEOUT with a NO WAIT transaction will raise an error
“invalid parameter in transaction parameter block -Option isc_tpb_lock_timeout is
not valid if isc_tpb_nowait was used previously in TPB”

Isolation Level

Keeping the work of one database task separated from others is what isolation is about. Changes
made by one statement become visible to all remaining statements executing within the same
transaction, regardless of its isolation level. Changes that are in progress within other transactions
remain invisible to the current transaction as long as they remain uncommitted. The isolation level
and, sometimes, other attributes, determine how transactions will interact when another
transaction wants to commit work.

The ISOLATION LEVEL attribute defines the isolation level for the transaction being started. It is the

Chapter 12. Transaction Control

488

most significant transaction parameter for determining its behavior towards other concurrently
running transactions.

The three isolation levels supported in Firebird are:

• SNAPSHOT

• SNAPSHOT TABLE STABILITY

• READ COMMITTED with two specifications (NO RECORD_VERSION and RECORD_VERSION)

SNAPSHOT Isolation Level

SNAPSHOT isolation level — the default level — allows the transaction to see only those changes that
were committed before it was started. Any committed changes made by concurrent transactions
will not be seen in a SNAPSHOT transaction while it is active. The changes will become visible to a
new transaction once the current transaction is either committed or rolled back completely, but not
if it is just rolled back to a savepoint.

The SNAPSHOT isolation level is also known as “concurrency”.

Autonomous Transactions

Changes made by autonomous transactions are not seen in the context of the
SNAPSHOT transaction that launched it.

SNAPSHOT TABLE STABILITY Isolation Level

The SNAPSHOT TABLE STABILITY — or SNAPSHOT TABLE — isolation level is the most restrictive. As in
SNAPSHOT, a transaction in SNAPSHOT TABLE STABILITY isolation sees only those changes that were
committed before the current transaction was started. After a SNAPSHOT TABLE STABILITY is started,
no other transactions can make any changes to any table in the database that has changes pending
for this transaction. Other transactions are able to read other data, but any attempt at inserting,
updating or deleting by a parallel process will cause conflict exceptions.

The RESERVING clause can be used to allow other transactions to change data in some tables.

If any other transaction has an uncommitted change pending in any (non-SHARED) table listed in the
RESERVING clause, trying to start a SNAPSHOT TABLE STABILITY transaction will result in an indefinite
wait (default or explicit WAIT), or an exception (NO WAIT or after expiration of the LOCK TIMEOUT).

The SNAPSHOT TABLE STABILITY isolation level is also known as “consistency”.

READ COMMITTED Isolation Level

The READ COMMITTED isolation level allows all data changes that other transactions have committed
since it started to be seen immediately by the uncommitted current transaction. Uncommitted
changes are not visible to a READ COMMITTED transaction.

To retrieve the updated list of rows in the table you are interested in — “refresh” — the SELECT
statement just needs to be requested again, whilst still in the uncommitted READ COMMITTED
transaction.

Chapter 12. Transaction Control

489

RECORD_VERSION

One of two modifying parameters can be specified for READ COMMITTED transactions, depending on
the kind of conflict resolution desired: RECORD_VERSION and NO RECORD_VERSION. As the names suggest,
they are mutually exclusive.

• NO RECORD_VERSION (the default value) is a kind of two-phase locking mechanism: it will make the
transaction unable to write to any row that has an update pending from another transaction.

◦ if NO WAIT is the lock resolution strategy specified, it will throw a lock conflict error
immediately

◦ with WAIT specified, it will wait until the other transaction either commits or is rolled back. If
the other transaction is rolled back, or if it is committed and its transaction ID is older than
the current transaction’s ID, then the current transaction’s change is allowed. A lock conflict
error is returned if the other transaction was committed and its ID was newer than that of
the current transaction.

• With RECORD_VERSION specified, the transaction reads the latest committed version of the row,
regardless of other pending versions of the row. The lock resolution strategy (WAIT or NO WAIT)
does not affect the behavior of the transaction at its start in any way.

NO AUTO UNDO

The NO AUTO UNDO option affects the handling of record versions (garbage) produced by the
transaction in the event of rollback. With NO AUTO UNDO flagged, the ROLLBACK statement just marks
the transaction as rolled back without deleting the record versions created in the transaction. They
are left to be mopped up later by garbage collection.

NO AUTO UNDO might be useful when a lot of separate statements are executed that change data in
conditions where the transaction is likely to be committed successfully most of the time.

The NO AUTO UNDO option is ignored for transactions where no changes are made.

RESTART REQUESTS

According to the Firebird sources, this will

Restart all requests in the current attachment to utilize the passed
transaction.

— src/jrd/tra.cpp

The exact semantics and effects of this clause are not clear, and we recommend you do not use this
clause.

IGNORE LIMBO

This flag is used to signal that records created by limbo transactions are to be ignored. Transactions
are left “in limbo” if the second stage of a two-phase commit fails.

Historical Note

IGNORE LIMBO surfaces the TPB parameter isc_tpb_ignore_limbo, available in the API

Chapter 12. Transaction Control

490

since InterBase times and is mainly used by gfix.

RESERVING

The RESERVING clause in the SET TRANSACTION statement reserves tables specified in the table list.
Reserving a table prevents other transactions from making changes in them or even, with the
inclusion of certain parameters, from reading data from them while this transaction is running.

A RESERVING clause can also be used to specify a list of tables that can be changed by other
transactions, even if the transaction is started with the SNAPSHOT TABLE STABILITY isolation level.

One RESERVING clause is used to specify as many reserved tables as required.

Options for RESERVING Clause

If one of the keywords SHARED or PROTECTED is omitted, SHARED is assumed. If the whole FOR clause is
omitted, FOR SHARED READ is assumed. The names and compatibility of the four access options for
reserving tables are not obvious.

Table 214. Compatibility of Access Options for RESERVING

 SHARED READ SHARED WRITE PROTECTED READ PROTECTED
WRITE

SHARED READ Yes Yes Yes Yes

SHARED WRITE Yes Yes No No

PROTECTED READ Yes No Yes No

PROTECTED
WRITE

Yes No No No

The combinations of these RESERVING clause flags for concurrent access depend on the isolation
levels of the concurrent transactions:

• SNAPSHOT isolation

◦ Concurrent SNAPSHOT transactions with SHARED READ do not affect one other’s access

◦ A concurrent mix of SNAPSHOT and READ COMMITTED transactions with SHARED WRITE do not
affect one another’s access, but they block transactions with SNAPSHOT TABLE STABILITY
isolation from either reading from or writing to the specified table(s)

◦ Concurrent transactions with any isolation level and PROTECTED READ can only read data from
the reserved tables. Any attempt to write to them will cause an exception

◦ With PROTECTED WRITE, concurrent transactions with SNAPSHOT and READ COMMITTED isolation
cannot write to the specified tables. Transactions with SNAPSHOT TABLE STABILITY isolation
cannot read from or write to the reserved tables at all.

• SNAPSHOT TABLE STABILITY isolation

◦ All concurrent transactions with SHARED READ, regardless of their isolation levels, can read
from or write (if in READ WRITE mode) to the reserved tables

◦ Concurrent transactions with SNAPSHOT and READ COMMITTED isolation levels and SHARED WRITE

Chapter 12. Transaction Control

491

can read data from and write (if in READ WRITE mode) to the specified tables but concurrent
access to those tables from transactions with SNAPSHOT TABLE STABILITY is blocked completely
whilst these transactions are active

◦ Concurrent transactions with any isolation level and PROTECTED READ can only read from the
reserved tables

◦ With PROTECTED WRITE, concurrent SNAPSHOT and READ COMMITTED transactions can read from
but not write to the reserved tables. Access by transactions with the SNAPSHOT TABLE
STABILITY isolation level is blocked completely.

• READ COMMITTED isolation

◦ With SHARED READ, all concurrent transactions with any isolation level can both read from
and write (if in READ WRITE mode) to the reserved tables

◦ SHARED WRITE allows all transactions in SNAPSHOT and READ COMMITTED isolation to read from
and write (if in READ WRITE mode) to the specified tables and blocks access completely from
transactions with SNAPSHOT TABLE STABILITY isolation

◦ With PROTECTED READ, concurrent transactions with any isolation level can only read from the
reserved tables

◦ With PROTECTED WRITE, concurrent transactions in SNAPSHOT and READ COMMITTED isolation can
read from but not write to the specified tables. Access from transactions in SNAPSHOT TABLE
STABILITY isolation is blocked completely.

In Embedded SQL, the USING clause can be used to conserve system resources by
limiting the number of databases a transaction can access. USING is mutually
exclusive with RESERVING. A USING clause in SET TRANSACTION syntax is not supported
in DSQL.

See also

COMMIT, ROLLBACK

12.1.2. COMMIT

Used for

Committing a transaction

Available in

DSQL, ESQL

Syntax

COMMIT [TRANSACTION tr_name] [WORK]
 [RETAIN [SNAPSHOT] | RELEASE];

Table 215. COMMIT Statement Parameter

Parameter Description

tr_name Transaction name. Available only in ESQL

Chapter 12. Transaction Control

492

The COMMIT statement commits all work carried out in the context of this transaction (inserts,
updates, deletes, selects, execution of procedures). New record versions become available to other
transactions and, unless the RETAIN clause is employed, all server resources allocated to its work are
released.

If any conflicts or other errors occur in the database during the process of committing the
transaction, the transaction is not committed, and the reasons are passed back to the user
application for handling, and the opportunity to attempt another commit or to roll the transaction
back.

The TRANSACTION and RELEASE clauses are only valid in ESQL.

COMMIT Options

• The optional TRANSACTION tr_name clause, available only in Embedded SQL, specifies the name of
the transaction to be committed. With no TRANSACTION clause, COMMIT is applied to the default
transaction.

In ESQL applications, named transactions make it possible to have several
transactions active simultaneously in one application. If named transactions
are used, a host-language variable with the same name must be declared and
initialized for each named transaction. This is a limitation that prevents
dynamic specification of transaction names and thus, rules out transaction
naming in DSQL.

• The optional keyword WORK is supported just for compatibility with other relational database
management systems that require it.

• The keyword RELEASE is available only in Embedded SQL and enables disconnection from all
databases after the transaction is committed. RELEASE is retained in Firebird only for
compatibility with legacy versions of InterBase. It has been superseded in ESQL by the
DISCONNECT statement.

• The RETAIN [SNAPSHOT] clause is used for the “soft” commit, variously referred to amongst host
languages and their practitioners as COMMIT WITH RETAIN, “CommitRetaining”, “warm commit”, et
al. The transaction is committed, but some server resources are retained and a new transaction
is restarted transparently with the same Transaction ID. The state of row caches and cursors is
kept as it was before the soft commit.

For soft-committed transactions whose isolation level is SNAPSHOT or SNAPSHOT TABLE STABILITY,
the view of database state is not updated to reflect changes by other transactions, and the user
of the application instance continues to have the same view as when the transaction started
originally. Changes made during the life of the retained transaction are visible to that
transaction, of course.

Recommendation

Use of the COMMIT statement in preference to ROLLBACK is recommended for ending
transactions that only read data from the database, because COMMIT consumes
fewer server resources and helps to optimize the performance of subsequent

Chapter 12. Transaction Control

493

transactions.

See also

SET TRANSACTION, ROLLBACK

12.1.3. ROLLBACK

Used for

Rolling back a transaction

Available in

DSQL, ESQL

Syntax

 ROLLBACK [TRANSACTION tr_name] [WORK]
 [RETAIN [SNAPSHOT] | RELEASE]
| ROLLBACK [WORK] TO [SAVEPOINT] sp_name

Table 216. ROLLBACK Statement Parameters

Parameter Description

tr_name Transaction name. Available only in ESQL

sp_name Savepoint name. Available only in DSQL

The ROLLBACK statement rolls back all work carried out in the context of this transaction (inserts,
updates, deletes, selects, execution of procedures). ROLLBACK never fails and, thus, never causes
exceptions. Unless the RETAIN clause is employed, all server resources allocated to the work of the
transaction are released.

The TRANSACTION and RELEASE clauses are only valid in ESQL. The ROLLBACK TO SAVEPOINT statement is
not available in ESQL.

ROLLBACK Options

• The optional TRANSACTION tr_name clause, available only in Embedded SQL, specifies the name of
the transaction to be committed. With no TRANSACTION clause, ROLLBACK is applied to the default
transaction.

In ESQL applications, named transactions make it possible to have several
transactions active simultaneously in one application. If named transactions
are used, a host-language variable with the same name must be declared and
initialized for each named transaction. This is a limitation that prevents
dynamic specification of transaction names and thus, rules out transaction
naming in DSQL.

• The optional keyword WORK is supported just for compatibility with other relational database
management systems that require it.

Chapter 12. Transaction Control

494

• The keyword RETAIN keyword specifies that, although all work of the transaction is to be rolled
back, the transaction context is to be retained. Some server resources are retained, and the
transaction is restarted transparently with the same Transaction ID. The state of row caches and
cursors is kept as it was before the “soft” rollback.

For transactions whose isolation level is SNAPSHOT or SNAPSHOT TABLE STABILITY, the view of
database state is not updated by the soft rollback to reflect changes by other transactions. The
user of the application instance continues to have the same view as when the transaction
started originally. Changes that were made and soft-committed during the life of the retained
transaction are visible to that transaction, of course.

See also

SET TRANSACTION, COMMIT

ROLLBACK TO SAVEPOINT

The alternative ROLLBACK TO SAVEPOINT statement specifies the name of a savepoint to which changes
are to be rolled back. The effect is to roll back all changes made within the transaction, from the
specified savepoint forward until the point when ROLLBACK TO SAVEPOINT is requested.

ROLLBACK TO SAVEPOINT performs the following operations:

• Any database mutations performed since the savepoint was created are undone. User variables
set with RDB$SET_CONTEXT() remain unchanged.

• Any savepoints that were created after the one named are destroyed. Savepoints earlier than
the one named are preserved, along with the named savepoint itself. Repeated rollbacks to the
same savepoint are thus allowed.

• All implicit and explicit record locks that were acquired since the savepoint are released. Other
transactions that have requested access to rows locked after the savepoint must continue to
wait until the transaction is committed or rolled back. Other transactions that have not already
requested the rows can request and access the unlocked rows immediately.

See also

SAVEPOINT, RELEASE SAVEPOINT

12.1.4. SAVEPOINT

Used for

Creating a savepoint

Available in

DSQL

Syntax

SAVEPOINT sp_name

Table 217. SAVEPOINT Statement Parameter

Chapter 12. Transaction Control

495

Parameter Description

sp_name Savepoint name. Available only in DSQL

The SAVEPOINT statement creates an SQL:99-compliant savepoint that acts as a marker in the “stack”
of data activities within a transaction. Subsequently, the tasks performed in the “stack” can be
undone back to this savepoint, leaving the earlier work and older savepoints untouched. Savepoint
mechanisms are sometimes characterised as “nested transactions”.

If a savepoint already exists with the same name as the name supplied for the new one, the existing
savepoint is released, and a new one is created using the supplied name.

To roll changes back to the savepoint, the statement ROLLBACK TO SAVEPOINT is used.

Memory Considerations

The internal mechanism beneath savepoints can consume large amounts of
memory, especially if the same rows receive multiple updates in one transaction.
When a savepoint is no longer needed, but the transaction still has work to do, a
RELEASE SAVEPOINT statement will erase it and thus free the resources.

Sample DSQL session with savepoints

CREATE TABLE TEST (ID INTEGER);
COMMIT;
INSERT INTO TEST VALUES (1);
COMMIT;
INSERT INTO TEST VALUES (2);
SAVEPOINT Y;
DELETE FROM TEST;
SELECT * FROM TEST; -- returns no rows
ROLLBACK TO Y;
SELECT * FROM TEST; -- returns two rows
ROLLBACK;
SELECT * FROM TEST; -- returns one row

See also

ROLLBACK TO SAVEPOINT, RELEASE SAVEPOINT

12.1.5. RELEASE SAVEPOINT

Used for

Erasing a savepoint

Available in

DSQL

Chapter 12. Transaction Control

496

Syntax

RELEASE SAVEPOINT sp_name [ONLY]

Table 218. RELEASE SAVEPOINT Statement Parameter

Parameter Description

sp_name Savepoint name. Available only in DSQL

The statement RELEASE SAVEPOINT erases a named savepoint, freeing up all the resources it
encompasses. By default, all the savepoints created after the named savepoint are released as well.
The qualifier ONLY directs the engine to release only the named savepoint.

See also

SAVEPOINT

12.1.6. Internal Savepoints

By default, the engine uses an automatic transaction-level system savepoint to perform transaction
rollback. When a ROLLBACK statement is issued, all changes performed in this transaction are backed
out via a transaction-level savepoint, and the transaction is then committed. This logic reduces the
amount of garbage collection caused by rolled back transactions.

When the volume of changes performed under a transaction-level savepoint is getting large (~50000
records affected), the engine releases the transaction-level savepoint and uses the Transaction
Inventory Page (TIP) as a mechanism to roll back the transaction if needed.

If you expect the volume of changes in your transaction to be large, you can
specify the NO AUTO UNDO option in your SET TRANSACTION statement to block the
creation of the transaction-level savepoint. Using the API instead, you would set
the TPB flag isc_tpb_no_auto_undo.

12.1.7. Savepoints and PSQL

Transaction control statements are not allowed in PSQL, as that would break the atomicity of the
statement that calls the procedure. However, Firebird does support the raising and handling of
exceptions in PSQL, so that actions performed in stored procedures and triggers can be selectively
undone without the entire procedure failing.

Internally, automatic savepoints are used to:

• undo all actions in the BEGIN…END block where an exception occurs

• undo all actions performed by the procedure or trigger or, in a selectable procedure, all actions
performed since the last SUSPEND, when execution terminates prematurely because of an
uncaught error or exception

Each PSQL exception handling block is also bounded by automatic system savepoints.

Chapter 12. Transaction Control

497

A BEGIN…END block does not itself create an automatic savepoint. A savepoint is
created only in blocks that contain the WHEN statement for handling exceptions.

Chapter 12. Transaction Control

498

Chapter 13. Security
Databases must be secure and so must the data stored in them. Firebird provides three levels of
data security: user authentication at the server level, SQL privileges within databases,
and — optionally — database encryption. This chapter describes how to manage security at these
three levels.

There is also a fourth level of data security: wire protocol encryption, which
encrypts data in transit between client and server. Wire protocol encryption is out
of scope for this Language Reference.

13.1. User Authentication
The security of the entire database depends on identifying a user and verifying its authority, a
procedure known as authentication. User authentication can be performed in several ways,
depending on the setting of the AuthServer parameter in the firebird.conf configuration file. This
parameter contains the list of authentication plugins that can be used when connecting to the
server. If the first plugin fails when authenticating, then the client can proceed with the next
plugin, etc. When no plugin could authenticate the user, the user receives an error message.

The information about users authorised to access a specific Firebird server is stored in a special
security database named security3.fdb. Each record in security3.fdb is a user account for one user.
For each database, the security database can be overridden in the databases.conf file (parameter
SecurityDatabase). Any database can be a security database, even for that database itself.

A username, consisting of up to 31 characters, is an identifier, following the normal rules for
identifiers (unquoted case-insensitive, double-quoted case-sensitive). For backwards compatibility,
some statements (e.g. isqls CONNECT) accept usernames enclosed in single quotes, which will behave
as normal, unquoted identifiers.

The maximum password length depends on the user manager plugin (parameter UserManager, in
firebird.conf or databases.conf). Passwords are case-sensitive. The default user manager is the first
plugin in the UserManager list, but this can be overridden in the SQL user management statements.
For the Srp plugin, the maximum password length is 255 characters, for an effective length of 20
bytes (see also Why is the effective password length of SRP 20 bytes?). For the Legacy_UserManager
plugin only the first eight bytes are significant; whilst it is valid to enter a password longer than
eight bytes for Legacy_UserManager, any subsequent characters are ignored.

Why is the effective password length of SRP 20 bytes?

The SRP plugin does not actually have a 20 byte limit on password length, and longer
passwords can be used. Hashes of different passwords longer than 20 bytes are
also — usually — different. This effective limit comes from the limited hash length in SHA1
(used inside Firebirds SRP implementation), 20 bytes or 160 bits, and the “pigeonhole
principle”. Sooner or later, there will be a shorter (or longer) password that has the same
hash (e.g. in a brute force attack). That is why often the effective password length for the

Chapter 13. Security

499

https://en.wikipedia.org/wiki/Pigeonhole_principle
https://en.wikipedia.org/wiki/Pigeonhole_principle

SHA1 algorithm is said to be 20 bytes.

The embedded version of the server does not use authentication. However, the username, and — if
necessary — the role, must be specified in the connection parameters, as they control access to
database objects.

SYSDBA or the owner of the database get unrestricted access to all objects of the database. Users
with the RDB$ADMIN role get similar unrestricted access if they specify the role when connecting.

13.1.1. Specially Privileged Users

In Firebird, the SYSDBA account is a “Superuser” that exists beyond any security restrictions. It has
complete access to all objects in all regular databases on the server, and full read/write access to the
accounts in the security database security3.fdb. No user has access to the metadata of the security
database.

For Srp, the SYSDBA account does not exist by default; it will need to be created using an embedded
connection. For Legacy_Auth, the default SYSDBA password on Windows and MacOS is
“masterkey” — or “masterke”, to be exact, because of the 8-character length limit.

Extremely Important!

The default password “masterkey” is known across the universe. It should be
changed as soon as the Firebird server installation is complete.

Other users can acquire elevated privileges in several ways, some of which are dependent on the
operating system platform. These are discussed in the sections that follow and are summarised in
Administrators.

POSIX Hosts

On POSIX systems, including MacOS, the POSIX username will be used as the Firebird Embedded
username if username is not explicitly specified.

The SYSDBA User on POSIX

On POSIX hosts, other than MacOSX, the SYSDBA user does not have a default password. If the full
installation is done using the standard scripts, a one-off password will be created and stored in a
text file in the same directory as security3.fdb, commonly /opt/firebird/. The name of the
password file is SYSDBA.password.

In an installation performed by a distribution-specific installer, the location of the
security database and the password file may be different from the standard one.

The root User

The root user can act directly as SYSDBA on Firebird Embedded. Firebird will treat root as though
it were SYSDBA, and it provides access to all databases on the server.

Chapter 13. Security

500

Windows Hosts

On Windows server-capable operating systems, operating system accounts can be used. Windows
authentication (also known as “trusted authentication”) can be enabled by including the Win_Sspi
plugin in the AuthServer list in firebird.conf. The plugin must also be present in the AuthClient
setting at the client-side.

Windows operating system administrators are not automatically granted SYSDBA privileges when
connecting to a database. To make that happen, the internally-created role RDB$ADMIN must be
altered by SYSDBA or the database owner, to enable it. For details, refer to the later section entitled
AUTO ADMIN MAPPING.

Prior to Firebird 3.0, with trusted authentication enabled, users who passed the
default checks were automatically mapped to CURRENT_USER. In Firebird 3.0 and
later, the mapping must be done explicitly using CREATE MAPPING.

The Database Owner

The “owner” of a database is either the user who was CURRENT_USER at the time of creation (or
restore) of the database or, if the USER parameter was supplied in the CREATE DATABASE statement, the
specified user.

“Owner” is not a username. The user who is the owner of a database has full administrator
privileges with respect to that database, including the right to drop it, to restore it from a backup
and to enable or disable the AUTO ADMIN MAPPING capability.

Prior to Firebird 2.1, the owner had no automatic privileges over any database
objects that were created by other users.

13.1.2. RDB$ADMIN Role

The internally-created role RDB$ADMIN is present in all databases. Assigning the RDB$ADMIN role to a
regular user in a database grants that user the privileges of the SYSDBA, in that database only.

The elevated privileges take effect when the user is logged in to that regular database under the
RDB$ADMIN role, and gives full control over all objects in that database.

Being granted the RDB$ADMIN role in the security database confers the authority to create, edit and
delete user accounts.

In both cases, the user with the elevated privileges can assign RDB$ADMIN role to any other user. In
other words, specifying WITH ADMIN OPTION is unnecessary because it is built into the role.

Granting the RDB$ADMIN Role in the Security Database

Since nobody — not even SYSDBA — can connect to the security database remotely, the GRANT and
REVOKE statements are of no use for this task. Instead, the RDB$ADMIN role is granted and revoked
using the SQL statements for user management:

Chapter 13. Security

501

CREATE USER new_user
 PASSWORD 'password'
 GRANT ADMIN ROLE;

ALTER USER existing_user
 GRANT ADMIN ROLE;

ALTER USER existing_user
 REVOKE ADMIN ROLE;

GRANT ADMIN ROLE and REVOKE ADMIN ROLE are not statements in the GRANT and REVOKE
lexicon. They are three-word clauses to the statements CREATE USER and ALTER USER.

Table 219. Parameters for RDB$ADMIN Role GRANT and REVOKE

Parameter Description

new_user Name for the new user

existing_user Name of an existing user

password User password

The grantor must be logged in as an administrator.

See also

CREATE USER, ALTER USER, GRANT, REVOKE

Doing the Same Task Using gsec

With Firebird 3.0, gsec was deprecated. It is recommended to use the SQL user
management statements instead.

An alternative is to use gsec with the -admin parameter to store the RDB$ADMIN attribute on the user’s
record:

gsec -add new_user -pw password -admin yes
gsec -mo existing_user -admin yes
gsec -mo existing_user -admin no

Depending on the administrative status of the current user, more parameters may
be needed when invoking gsec, e.g. -user and -pass, or -trusted.

Using the RDB$ADMIN Role in the Security Database

To manage user accounts through SQL, the grantee must specify the RDB$ADMIN role when
connecting or through SET ROLE. No user can connect to the security database remotely, so the
solution is that the user connects to a regular database where they also have RDB$ADMIN rights,
supplying the RDB$ADMIN role in their login parameters. From there, they can submit any SQL user

Chapter 13. Security

502

management command.

If there is no regular database where the user has the RDB$ADMIN role, then account management via
SQL queries is not possible, unless they connect directly to the security database using an
embedded connection.

Using gsec with RDB$ADMIN Rights

To perform user management with gsec, the user must provide the extra switch -role rdb$admin.

Granting the RDB$ADMIN Role in a Regular Database

In a regular database, the RDB$ADMIN role is granted and revoked with the usual syntax for granting
and revoking roles:

GRANT RDB$ADMIN TO username

REVOKE RDB$ADMIN FROM username

Table 220. Parameters for RDB$ADMIN Role GRANT and REVOKE

Parameter Description

username Name of the user

In order to grant and revoke the RDB$ADMIN role, the grantor must be logged in as an administrator.

See also

GRANT, REVOKE

Using the RDB$ADMIN Role in a Regular Database

To exercise their RDB$ADMIN privileges, the grantee has to include the role in the connection
attributes when connecting to the database, or specify it later using SET ROLE.

AUTO ADMIN MAPPING

Windows Administrators are not automatically granted RDB$ADMIN privileges when connecting to a
database (if Win_Sspi is enabled, of course) The AUTO ADMIN MAPPING switch now determines whether
Administrators have automatic RDB$ADMIN rights, on a database-by-database basis. By default, when
a database is created, it is disabled.

If AUTO ADMIN MAPPING is enabled in the database, it will take effect whenever a Windows
Administrator connects:

a. using Win_Sspi authentication, and

b. without specifying any role

After a successful “auto admin” connection, the current role is set to RDB$ADMIN.

If an explicit role was specified on connect, the RDB$ADMIN role can be assumed later in the session

Chapter 13. Security

503

using SET TRUSTED ROLE.

Auto Admin Mapping in Regular Databases

To enable and disable automatic mapping in a regular database:

ALTER ROLE RDB$ADMIN
 SET AUTO ADMIN MAPPING; -- enable it

ALTER ROLE RDB$ADMIN
 DROP AUTO ADMIN MAPPING; -- disable it

Either statement must be issued by a user with sufficient rights, that is:

• The database owner

• An administrator

• A user with the ALTER ANY ROLE privilege

The statement

ALTER ROLE RDB$ADMIN
 SET AUTO ADMIN MAPPING;

is a simplified form of a CREATE MAPPING statement to create a mapping of the
predefined group DOMAIN_ANY_RID_ADMINS to the role of RDB$ADMIN:

CREATE MAPPING WIN_ADMINS
 USING PLUGIN WIN_SSPI
 FROM Predefined_Group DOMAIN_ANY_RID_ADMINS
 TO ROLE RDB$ADMIN;

Accordingly, the statement

ALTER ROLE RDB$ADMIN
 DROP AUTO ADMIN MAPPING

is equivalent to the statement

DROP MAPPING WIN_ADMINS;

For details, see Mapping of Users to Objects

In a regular database, the status of AUTO ADMIN MAPPING is checked only at connect time. If an
Administrator has the RDB$ADMIN role because auto-mapping was on when they logged in, they will

Chapter 13. Security

504

keep that role for the duration of the session, even if they or someone else turns off the mapping in
the meantime.

Likewise, switching on AUTO ADMIN MAPPING will not change the current role to RDB$ADMIN for
Administrators who were already connected.

Auto Admin Mapping in the Security Database

The ALTER ROLE RDB$ADMIN statement cannot enable or disable AUTO ADMIN MAPPING in the security
database. However, you can create a global mapping for the predefined group
DOMAIN_ANY_RID_ADMINS to the role RDB$ADMIN in the following way:

CREATE GLOBAL MAPPING WIN_ADMINS
 USING PLUGIN WIN_SSPI
 FROM Predefined_Group DOMAIN_ANY_RID_ADMINS
 TO ROLE RDB$ADMIN;

Additionally, you can use gsec:

gsec -mapping set

gsec -mapping drop

Depending on the administrative status of the current user, more parameters may
be needed when invoking gsec, e.g. -user and -pass, or -trusted.

Only SYSDBA can enable AUTO ADMIN MAPPING if it is disabled, but any administrator can turn it off.

When turning off AUTO ADMIN MAPPING in gsec, the user turns off the mechanism itself which gave
them access, and thus they would not be able to re-enable AUTO ADMIN MAPPING. Even in an
interactive gsec session, the new flag setting takes effect immediately.

13.1.3. Administrators

As a general description, an administrator is a user that has sufficient rights to read, write to,
create, alter or delete any object in a database to which that user’s administrator status applies. The
table summarises how “Superuser” privileges are enabled in the various Firebird security contexts.

Table 221. Administrator (“Superuser”) Characteristics

User RDB$ADMIN Role Comments

SYSDBA Auto Exists automatically at server level. Has full privileges to
all objects in all databases. Can create, alter and drop
users, but has no direct remote access to the security
database

root user on POSIX Auto Exactly like SYSDBA. Firebird Embedded only.

Chapter 13. Security

505

User RDB$ADMIN Role Comments

Superuser on
POSIX

Auto Exactly like SYSDBA. Firebird Embedded only.

Windows
Administrator

Set as CURRENT_ROLE
if login succeeds

Exactly like SYSDBA if all of the following are true:

• In firebird.conf file, AuthServer includes Win_Sspi, and
Win_Sspi is present in the client-side plugins
(AuthClient) configuration

• In databases where AUTO ADMIN MAPPING is enabled, or
an equivalent mapping of the predefined group
DOMAIN_ANY_RID_ADMINS for the role RDB$ADMIN exists

• No role is specified at login

Database owner Auto Like SYSDBA, but only in the databases they own

Regular user Must be
previously
granted; must be
supplied at login

Like SYSDBA, but only in the databases where the role is
granted

POSIX OS user Must be
previously
granted; must be
supplied at login

Like SYSDBA, but only in the databases where the role is
granted. Firebird Embedded only.

Windows user Must be
previously
granted; must be
supplied at login

Like SYSDBA, but only in the databases where the role is
granted. Only available if in firebird.conf file, AuthServer
includes Win_Sspi, and Win_Sspi is present in the client-side
plugins (AuthClient) configuration

13.2. SQL Statements for User Management
This section describes the SQL statements for creating, modifying and deleting Firebird user
accounts. These statements can be executed by the following users:

• SYSDBA

• Any user with the RDB$ADMIN role in the security database, and the RDB$ADMIN role in the
database of the active connection (the user must specify the RDB$ADMIN role on connect, or
using SET ROLE)

• When the AUTO ADMIN MAPPING flag is enabled in the security database (security3.fdb or
whatever is the security database configured for the current database in the databases.conf),
any Windows Administrator - assuming Win_Sspi was used to connect without specifying roles.

For a Windows Administrator, AUTO ADMIN MAPPING enabled only in a regular
database is not sufficient to permit management of other users. For
instructions to enable it in the security database, see Auto Admin Mapping in
the Security Database.

Chapter 13. Security

506

Non-privileged users can use only the ALTER USER statement, and then only to edit some data of their
own account.

13.2.1. CREATE USER

Used for

Creating a Firebird user account

Available in

DSQL

Syntax

CREATE USER username
 <user_option> [<user_option> ...]
 [TAGS (<user_var> [, <user_var> ...]]

<user_option> ::=
 PASSWORD 'password'
 | FIRSTNAME 'firstname'
 | MIDDLENAME 'middlename'
 | LASTNAME 'lastname'
 | {GRANT | REVOKE} ADMIN ROLE
 | {ACTIVE | INACTIVE}
 | USING PLUGIN plugin_name

<user_var> ::=
 tag_name = 'tag_value'
 | DROP tag_name

Table 222. CREATE USER Statement Parameters

Parameter Description

username Username. The maximum length is 31 characters, following the rules for
Firebird identifiers.

password User password. Valid or effective password length depends on the user
manager plugin. Case-sensitive.

firstname Optional: User’s first name. Maximum length 31 characters

middlename Optional: User’s middle name. Maximum length 31 characters

lastname Optional: User’s last name. Maximum length 31 characters.

plugin_name Name of the user manager plugin.

tag_name Name of a custom attribute. The maximum length is 31 characters,
following the rules for Firebird regular identifiers.

tag_value Value of the custom attribute. The maximum length is 255 characters.

The CREATE USER statement creates a new Firebird user account. If the user already exist in the

Chapter 13. Security

507

Firebird security database for the specified user manager plugin, an appropriate error be raised. It
is possible to create multiple users with the same name: one per user manager plugin.

The username argument must follow the rules for Firebird regular identifiers: see Identifiers in the
Structure chapter. Usernames are case-sensitive when double-quoted (in other words, they follow
the same rules as other delimited identifiers).

Since Firebird 3.0, usernames follow the general naming conventions of
identifiers. Thus, a user named "Alex" is distinct from a user named "ALEX"

CREATE USER ALEX PASSWORD 'bz23ds';

- this user is the same as the first one
CREATE USER Alex PASSWORD 'bz23ds';

- this user is the same as the first one
CREATE USER "ALEX" PASSWORD 'bz23ds';

- and this is a different user
CREATE USER "Alex" PASSWORD 'bz23ds';

The PASSWORD clause specifies the user’s password, and is required. The valid or effective password
length depends on the user manager plugin, see also User Authentication.

The optional FIRSTNAME, MIDDLENAME and LASTNAME clauses can be used to specify additional user
properties, such as the person’s first name, middle name and last name, respectively. They are just
simple VARCHAR(31) fields and can be used to store anything you prefer.

If the GRANT ADMIN ROLE clause is specified, the new user account is created with the privileges of the
RDB$ADMIN role in the security database (security3.fdb or database-specific). It allows the new user
to manage user accounts from any regular database they log into, but it does not grant the user any
special privileges on objects in those databases.

The REVOKE ADMIN ROLE clause is syntactically valid in a CREATE USER statement, but has no effect. It is
not possible to specify GRANT ADMIN ROLE and REVOKE ADMIN ROLE in one statement.

The ACTIVE clause specifies the user is active and can log in, this is the default.

The INACTIVE clause specifies the user is inactive and cannot log in. It is not possible to specify
ACTIVE and INACTIVE in one statement. The ACTIVE/INACTIVE option is not supported by the
Legacy_UserManager and will be ignored.

The USING PLUGIN clause explicitly specifies the user manager plugin to use for creating the user.
Only plugins listed in the UserManager configuration for this database (firebird.conf, or overridden
in databases.conf) are valid. The default user manager (first in the UserManager configuration) is
applied when this clause is not specified.

Users of the same name created using different user manager plugins are different
objects. Therefore, the user created with one user manager plugin can only be

Chapter 13. Security

508

altered or dropped by that same plugin.

From the perspective of ownership, and privileges and roles granted in a
databases, different user objects with the same name are considered one and the
same user.

The TAGS clause can be used to specify additional user attributes. Custom attributes are not
supported (silently ignored) by the Legacy_UserManager. Custom attributes names follow the rules of
Firebird identifiers, but are handled case-insensitive (for example, specifying both "A BC" and "a
bc" will raise an error). The value of a custom attribute can be a string of maximum 255 characters.
The DROP tag_name option is syntactically valid in CREATE USER, but behaves as if the property is not
specified.

 Users can view and alter their own custom attributes.

CREATE/ALTER/DROP USER are DDL statements, and only take effect at commit.
Remember to COMMIT your work. In isql, the command SET AUTO ON will enable
autocommit on DDL statements. In third-party tools and other user applications,
this may not be the case.

Who Can Create a User

To create a user account, the current user must have administrator privileges in the security
database. Administrator privileges only in regular databases are not sufficient.

CREATE USER Examples

1. Creating a user with the username bigshot:

CREATE USER bigshot PASSWORD 'buckshot';

2. Creating a user with the Legacy_UserManager user manager plugin

CREATE USER godzilla PASSWORD 'robot'
 USING PLUGIN Legacy_UserManager;

3. Creating the user john with custom attributes:

CREATE USER john PASSWORD 'fYe_3Ksw'
 FIRSTNAME 'John' LASTNAME 'Doe'
 TAGS (BIRTHYEAR='1970', CITY='New York');

4. Creating an inactive user:

CREATE USER john PASSWORD 'fYe_3Ksw'

Chapter 13. Security

509

 INACTIVE;

5. Creating the user superuser with user management privileges:

CREATE USER superuser PASSWORD 'kMn8Kjh'
GRANT ADMIN ROLE;

See also

ALTER USER, CREATE OR ALTER USER, DROP USER

13.2.2. ALTER USER

Used for

Modifying a Firebird user account

Available in

DSQL

Syntax

ALTER {USER username | CURRENT USER}
 [SET] [<user_option> [<user_option> ...]]
 [TAGS (<user_var> [, <user_var> ...]]

<user_option> ::=
 PASSWORD 'password'
 | FIRSTNAME 'firstname'
 | MIDDLENAME 'middlename'
 | LASTNAME 'lastname'
 | {GRANT | REVOKE} ADMIN ROLE
 | {ACTIVE | INACTIVE}
 | USING PLUGIN plugin_name

<user_var> ::=
 tag_name = 'tag_value'
 | DROP tag_name

See CREATE USER for details on the statement parameters.

The ALTER USER statement changes the details in the named Firebird user account. The ALTER USER
statement must contain at least one of the optional clauses other than USING PLUGIN.

Any user can alter his or her own account, except that only an administrator may use GRANT/REVOKE
ADMIN ROLE and ACTIVE/INACTIVE.

All clauses are optional, but at least one other than USING PLUGIN must be present:

• The PASSWORD parameter is for changing the password for the user

Chapter 13. Security

510

• FIRSTNAME, MIDDLENAME and LASTNAME update these optional user properties, such as the person’s
first name, middle name and last name respectively

• GRANT ADMIN ROLE grants the user the privileges of the RDB$ADMIN role in the security database
(security3.fdb), enabling them to manage the accounts of other users. It does not grant the user
any special privileges in regular databases.

• REVOKE ADMIN ROLE removes the user’s administrator in the security database which, once the
transaction is committed, will deny that user the ability to alter any user account except their
own

• ACTIVE will enable a disabled account (not supported for Legacy_UserManager)

• INACTIVE will disable an account (not supported for Legacy_UserManager). This is convenient to
temporarily disable an account without deleting it.

• USING PLUGIN specifies the user manager plugin to use

• TAGS can be used to add, update or remove (DROP) additional custom attributes (not supported for
Legacy_UserManager). Attributes not listed will not be changed.

See CREATE USER for more details on the clauses.

If you need to change your own account, then instead of specifying the name of the current user,
you can use the CURRENT USER clause.

The ALTER CURRENT USER statement follows the normal rules for selecting the user
manager plugin. If the current user was created with a non-default user manager
plugin, they will need to explicitly specify the user manager plugins with USING
PLUGIN plugin_name, or they will receive an error that the user is not found. Or, if a
user with the same name exists for the default user manager, they will alter that
user instead.

Remember to commit your work if you are working in an application that does not
auto-commit DDL.

Who Can Alter a User?

To modify the account of another user, the current user must have administrator privileges in the
security database. Anyone can modify their own account, except for the GRANT/REVOKE ADMIN ROLE
and ACTIVE/INACTIVE options, which require administrative privileges to change.

ALTER USER Examples

1. Changing the password for the user bobby and granting them user management privileges:

ALTER USER bobby PASSWORD '67-UiT_G8'
GRANT ADMIN ROLE;

2. Editing the optional properties (the first and last names) of the user dan:

Chapter 13. Security

511

ALTER USER dan
FIRSTNAME 'No_Jack'
LASTNAME 'Kennedy';

3. Revoking user management privileges from user dumbbell:

ALTER USER dumbbell
DROP ADMIN ROLE;

See also

CREATE USER, DROP USER

13.2.3. CREATE OR ALTER USER

Used for

Creating a new or modifying an existing Firebird user account

Available in

DSQL

Syntax

CREATE OR ALTER USER username
 [SET] [<user_option> [<user_option> ...]]
 [TAGS (<user_var> [, <user_var> ...]]

<user_option> ::=
 PASSWORD 'password'
 | FIRSTNAME 'firstname'
 | MIDDLENAME 'middlename'
 | LASTNAME 'lastname'
 | {GRANT | REVOKE} ADMIN ROLE
 | {ACTIVE | INACTIVE}
 | USING PLUGIN plugin_name

<user_var> ::=
 tag_name = 'tag_value'
 | DROP tag_name

See CREATE USER and ALTER USER for details on the statement parameters.

The CREATE OR ALTER USER statement creates a new or changes the details in the named Firebird
user account. If the user does not exist, it will be created as if executing the CREATE USER statement.
If the user already exists, it will be modified as if executing the ALTER USER statement. The CREATE OR
ALTER USER statement must contain at least one of the optional clauses other than USING PLUGIN. If
the user does not exist yet, the PASSWORD clause is required.

Chapter 13. Security

512

Remember to commit your work if you are working in an application that does not
auto-commit DDL.

CREATE OR ALTER USER Examples

Creating or altering a user

CREATE OR ALTER USER john PASSWORD 'fYe_3Ksw'
FIRSTNAME 'John'
LASTNAME 'Doe'
INACTIVE;

See also

CREATE USER, ALTER USER, DROP USER

13.2.4. DROP USER

Used for

Deleting a Firebird user account

Available in

DSQL

Syntax

DROP USER username
 [USING PLUGIN plugin_name]

Table 223. DROP USER Statement Parameter

Parameter Description

username Username

plugin_name Name of the user manager plugin

The DROP USER statement deletes a Firebird user account.

The optional USING PLUGIN clause explicitly specifies the user manager plugin to use for dropping
the user. Only plugins listed in the UserManager configuration for this database (firebird.conf, or
overridden in databases.conf) are valid. The default user manager (first in the UserManager
configuration) is applied when this clause is not specified.

Users of the same name created using different user manager plugins are different
objects. Therefore, the user created with one user manager plugin can only be
dropped by that same plugin.

Remember to commit your work if you are working in an application that does not
auto-commit DDL.

Chapter 13. Security

513

Who Can Drop a User?

To drop a user, the current user must have administrator privileges.

DROP USER Example

1. Deleting the user bobby:

DROP USER bobby;

2. Removing a user created with the Legacy_UserManager plugin:

DROP USER Godzilla
 USING PLUGIN Legacy_UserManager;

See also

CREATE USER, ALTER USER

13.3. SQL Privileges
The second level of Firebird’s security model is SQL privileges. Whilst a successful login — the first
level — authorises a user’s access to the server and to all databases under that server, it does not
imply that the user has access to any objects in any databases. When an object is created, only the
user that created it (its owner) and administrators have access to it. The user needs privileges on
each object they need to access. As a general rule, privileges must be granted explicitly to a user by
the object owner or an administrator of the database.

A privilege comprises a DML access type (SELECT, INSERT, UPDATE, DELETE, EXECUTE and REFERENCES), the
name of a database object (table, view, procedure, role) and the name of the grantee (user,
procedure, trigger, role). Various means are available to grant multiple types of access on an object
to multiple users in a single GRANT statement. Privileges may be revoked from a user with REVOKE
statements.

An additional type of privileges, DDL privileges, provide rights to create, alter or drop specific types
of metadata objects

Privileges are stored in the database to which they apply and are not applicable to any other
database, except the DATABASE DDL privileges, which are stored in the security database.

13.3.1. The Object Owner

The user who created a database object becomes its owner. Only the owner of an object and users
with administrator privileges in the database, including the database owner, can alter or drop the
database object.

Administrators, the database owner or the object owner can grant privileges to and revoke them
from other users, including privileges to grant privileges to other users. The process of granting and

Chapter 13. Security

514

revoking SQL privileges is implemented with two statements, GRANT and REVOKE.

13.4. ROLE
A role is a database object that packages a set of privileges. Roles implement the concept of access
control at a group level. Multiple privileges are granted to the role and then that role can be
granted to or revoked from one or many users.

A user that is granted a role must supply that role in their login credentials in order to exercise the
associated privileges. Any other privileges granted to the user directly are not affected by their
login with the role. Logging in with multiple roles simultaneously is not supported.

In this section the tasks of creating and dropping roles are discussed.

13.4.1. CREATE ROLE

Used for

Creating a new ROLE object

Available in

DSQL, ESQL

Syntax

CREATE ROLE rolename

Table 224. CREATE ROLE Statement Parameter

Parameter Description

rolename Role name. The maximum length is 31 characters

The statement CREATE ROLE creates a new role object, to which one or more privileges can be
granted subsequently. The name of a role must be unique among the names of roles in the current
database.

It is advisable to make the name of a role unique among usernames as well. The
system will not prevent the creation of a role whose name clashes with an existing
username but, if it happens, the user will be unable to connect to the database.

Who Can Create a Role

The CREATE ROLE statement can be executed by:

• Administrators

• Users with the CREATE ROLE privilege

The user executing the CREATE ROLE statement becomes the owner of the role.

Chapter 13. Security

515

CREATE ROLE Example

Creating a role named SELLERS

CREATE ROLE SELLERS;

See also

DROP ROLE, GRANT, REVOKE

13.4.2. ALTER ROLE

Used for

Altering a role (enabling or disabling auto-admin mapping)

Available in

DSQL

Syntax

ALTER ROLE rolename
 {SET | DROP} AUTO ADMIN MAPPING

Table 225. ALTER ROLE Statement Parameter

Parameter Description

rolename Role name; specifying anything other than RDB$ADMIN will fail

ALTER ROLE has no place in the create-alter-drop paradigm for database objects since a role has no
attributes that can be modified. Its actual effect is to alter an attribute of the database: Firebird uses
it to enable and disable the capability for Windows Administrators to assume administrator
privileges automatically when logging in.

This capability can affect only one role: the system-generated role RDB$ADMIN that exists in every
database of ODS 11.2 or higher. Several factors are involved in enabling this feature.

For details, see AUTO ADMIN MAPPING.

Who Can Alter a Role

The ALTER ROLE statement can be executed by:

• Administrators

Although an ALTER ANY ROLE DDL privilege exists, it does not apply because creating
or dropping mappings requires administrator privileges.

Chapter 13. Security

516

13.4.3. DROP ROLE

Used for

Deleting a role

Available in

DSQL, ESQL

Syntax

DROP ROLE rolename

The statement DROP ROLE deletes an existing role. It takes just a single argument, the name of the
role. Once the role is deleted, the entire set of privileges is revoked from all users and objects that
were granted the role.

Who Can Drop a Role

The DROP ROLE statement can be executed by:

• Administrators

• The owner of the role

• Users with the DROP ANY ROLE privilege

DROP ROLE Examples

Deleting the role SELLERS

DROP ROLE SELLERS;

See also

CREATE ROLE, GRANT, REVOKE

13.5. Statements for Granting Privileges
A GRANT statement is used for granting privileges — including roles — to users and other database
objects.

13.5.1. GRANT

Used for

Granting privileges and assigning roles

Available in

DSQL, ESQL

Chapter 13. Security

517

Syntax (granting privileges)

GRANT <privileges>
 TO <grantee_list>
 [WITH GRANT OPTION]
 [{GRANTED BY | AS} [USER] grantor]

<privileges> ::=
 <table_privileges> | <execute_privilege>
 | <usage_privilege> | <ddl_privileges>
 | <db_ddl_privilege>

<table_privileges> ::=
 {ALL [PRIVILEGES] | <table_privilege_list> }
 ON [TABLE] {table_name | view_name}

<table_privilege_list> ::=
 <table_privilege> [, <tableprivilege> ...]

<table_privilege> ::=
 SELECT | DELETE | INSERT
 | UPDATE [(col [, col ...])]
 | REFERENCES [(col [, col ...)]

<execute_privilege> ::= EXECUTE ON
 { PROCEDURE proc_name | FUNCTION func_name
 | PACKAGE package_name }

<usage_privilege> ::= USAGE ON
 { EXCEPTION exception_name
 | {GENERATOR | SEQUENCE} sequence_name }

<ddl_privileges> ::=
 {ALL [PRIVILEGES] | <ddl_privilege_list>} <object_type>

<ddl_privilege_list> ::=
 <ddl_privilege> [, <ddl_privilege> ...]

<ddl_privilege> ::= CREATE | ALTER ANY | DROP ANY

<object_type> ::=
 CHARACTER SET | COLLATION | DOMAIN | EXCEPTION
 | FILTER | FUNCTION | GENERATOR | PACKAGE
 | PROCEDURE | ROLE | SEQUENCE | TABLE | VIEW

<db_ddl_privileges> ::=
 {ALL [PRIVILEGES] | <db_ddl_privilege_list>} {DATABASE | SCHEMA}

<db_ddl_privilege_list> ::=
 <db_ddl_privilege> [, <db_ddl_privilege> ...]

Chapter 13. Security

518

<db_ddl_privilege> ::= CREATE | ALTER | DROP

<grantee_list> ::= <grantee> [, <grantee> ...]

<grantee> ::=
 PROCEDURE proc_name | FUNCTION func_name
 | PACKAGE package_name | TRIGGER trig_name
 | VIEW view_name | ROLE role_name
 | [USER] username | GROUP Unix_group

Syntax (granting roles)

GRANT <role_granted>
 TO <role_grantee_list>
 [WITH ADMIN OPTION]
 [{GRANTED BY | AS} [USER] grantor]

<role_granted> ::= role_name [, role_name ...]

<role_grantee_list> ::=
 <role_grantee> [, <role_grantee> ...]

<role_grantee> ::= [USER] username

Table 226. GRANT Statement Parameters

Parameter Description

grantor The user granting the privilege(s)

table_name The name of a table

view_name The name of a view

col The name of table column

proc_name The name of a stored procedure

func_name The name of a stored function (or UDF)

package_name The name of a package

exception_name The name of an exception

sequence_name The name of a sequence (generator)

object_type The type of metadata object

trig_name The name of a trigger

role_name Role name

username The username to which the privileges are granted to or to which the role
is assigned. If the USER keyword is absent, it can also be a role.

Unix_group The name of a user group in a POSIX operating system

Chapter 13. Security

519

The GRANT statement grants one or more privileges on database objects to users, roles, or other
database objects.

A regular, authenticated user has no privileges on any database object until they are explicitly
granted, either to that individual user or to all users bundled as the user PUBLIC. When an object is
created, only its creator (the owner) and administrators have privileges to it, and can grant
privileges to other users, roles, or objects.

Different sets of privileges apply to different types of metadata objects. The different types of
privileges will be described separately later in this section.

SCHEMA is currently a synonym for DATABASE; this may change in a future version, so
we recommend to always use DATABASE

The TO Clause

The TO clause specifies the users, roles, and other database objects that are to be granted the
privileges enumerated in privileges. The clause is mandatory.

The optional USER keyword in the TO clause allow you to specify exactly who or what is granted the
privilege. If a USER (or ROLE) keyword is not specified, the server first checks for a role with this
name and, if there is no such role, the privileges are granted to the user with that name without
further checking.

It is recommended to always explicitly specify USER and ROLE to avoid ambiguity.
Future versions of Firebird may make USER mandatory.

• When a GRANT statement is executed, the security database is not checked for
the existence of the grantee user. This is not a bug: SQL permissions are
concerned with controlling data access for authenticated users, both native
and trusted, and trusted operating system users are not stored in the security
database.

• When granting a privilege to a database object other than user or role, such as
a procedure, trigger or view, you must specify the object type.

• Although the USER keyword is optional, it is advisable to use it, in order to avoid
ambiguity with roles.

Packaging Privileges in a ROLE Object

A role is a “container” object that can be used to package a collection of privileges. Use of the role is
then granted to each user that requires those privileges. A role can also be granted to a list of users.

The role must exist before privileges can be granted to it. See CREATE ROLE for the syntax and rules.
The role is maintained by granting privileges to it and, when required, revoking privileges from it.
When a role is dropped (see DROP ROLE), all users lose the privileges acquired through the role. Any
privileges that were granted additionally to an affected user by way of a different grant statement
are retained.

Chapter 13. Security

520

A user that is granted a role must supply that role with his login credentials in order to exercise the
associated privileges. Any other privileges granted to the user are not affected by logging in with a
role.

More than one role can be granted to the same user but logging in with multiple roles
simultaneously is not supported.

A role can be granted only to a user.

The User PUBLIC

Firebird has a predefined user named PUBLIC, that represents all users. Privileges for operations on
a particular object that are granted to the user PUBLIC can be exercised by any authenticated user.

If privileges are granted to the user PUBLIC, they should be revoked from the user
PUBLIC as well.

The WITH GRANT OPTION Clause

The optional WITH GRANT OPTION clause allows the users specified in the user list to grant the
privileges specified in the privilege list to other users.

 It is possible to assign this option to the user PUBLIC. Do not do this!

The GRANTED BY Clause

By default, when privileges are granted in a database, the current user is recorded as the grantor.
The GRANTED BY clause enables the current user to grant those privileges as another user.

When using the REVOKE statement, it will fail if the current user is not the user that was named in
the GRANTED BY clause.

The GRANTED BY (and AS) clause can be used only by the database owner and other administrators.
The object owner cannot use GRANTED BY unless they also have administrator privileges.

Alternative Syntax Using AS username

The non-standard AS clause is supported as a synonym of the GRANTED BY clause to simplify
migration from other database systems.

Privileges on Tables and Views

For tables and views, unlike other metadata objects, it is possible to grant several privileges at once.

List of Privileges on Tables

SELECT

Permits the user or object to SELECT data from the table or view

INSERT

Permits the user or object to INSERT rows into the table or view

Chapter 13. Security

521

DELETE

Permits the user or object to DELETE rows from the table or view

UPDATE

Permits the user or object to UPDATE rows in the table or view, optionally restricted to specific
columns

REFERENCES

Permits the user or object to reference the table via a foreign key, optionally restricted to the
specified columns. If the primary or unique key referenced by the foreign key of the other table
is composite then all columns of the key must be specified.

ALL [PRIVILEGES]

Combines SELECT, INSERT, UPDATE, DELETE and REFERENCES privileges in a single package

Examples of GRANT <privilege> on Tables

1. SELECT and INSERT privileges to the user ALEX:

GRANT SELECT, INSERT ON TABLE SALES
 TO USER ALEX;

2. The SELECT privilege to the MANAGER, ENGINEER roles and to the user IVAN:

GRANT SELECT ON TABLE CUSTOMER
 TO ROLE MANAGER, ROLE ENGINEER, USER IVAN;

3. All privileges to the ADMINISTRATOR role, together with the authority to grant the same privileges
to others:

GRANT ALL ON TABLE CUSTOMER
 TO ROLE ADMINISTRATOR
 WITH GRANT OPTION;

4. The SELECT and REFERENCES privileges on the NAME column to all users and objects:

GRANT SELECT, REFERENCES (NAME) ON TABLE COUNTRY
TO PUBLIC;

5. The SELECT privilege being granted to the user IVAN by the user ALEX:

GRANT SELECT ON TABLE EMPLOYEE
 TO USER IVAN
 GRANTED BY ALEX;

Chapter 13. Security

522

6. Granting the UPDATE privilege on the FIRST_NAME, LAST_NAME columns:

GRANT UPDATE (FIRST_NAME, LAST_NAME) ON TABLE EMPLOYEE
 TO USER IVAN;

7. Granting the INSERT privilege to the stored procedure ADD_EMP_PROJ:

GRANT INSERT ON EMPLOYEE_PROJECT
 TO PROCEDURE ADD_EMP_PROJ;

The EXECUTE Privilege

The EXECUTE privilege applies to stored procedures, stored functions (including UDFs), and packages.
It allows the grantee to execute the specified object, and, if applicable, to retrieve its output.

In the case of selectable stored procedures, it acts somewhat like a SELECT privilege, insofar as this
style of stored procedure is executed in response to a SELECT statement.

For packages, the EXECUTE privilege can only be granted for the package as a whole,
ot for individual subroutines.

Examples of Granting the EXECUTE Privilege

1. Granting the EXECUTE privilege on a stored procedure to a role:

GRANT EXECUTE ON PROCEDURE ADD_EMP_PROJ
 TO ROLE MANAGER;

2. Granting the EXECUTE privilege on a stored function to a role:

GRANT EXECUTE ON FUNCTION GET_BEGIN_DATE
 TO ROLE MANAGER;

3. Granting the EXECUTE privilege on a package to user PUBLIC:

GRANT EXECUTE ON PACKAGE APP_VAR
 TO USER PUBLIC;

4. Granting the EXECUTE privilege on a function to a package:

GRANT EXECUTE ON FUNCTION GET_BEGIN_DATE
 TO PACKAGE APP_VAR;

Chapter 13. Security

523

The USAGE Privilege

To be able to use metadata objects other than tables, views, stored procedures or functions, triggers
and packages, it is necessary to grant the user (or database object like trigger, procedure or
function) the USAGE privilege on these objects.

Since Firebird executes stored procedures and functions, triggers, and package routines with the
privileges of the caller, it is necessary that either the user or otherwise the routine itself has been
granted the USAGE privilege.

In Firebird 3.0, the USAGE privilege is only available for exceptions and sequences
(in gen_id(gen_name, n) or `next value for gen_name). Support for the USAGE
privilege for other metadata objects may be added in future releases.

For sequences (generators), the USAGE privilege only grants the right to increment
the sequence using the GEN_ID function or NEXT VALUE FOR. The SET GENERATOR
statement is a synonym for ALTER SEQUENCE … RESTART WITH …, and is considered a
DDL statement. By default, only the owner of the sequence and administrators
have the rights to such operations. The right to set the initial value of any sequence
can be granted with GRANT ALTER ANY SEQUENCE, which is not recommend for
general users.

Examples of Granting the USAGE Privilege

1. Granting the USAGE privilege on a sequence to a role:

GRANT USAGE ON SEQUENCE GEN_AGE
 TO ROLE MANAGER;

2. Granting the USAGE privilege on a sequence to a trigger:

GRANT USAGE ON SEQUENCE GEN_AGE
 TO TRIGGER TR_AGE_BI;

3. Granting the USAGE privilege on an exception to a package:

GRANT USAGE ON EXCEPTION
 TO PACKAGE PKG_BILL;

DDL Privileges

By default, only administrators can create new metadata objects; altering or dropping these objects
is restricted to the owner of the object (its creator) and administrators. DDL privileges can be used
to grant privileges for these operations to other users.

Available DDL Privileges

Chapter 13. Security

524

CREATE

Allows creation of an object of the specified type

ALTER ANY

Allows modification of any object of the specified type

DROP ANY

Allows deletion of any object of the specified type

ALL [PRIVILEGES]

Combines the CREATE, ALTER ANY and DROP ANY privileges for the specified type

There are no separate DDL privileges for triggers and indexes. The necessary
privileges are inherited from the table or view. Creating, altering or dropping a
trigger or index requires the ALTER ANY TABLE or ALTER ANY VIEW privilege.

Examples of Granting DDL Privileges

1. Allow user JOE to create tables

GRANT CREATE TABLE
 TO USER Joe;

2. Allow user JOE to alter any procedure

GRANT ALTER ANY PROCEDURE
 TO USER Joe;

Database DDL Privileges

The syntax for granting privileges to create, alter or drop a database deviates from the normal
syntax of granting DDL privileges for other object types.

Available Database DDL Privileges

CREATE

Allows creation of a database

ALTER

Allows modification of the current database

DROP

Allows deletion of the current database

ALL [PRIVILEGES]

Combines the ALTER and DROP privileges. ALL does not include the CREATE privilege.

Chapter 13. Security

525

The ALTER DATABASE and DROP DATABASE privileges apply only to the current database, whereas DDL
privileges ALTER ANY and DROP ANY on other object types apply to all objects of the specified type in
the current database. The privilege to alter or drop the current database can only be granted by
administrators.

The CREATE DATABASE privilege is a special kind of privilege as it is saved in the security database. A
list of users with the CREATE DATABASE privilege is available from the virtual table SEC$DB_CREATORS.
Only administrators in the security database can grant the privilege to create a new database.

SCHEMA is currently a synonym for DATABASE; this may change in a future version, so
we recommend to always use DATABASE

Examples of Granting Database DDL Privileges

1. Granting SUPERUSER the privilege to create databases:

GRANT CREATE DATABASE
 TO USER Superuser;

2. Granting JOE the privilege to execute ALTER DATABASE for the current database:

GRANT ALTER DATABASE
 TO USER Joe;

3. Granting FEDOR the privilege to drop the current database:

GRANT DROP DATABASE
 TO USER Fedor;

Assigning Roles

Assigning a role is similar to granting a privilege. One or more roles can be assigned to one or more
users, including the user PUBLIC, using one GRANT statement.

The WITH ADMIN OPTION Clause

The optional WITH ADMIN OPTION clause allows the users specified in the user list to grant the role(s)
specified to other users.

 It is possible to assign this option to PUBLIC. Do not do this!

Examples of Role Assignment

1. Assigning the DIRECTOR and MANAGER roles to the user IVAN:

GRANT DIRECTOR, MANAGER

Chapter 13. Security

526

 TO USER IVAN;

2. Assigning the MANAGER role to the user ALEX with the authority to assign this role to other users:

GRANT MANAGER
 TO USER ALEX WITH ADMIN OPTION;

See also

REVOKE

13.6. Statements for Revoking Privileges
A REVOKE statement is used for revoking privileges — including roles — from users and other
database objects.

13.6.1. REVOKE

Used for

Revoking privileges or role assignments

Available in

DSQL, ESQL

Syntax (revoking privileges)

REVOKE [GRANT OPTION FOR] <privileges>
 FROM <grantee_list>
 [{GRANTED BY | AS} [USER] grantor]

<privileges> ::=
 !! See GRANT syntax !!

Syntax (revoking roles)

REVOKE [ADMIN OPTION FOR] <role_granted>
 FROM <role_grantee_list>
 [{GRANTED BY | AS} [USER] grantor]

<role_granted> ::=
 !! See GRANT syntax !!

<role_grantee_list> ::=
 !! See GRANT syntax !!

Syntax (revoking all)

REVOKE ALL ON ALL FROM <grantee_list>

Chapter 13. Security

527

<grantee_list> ::=
 !! See GRANT syntax !!

Table 227. REVOKE Statement Parameters

Parameter Description

grantor The grantor user on whose behalf the privilege(s) are being revoked

The REVOKE statement revokes privileges that were granted using the GRANT statement from users,
roles, and other database objects. See GRANT for detailed descriptions of the various types of
privileges.

Only the user who granted the privilege can revoke it.

The FROM Clause

The FROM clause specifies a list of users, roles and other database objects that will have the
enumerated privileges revoked. The optional USER keyword in the FROM clause allow you to specify
exactly which type is to have the privilege revoked. If a USER (or ROLE) keyword is not specified, the
server first checks for a role with this name and, if there is no such role, the privileges are revoked
from the user with that name without further checking.

• Although the USER keyword is optional, it is advisable to use them in order to
avoid ambiguity with roles.

• The REVOKE statement does not check for the existence of the user from which
the privileges are being revoked.

• When revoking a privilege from a database object other than USER or ROLE, you
must specify its object type

Revoking Privileges from user PUBLIC

Privileges that were granted to the special user named PUBLIC must be revoked
from the user PUBLIC. User PUBLIC provides a way to grant privileges to all users at
once, but it is not “a group of users”.

Revoking the GRANT OPTION

The optional GRANT OPTION FOR clause revokes the user’s privilege to grant the specified privileges to
other users, roles, or database objects (as previously granted with the WITH GRANT OPTION). It does
not revoke the specified privilege itself.

Removing the Privilege to One or More Roles

One usage of the REVOKE statement is to remove roles that were assigned to a user, or a group of
users, by a GRANT statement. In the case of multiple roles and/or multiple grantees, the REVOKE verb is
followed by the list of roles that will be removed from the list of users specified after the FROM
clause.

Chapter 13. Security

528

The optional ADMIN OPTION FOR clause provides the means to revoke the grantee’s “administrator”
privilege, the ability to assign the same role to other users, without revoking the grantee’s privilege
to the role.

Multiple roles and grantees can be processed in a single statement.

Revoking Privileges That Were GRANTED BY

A privilege that has been granted using the GRANTED BY clause is internally attributed explicitly to
the grantor designated by that original GRANT statement. Only that user can revoke the granted
privilege. Using the GRANTED BY clause you can revoke privileges as if you are the specified user. To
revoke a privilege with GRANTED BY, the current user must be logged in either with full
administrative privileges, or as the user designated as grantor by that GRANTED BY clause.

Not even the owner of a role can use GRANTED BY unless they have administrative
privileges.

The non-standard AS clause is supported as a synonym of the GRANTED BY clause to simplify
migration from other database systems.

Revoking ALL ON ALL

The REVOKE ALL ON ALL statement allows a user to revoke all privileges (including roles) on all object
from one or more users, roles or other database objects. It is a quick way to “clear” privileges when
access to the database must be blocked for a particular user or role.

When the current user is logged in with full administrator privileges in the database, the REVOKE ALL
ON ALL will remove all privileges, no matter who granted them. Otherwise, only the privileges
granted by the current user are removed.

 The GRANTED BY clause is not supported

Examples using REVOKE

1. Revoking the privileges for selecting and inserting into the table (or view) SALES

REVOKE SELECT, INSERT ON TABLE SALES
 FROM USER ALEX;

2. Revoking the privilege for slecting from the CUSTOMER table from the MANAGER and ENGINEER roles
and from the user IVAN:

REVOKE SELECT ON TABLE CUSTOMER
 FROM ROLE MANAGER, ROLE ENGINEER, USER IVAN;

3. Revoking from the ADMINISTRATOR role the privilege to grant any privileges on the CUSTOMER table
to other users or roles:

Chapter 13. Security

529

REVOKE GRANT OPTION FOR ALL ON TABLE CUSTOMER
 FROM ROLE ADMINISTRATOR;

4. Revoking the privilege for selecting from the COUNTRY table and the privilege to reference the
NAME column of the COUNTRY table from any user, via the special user PUBLIC:

REVOKE SELECT, REFERENCES (NAME) ON TABLE COUNTRY
 FROM PUBLIC;

5. Revoking the privilege for selecting form the EMPLOYEE table from the user IVAN, that was granted
by the user ALEX:

REVOKE SELECT ON TABLE EMPLOYEE
 FROM USER IVAN GRANTED BY ALEX;

6. Revoking the privilege for updating the FIRST_NAME and LAST_NAME columns of the EMPLOYEE table
from the user IVAN:

REVOKE UPDATE (FIRST_NAME, LAST_NAME) ON TABLE EMPLOYEE
 FROM USER IVAN;

7. Revoking the privilege for inserting records into the EMPLOYEE_PROJECT table from the
ADD_EMP_PROJ procedure:

REVOKE INSERT ON EMPLOYEE_PROJECT
 FROM PROCEDURE ADD_EMP_PROJ;

8. Revoking the privilege for executing the procedure ADD_EMP_PROJ from the MANAGER role:

REVOKE EXECUTE ON PROCEDURE ADD_EMP_PROJ
 FROM ROLE MANAGER;

9. Revoking the privilege to grant the EXECUTE privilege for the function GET_BEGIN_DATE to other
users from the role MANAGER:

REVOKE GRANT OPTION FOR EXECUTE
 ON FUNCTION GET_BEGIN_DATE
 FROM ROLE MANAGER;

10. Revoking the EXECUTE privilege on the package DATE_UTILS from user ALEX:

REVOKE EXECUTE ON PACKAGE DATE_UTILS

Chapter 13. Security

530

 FROM USER ALEX;

11. Revoking the USAGE privilege on the sequence GEN_AGE from the role MANAGER:

REVOKE USAGE ON SEQUENCE GEN_AGE
 FROM ROLE MANAGER;

12. Revoking the USAGE privilege on the sequence GEN_AGE from the trigger TR_AGE_BI:

REVOKE USAGE ON SEQUENCE GEN_AGE
 FROM TRIGGER TR_AGE_BI;

13. Revoking the USAGE privilege on the exception E_ACCESS_DENIED from the package PKG_BILL:

REVOKE USAGE ON EXCEPTION E_ACCESS_DENIED
 FROM PACKAGE PKG_BILL;

14. Revoking the privilege to create tables from user JOE:

REVOKE CREATE TABLE
 FROM USER Joe;

15. Revoking the privilege to alter any procedure from user JOE:

REVOKE ALTER ANY PROCEDURE
 FROM USER Joe;

16. Revoking the privilege to create databases from user SUPERUSER:

REVOKE CREATE DATABASE
 FROM USER Superuser;

17. Revoking the DIRECTOR and MANAGER roles from the user IVAN:

REVOKE DIRECTOR, MANAGER FROM USER IVAN;

18. Revoke from the user ALEX the privilege to grant the MANAGER role to other users:

REVOKE ADMIN OPTION FOR MANAGER FROM USER ALEX;

19. Revoking all privileges (including roles) on all objects from the user IVAN:

Chapter 13. Security

531

REVOKE ALL ON ALL
 FROM USER IVAN;

After this statement is executed by an administrator, the user IVAN will have no privileges
whatsoever, except those granted through PUBLIC.

See also

GRANT

13.7. Mapping of Users to Objects
With Firebird now supporting multiple security databases, some new problems arise that could not
occur with a single, global security database. Clusters of databases using the same security database
were efficiently separated. Mappings provide the means to achieve the same efficiency when
multiple databases are using their own security databases. Some cases require control for limited
interaction between such clusters. For example:

• when EXECUTE STATEMENT ON EXTERNAL DATA SOURCE requires some data exchange between
clusters

• when server-wide SYSDBA access to databases is needed from other clusters, using services.

• comparable problems that have existed on Firebird 2.1 and 2.5 for Windows, due to support for
Trusted User authentication: two separate lists of users — one in the security database and
another in Windows, with cases where it was necessary to relate them. An example is the
demand for a ROLE granted to a Windows group to be assigned automatically to members of that
group.

The single solution for all such cases is mapping the login information assigned to a user when it
connects to a Firebird server to internal security objects in a database — CURRENT_USER and
CURRENT_ROLE.

13.7.1. The Mapping Rule

The mapping rule consists of four pieces of information:

1. mapping scope — whether the mapping is local to the current database or whether its effect is
to be global, affecting all databases in the cluster, including security databases

2. mapping name — an SQL identifier, since mappings are objects in a database, like any other

3. the object FROM which the mapping maps. It consists of four items:

◦ The authentication source

▪ plugin name or

▪ the product of a mapping in another database or

▪ use of server-wide authentication or

▪ any method

◦ The name of the database where authentication succeeded

Chapter 13. Security

532

◦ The name of the object from which mapping is performed

◦ The type of that name — username, role, or OS group — depending upon the plugin that
added that name during authentication.

Any item is accepted but only type is required.

4. the object TO which the mapping maps. It consists of two items:

◦ The name of the object TO which mapping is performed

◦ The type, for which only USER or ROLE is valid

13.7.2. CREATE MAPPING

Used for

Creating a mapping of a security object

Available in

DSQL

Syntax

CREATE [GLOBAL] MAPPING name
 USING
 { PLUGIN plugin_name [IN database]
 | ANY PLUGIN [IN database | SERVERWIDE]
 | MAPPING [IN database] | '*' [IN database] }
 FROM {ANY type | type from_name}
 TO {USER | ROLE} [to_name]

Table 228. CREATE MAPPING Statement Parameter

Parameter Description

name Mapping name The maximum length is 31 characters. Must be unique
among all mapping names in the context (local or GLOBAL).

plugin_name Authentication plugin name

database Name of the database that authenticated against

type The type of object to be mapped. Possible types are plugin-specific.

from_name The name of the object to be mapped

to_name The name of the user or role to map to

The CREATE MAPPING statement creates a mapping of security objects (e.g. users, groups, roles) of one
or more authentication plugins to internal security objects - CURRENT_USER and CURRENT_ROLE.

If the GLOBAL clause is present, then the mapping will be applied not only for the current database,
but for all databases in the same cluster, including security databases.

 There can be global and local mappings with the same name. They are distinct

Chapter 13. Security

533

objects.

Global mapping works best if a Firebird 3.0 or higher version database is used as
the security database. If you plan to use another database for this purpose — using
your own provider, for example — then you should create a table in it named
RDB$MAP, with the same structure as RDB$MAP in a Firebird 3.0 database and with
SYSDBA-only write access.

The USING clause describes the mapping source. It has a very complex set of options:

• an explicit plugin name (PLUGIN plugin_name) means it applies only for that plugin

• it can use any available plugin (ANY PLUGIN); although not if the source is the product of a
previous mapping

• it can be made to work only with server-wide plugins (SERVERWIDE)

• it can be made to work only with previous mapping results (MAPPING)

• you can omit to use of a specific method by using the asterisk (*) argument

• it can specify the name of the database that defined the mapping for the FROM object (IN
database)

 This argument is not valid for mapping server-wide authentication.

The FROM clause describes the object to map. The FROM clause has a mandatory argument, the type of
the object named. It has the following options:

• When mapping names from plugins, type is defined by the plugin

• When mapping the product of a previous mapping, type can be only USER or ROLE

• If an explicit from_name is provided, it will be taken into account by this mapping

• Use the ANY keyword to work with any name of the given type.

The TO clause specifies the user or role that is the result of the mapping. The to_name is optional. If
it is not specified, then the original name of the mapped object will be used.

For roles, the role defined by a mapping rule is only applied when the user does not explicitly
specify a role on connect. The mapped role can be assumed later in the session using SET TRUSTED
ROLE, even when the mapped role is not explicitly granted to the user.

Who Can Create a Mapping

The CREATE MAPPING statement can be executed by:

• Administrators

• The database owner — if the mapping is local

CREATE MAPPING examples

1. Enable use of Windows trusted authentication in all databases that use the current security

Chapter 13. Security

534

database:

CREATE GLOBAL MAPPING TRUSTED_AUTH
 USING PLUGIN WIN_SSPI
 FROM ANY USER
 TO USER;

2. Enable RDB$ADMIN access for windows admins in the current database:

CREATE MAPPING WIN_ADMINS
 USING PLUGIN WIN_SSPI
 FROM Predefined_Group
 DOMAIN_ANY_RID_ADMINS
 TO ROLE RDB$ADMIN;

The group DOMAIN_ANY_RID_ADMINS does not exist in Windows, but such a name
would be added by the Win_Sspi plugin to provide exact backwards
compatibility.

3. Enable a particular user from another database to access the current database with another
name:

CREATE MAPPING FROM_RT
 USING PLUGIN SRP IN "rt"
 FROM USER U1 TO USER U2;

Database names or aliases will need to be enclosed in double quotes on
operating systems that have case-sensitive file names.

4. Enable the server’s SYSDBA (from the main security database) to access the current database.
(Assume that the database is using a non-default security database):

CREATE MAPPING DEF_SYSDBA
 USING PLUGIN SRP IN "security.db"
 FROM USER SYSDBA
 TO USER;

5. Ensure users who logged in using the legacy authentication plugin do not have too many
privileges:

CREATE MAPPING LEGACY_2_GUEST
 USING PLUGIN legacy_auth
 FROM ANY USER
 TO USER GUEST;

Chapter 13. Security

535

See also

ALTER MAPPING, CREATE OR ALTER MAPPING, DROP MAPPING

13.7.3. ALTER MAPPING

Used for

Altering a mapping of a security object

Available in

DSQL

Syntax

ALTER [GLOBAL] MAPPING name
 USING
 { PLUGIN plugin_name [IN database]
 | ANY PLUGIN [IN database | SERVERWIDE]
 | MAPPING [IN database] | '*' [IN database] }
 FROM {ANY type | type from_name}
 TO {USER | ROLE} [to_name]

For details on the options, see CREATE MAPPING.

The ALTER MAPPING statement allows you to modify any of the existing mapping options, but a local
mapping cannot be changed to GLOBAL or vice versa.

 Global and local mappings of the same name are different objects.

Who Can Alter a Mapping

The ALTER MAPPING statement can be executed by:

• Administrators

• The database owner — if the mapping is local

ALTER MAPPING examples

Alter mapping

ALTER MAPPING FROM_RT
 USING PLUGIN SRP IN "rt"
 FROM USER U1 TO USER U3;

See also

CREATE MAPPING, CREATE OR ALTER MAPPING, DROP MAPPING

Chapter 13. Security

536

13.7.4. CREATE OR ALTER MAPPING

Used for

Creating a new or altering an existing mapping of a security object

Available in

DSQL

Syntax

CREATE OR ALTER [GLOBAL] MAPPING name
 USING
 { PLUGIN plugin_name [IN database]
 | ANY PLUGIN [IN database | SERVERWIDE]
 | MAPPING [IN database] | '*' [IN database] }
 FROM {ANY type | type from_name}
 TO {USER | ROLE} [to_name]

For details on the options, see CREATE MAPPING.

The CREATE OR ALTER MAPPING statement creates a new or modifies an existing mapping.

 Global and local mappings of the same name are different objects.

CREATE OR ALTER MAPPING examples

Creating or altering a mapping

CREATE OR ALTER MAPPING FROM_RT
 USING PLUGIN SRP IN "rt"
 FROM USER U1 TO USER U4;

See also

CREATE MAPPING, ALTER MAPPING, DROP MAPPING

13.7.5. DROP MAPPING

Used for

Dropping (removing) a mapping of a security object

Available in

DSQL

Syntax

DROP [GLOBAL] MAPPING name

Table 229. DROP MAPPING Statement Parameter

Chapter 13. Security

537

Parameter Description

name Mapping name

The DROP MAPPING statement removes an existing mapping. If GLOBAL is specified, then a global
mapping will be removed.

 Global and local mappings of the same name are different objects.

Who Can Drop a Mapping

The DROP MAPPING statement can be executed by:

• Administrators

• The database owner — if the mapping is local

DROP MAPPING examples

Alter mapping

DROP MAPPING FROM_RT;

See also

CREATE MAPPING

13.8. Database Encryption
Firebird provides a plugin mechanism to encrypt the data stored in the database. This mechanism
does not encrypt the entire database, but only data pages, index pages, and blob pages.

In order to make database encryption possible, you need to obtain or write a database encryption
plugin.

Out of the box, Firebird does not include a database encryption plugin.

The encryption plugin example in examples/dbcrypt does not perform real
encryption, it is only intended as an example how such a plugin can be written.

On Linux, an example plugin named libDbCrypt_example.so can be found in
plugins/.

The main problem with database encryption is how to store the secret key. Firebird provides
support for transferring the key from the client, but this does not mean that storing the key on the
client is the best way; it is just one of the possible alternatives. However, keeping encryption keys
on the same disk as the database is an insecure option.

For efficient separation of encryption and key access, the database encryption plugin data is
divided into two parts, the encryption itself and the holder of the secret key. This can be an efficient
approach when you want to use some good encryption algorithm, but you have your own custom

Chapter 13. Security

538

method of storing the keys.

Once you have decided on the plugin and key holder, you can perform the encryption.

13.8.1. Encrypting a Database

Syntax

ALTER {DATABASE | SCHEMA}
 ENCRYPT WITH plugin_name [KEY key_name]

Table 230. ALTER DATABASE ENCRYPT Statement Parameters

Parameter Description

plugin_name The name of the encryption plugin

key_name The name of the encryption key

Encrypts the database using the specified encryption plugin. Encryption starts immediately after
this statement completes, and will be performed in the background. Normal operations of the
database are not disturbed during encryption.

The optional KEY clause specifies the name of the key for the encryption plugin. The plugin decides
what to do with this key name.

The encryption process can be monitored using the MON$CRYPT_PAGE field in the
MON$DATABASE virtual table, or viewed in the database header page using gstat -e.
gstat -h will also provide limited information about the encryption status.

For example, the following query will display the progress of the encryption
process as a percentage.

select MON$CRYPT_PAGE * 100 / MON$PAGES
 from MON$DATABASE;

SCHEMA is currently a synonym for DATABASE; this may change in a future version, so
we recommend to always use DATABASE

See also

Decrypting a Database, ALTER DATABASE

13.8.2. Decrypting a Database

Syntax

ALTER {DATABASE | SCHEMA} DECRYPT

Chapter 13. Security

539

Decrypts the database using the configured plugin and key. Decryption starts immediately after this
statement completes, and will be performed in the background. Normal operations of the database
are not disturbed during decryption.

SCHEMA is currently a synonym for DATABASE; this may change in a future version, so
we recommend to always use DATABASE

See also

Encrypting a Database, ALTER DATABASE

Chapter 13. Security

540

Chapter 14. Management Statements
Since Firebird 3.0 a new class of DSQL statement has emerged in Firebird’s SQL lexicon, usually for
administering aspects of the client/server environment. Typically, such statements start with the
verb SET.

The isql tool also has a collection of SET commands. Those commands are not part
of Firebird’s SQL lexicon. For information on isqls SET commands, see Isql Set
Commands in Firebird Interactive SQL Utility.

Most of the management statements affect the current connection (attachment, or “session”) only,
and do not require any authorization over and above the login privileges of the current user
without elevated privileges.

14.1. Changing the Current Role

14.1.1. SET ROLE

Used for

Changing the role of the current session

Available in

DSQL

Syntax

SET ROLE {role_name | NONE}

Table 231. SET ROLE Statement Parameters

Parameter Description

role_name The name of the role to apply

The SET ROLE statement allows a user to assume a different role; it sets the CURRENT_ROLE context
variable to role_name, if that role has been granted to the CURRENT_USER. For this session, the user
receives the privileges granted by that role. Any rights granted to the previous role are removed
from the session. Use NONE instead of role_name to clear the CURRENT_ROLE.

When the specified role does not exist or has not been explicitly granted to the user, the error “Role
role_name is invalid or unavailable” is raised.

SET ROLE Examples

1. Change the current role to MANAGER

SET ROLE manager;
select current_role from rdb$database;

Chapter 14. Management Statements

541

https://www.firebirdsql.org/file/documentation/html/en/firebirddocs/isql/firebird-isql.html#isql-set
https://www.firebirdsql.org/file/documentation/html/en/firebirddocs/isql/firebird-isql.html#isql-set
https://www.firebirdsql.org/file/documentation/html/en/firebirddocs/isql/firebird-isql.html#isql-set

ROLE
=======================
MANAGER

2. Clear the current role

SET ROLE NONE;
select current_role from rdb$database;

ROLE
=======================
NONE

See also

SET TRUSTED ROLE, GRANT

14.1.2. SET TRUSTED ROLE

Used for

Changes role of the current session to the trusted role

Available in

DSQL

Syntax

SET TRUSTED ROLE

The SET TRUSTED ROLE statement makes it possible to assume the role assigned to the user through a
mapping rule (see Mapping of Users to Objects). The role assigned through a mapping rule is
assumed automatically on connect, if the user hasn’t specified an explicit role. The SET TRUSTED ROLE
statement makes it possible to assume the mapped (or “trusted”) role at a later time, or to assume it
again after the current role was changed using SET ROLE.

A trusted role is not a specific type of role, but can be any role that was created using CREATE ROLE,
or a predefined system role such as RDB$ADMIN. An attachment (session) has a trusted role when the
security objects mapping subsystem finds a match between the authentication result passed from
the plugin and a local or global mapping to a role for the current database. The role may be one
that is not granted explicitly to that user.

When a session has no trusted role, executing SET TRUSTED ROLE will raise error “Your attachment
has no trusted role”.

While the CURRENT_ROLE can be changed using SET ROLE, it is not always possible to
revert to a trusted role using the same command, because SET ROLE checks if the
role has been granted to the user. With SET TRUSTED ROLE, the trusted role can be

Chapter 14. Management Statements

542

assumed again even when SET ROLE fails.

SET TRUSTED ROLE Examples

1. Assuming a mapping rule that assigns the role ROLE1 to a user ALEX:

CONNECT 'employee' USER ALEX PASSWORD 'password';
SELECT CURRENT_ROLE FROM RDB$DATABASE;

ROLE
===============================
ROLE1

SET ROLE ROLE2;
SELECT CURRENT_ROLE FROM RDB$DATABASE;

ROLE
===============================
ROLE2

SET TRUSTED ROLE;
SELECT CURRENT_ROLE FROM RDB$DATABASE;

ROLE
===============================
ROLE1

See also

SET ROLE, Mapping of Users to Objects

Chapter 14. Management Statements

543

Appendix A: Supplementary Information
In this Appendix are topics that developers may wish to refer to, to enhance understanding of
features or changes.

The RDB$VALID_BLR Field
The field RDB$VALID_BLR was added to the system tables RDB$PROCEDURES and RDB$TRIGGERS in Firebird
2.1. Its purpose is to signal possible invalidation of a PSQL module after alteration of a domain or
table column on which the module depends. RDB$VALID_BLR is set to 0 for any procedure or trigger
whose code is made invalid by such a change.

How Invalidation Works

In triggers and procedures, dependencies arise on the definitions of table columns accessed and
also on any parameter or variable that has been defined in the module using the TYPE OF clause.

After the engine has altered any domain, including the implicit domains created internally behind
column definitions and output parameters, the engine internally recompiles all of its dependencies.

In v2.x these comprise procedures and triggers but not blocks coded in DML
statements for run-time execution with EXECUTE BLOCK. Firebird 3 will encompass
more module types (stored functions, packages).

Any module that fails to recompile because of an incompatibility arising from a domain change is
marked as invalid (“invalidated” by setting the RDB$VALID_BLR in its system record (in RDB$PROCEDURES
or RDB$TRIGGERS, as appropriate) to zero.

Revalidation (setting RDB$VALID_BLR to 1) occurs when

1. the domain is altered again and the new definition is compatible with the previously
invalidated module definition; OR

2. the previously invalidated module is altered to match the new domain definition

The following query will find the modules that depend on a specific domain and report the state of
their RDB$VALID_BLR fields:

SELECT * FROM (
 SELECT
 'Procedure',
 rdb$procedure_name,
 rdb$valid_blr
 FROM rdb$procedures
 UNION ALL
 SELECT
 'Trigger',
 rdb$trigger_name,
 rdb$valid_blr

Appendix A: Supplementary Information

544

 FROM rdb$triggers
) (type, name, valid)
WHERE EXISTS
 (SELECT * from rdb$dependencies
 WHERE rdb$dependent_name = name
 AND rdb$depended_on_name = 'MYDOMAIN')

/* Replace MYDOMAIN with the actual domain name.
 Use all-caps if the domain was created
 case-insensitively. Otherwise, use the exact
 capitalisation. */

The following query will find the modules that depend on a specific table column and report the
state of their RDB$VALID_BLR fields:

SELECT * FROM (
 SELECT
 'Procedure',
 rdb$procedure_name,
 rdb$valid_blr
 FROM rdb$procedures
 UNION ALL
 SELECT
 'Trigger',
 rdb$trigger_name,
 rdb$valid_blr
 FROM rdb$triggers) (type, name, valid)
WHERE EXISTS
 (SELECT *
 FROM rdb$dependencies
 WHERE rdb$dependent_name = name
 AND rdb$depended_on_name = 'MYTABLE'
 AND rdb$field_name = 'MYCOLUMN')

All PSQL invalidations caused by domain/column changes are reflected in the
RDB$VALID_BLR field. However, other kinds of changes, such as the number of input
or output parameters, called routines and so on, do not affect the validation field
even though they potentially invalidate the module. A typical such scenario might
be one of the following:

1. A procedure (B) is defined, that calls another procedure (A) and reads output
parameters from it. In this case, a dependency is registered in
RDB$DEPENDENCIES. Subsequently, the called procedure (A) is altered to change or
remove one or more of those output parameters. The ALTER PROCEDURE A
statement will fail with an error when commit is attempted.

2. A procedure (B) calls procedure A, supplying values for its input parameters.
No dependency is registered in RDB$DEPENDENCIES. Subsequent modification of
the input parameters in procedure A will be allowed. Failure will occur at run-

Appendix A: Supplementary Information

545

time, when B calls A with the mismatched input parameter set.

Other Notes

• For PSQL modules inherited from earlier Firebird versions (including a
number of system triggers, even if the database was created under Firebird 2.1
or higher), RDB$VALID_BLR is NULL. This does not imply that their BLR is invalid.

• The isql commands SHOW PROCEDURES and SHOW TRIGGERS display an asterisk in
the RDB$VALID_BLR column for any module for which the value is zero (i.e.,
invalid). However, SHOW PROCEDURE <procname> and SHOW TRIGGER <trigname>,
which display individual PSQL modules, do not signal invalid BLR at all.

A Note on Equality

This note about equality and inequality operators applies everywhere in Firebird’s
SQL language.

The “=” operator, which is explicitly used in many conditions, only matches values to values.
According to the SQL standard, NULL is not a value and hence two NULLs are neither equal nor
unequal to one another. If you need NULLs to match each other in a condition, use the IS NOT
DISTINCT FROM operator. This operator returns true if the operands have the same value or if they
are both NULL.

select *
 from A join B
 on A.id is not distinct from B.code

Likewise, in cases where you want to test against NULL for a condition of inequality, use IS DISTINCT
FROM, not “<>”. If you want NULL to be considered different from any value and two NULLs to be
considered equal:

select *
 from A join B
 on A.id is distinct from B.code

Appendix A: Supplementary Information

546

Appendix B: Exception Codes and Messages
This appendix includes:

• SQLSTATE Error Codes and Descriptions

• GDSCODE Error Codes, SQLCODEs and Descriptions

Custom Exceptions

Firebird DDL provides a simple syntax for creating custom exceptions for use in
PSQL modules, with message text of up to 1,021 characters. For more information,
see CREATE EXCEPTION in DDL Statements and, for usage, the statement EXCEPTION in
PSQL Statements.

The Firebird SQLCODE error codes do not correlate with the standards-compliant SQLSTATE codes.
SQLCODE has been used for many years and should be considered as deprecated now. Support for
SQLCODE is likely to be dropped in a future version.

SQLSTATE Error Codes and Descriptions
This table provides the error codes and message texts for the SQLSTATE context variables.

The structure of an SQLSTATE error code is five characters comprising the SQL error class (2
characters) and the SQL subclass (3 characters).

Table 232. SQLSTATE Codes and Message Texts

SQLSTATE Mapped Message

SQLCLASS 00 (Success)

00000 Success

SQLCLASS 01 (Warning)

01000 General warning

01001 Cursor operation conflict

01002 Disconnect error

01003 NULL value eliminated in set function

01004 String data, right-truncated

01005 Insufficient item descriptor areas

01006 Privilege not revoked

01007 Privilege not granted

01008 Implicit zero-bit padding

01100 Statement reset to unprepared

01101 Ongoing transaction has been committed

Appendix B: Exception Codes and Messages

547

SQLSTATE Mapped Message

01102 Ongoing transaction has been rolled back

SQLCLASS 02 (No Data)

02000 No data found or no rows affected

SQLCLASS 07 (Dynamic SQL error)

07000 Dynamic SQL error

07001 Wrong number of input parameters

07002 Wrong number of output parameters

07003 Cursor specification cannot be executed

07004 USING clause required for dynamic parameters

07005 Prepared statement not a cursor-specification

07006 Restricted data type attribute violation

07007 USING clause required for result fields

07008 Invalid descriptor count

07009 Invalid descriptor index

SQLCLASS 08 (Connection Exception)

08001 Client unable to establish connection

08002 Connection name in use

08003 Connection does not exist

08004 Server rejected the connection

08006 Connection failure

08007 Transaction resolution unknown

SQLCLASS 0A (Feature Not Supported)

0A000 Feature Not Supported

SQLCLASS 0B (Invalid Transaction Initiation)

0B000 Invalid transaction initiation

SQLCLASS 0L (Invalid Grantor)

0L000 Invalid grantor

SQLCLASS 0P (Invalid Role Specification)

0P000 Invalid role specification

SQLCLASS 0U (Attempt to Assign to Non-Updatable Column)

0U000 Attempt to assign to non-updatable column

SQLCLASS 0V (Attempt to Assign to Ordering Column)

0V000 Attempt to assign to Ordering column

Appendix B: Exception Codes and Messages

548

SQLSTATE Mapped Message

SQLCLASS 20 (Case Not Found For Case Statement)

20000 Case not found for case statement

SQLCLASS 21 (Cardinality Violation)

21000 Cardinality violation

21S01 Insert value list does not match column list

21S02 Degree of derived table does not match column list

SQLCLASS 22 (Data Exception)

22000 Data exception

22001 String data, right truncation

22002 Null value, no indicator parameter

22003 Numeric value out of range

22004 Null value not allowed

22005 Error in assignment

22006 Null value in field reference

22007 Invalid datetime format

22008 Datetime field overflow

22009 Invalid time zone displacement value

2200A Null value in reference target

2200B Escape character conflict

2200C Invalid use of escape character

2200D Invalid escape octet

2200E Null value in array target

2200F Zero-length character string

2200G Most specific type mismatch

22010 Invalid indicator parameter value

22011 Substring error

22012 Division by zero

22014 Invalid update value

22015 Interval field overflow

22018 Invalid character value for cast

22019 Invalid escape character

2201B Invalid regular expression

2201C Null row not permitted in table

Appendix B: Exception Codes and Messages

549

SQLSTATE Mapped Message

22012 Division by zero

22020 Invalid limit value

22021 Character not in repertoire

22022 Indicator overflow

22023 Invalid parameter value

22024 Character string not properly terminated

22025 Invalid escape sequence

22026 String data, length mismatch

22027 Trim error

22028 Row already exists

2202D Null instance used in mutator function

2202E Array element error

2202F Array data, right truncation

SQLCLASS 23 (Integrity Constraint Violation)

23000 Integrity constraint violation

SQLCLASS 24 (Invalid Cursor State)

24000 Invalid cursor state

24504 The cursor identified in the UPDATE, DELETE, SET, or GET statement is
not positioned on a row

SQLCLASS 25 (Invalid Transaction State)

25000 Invalid transaction state

25S01 Transaction state

25S02 Transaction is still active

25S03 Transaction is rolled back

SQLCLASS 26 (Invalid SQL Statement Name)

26000 Invalid SQL statement name

SQLCLASS 27 (Triggered Data Change Violation)

27000 Triggered data change violation

SQLCLASS 28 (Invalid Authorization Specification)

28000 Invalid authorization specification

SQLCLASS 2B (Dependent Privilege Descriptors Still Exist)

2B000 Dependent privilege descriptors still exist

SQLCLASS 2C (Invalid Character Set Name)

2C000 Invalid character set name

Appendix B: Exception Codes and Messages

550

SQLSTATE Mapped Message

SQLCLASS 2D (Invalid Transaction Termination)

2D000 Invalid transaction termination

SQLCLASS 2E (Invalid Connection Name)

2E000 Invalid connection name

SQLCLASS 2F (SQL Routine Exception)

2F000 SQL routine exception

2F002 Modifying SQL-data not permitted

2F003 Prohibited SQL-statement attempted

2F004 Reading SQL-data not permitted

2F005 Function executed no return statement

SQLCLASS 33 (Invalid SQL Descriptor Name)

33000 Invalid SQL descriptor name

SQLCLASS 34 (Invalid Cursor Name)

34000 Invalid cursor name

SQLCLASS 35 (Invalid Condition Number)

35000 Invalid condition number

SQLCLASS 36 (Cursor Sensitivity Exception)

36001 Request rejected

36002 Request failed

SQLCLASS 37 (Invalid Identifier)

37000 Invalid identifier

37001 Identifier too long

SQLCLASS 38 (External Routine Exception)

38000 External routine exception

SQLCLASS 39 (External Routine Invocation Exception)

39000 External routine invocation exception

SQLCLASS 3B (Invalid Save Point)

3B000 Invalid save point

SQLCLASS 3C (Ambiguous Cursor Name)

3C000 Ambiguous cursor name

SQLCLASS 3D (Invalid Catalog Name)

3D000 Invalid catalog name

3D001 Catalog name not found

Appendix B: Exception Codes and Messages

551

SQLSTATE Mapped Message

SQLCLASS 3F (Invalid Schema Name)

3F000 Invalid schema name

SQLCLASS 40 (Transaction Rollback)

40000 Ongoing transaction has been rolled back

40001 Serialization failure

40002 Transaction integrity constraint violation

40003 Statement completion unknown

SQLCLASS 42 (Syntax Error or Access Violation)

42000 Syntax error or access violation

42702 Ambiguous column reference

42725 Ambiguous function reference

42818 The operands of an operator or function are not compatible

42S01 Base table or view already exists

42S02 Base table or view not found

42S11 Index already exists

42S12 Index not found

42S21 Column already exists

42S22 Column not found

SQLCLASS 44 (With Check Option Violation)

44000 WITH CHECK OPTION Violation

SQLCLASS 45 (Unhandled User-defined Exception)

45000 Unhandled user-defined exception

SQLCLASS 54 (Program Limit Exceeded)

54000 Program limit exceeded

54001 Statement too complex

54011 Too many columns

54023 Too many arguments

SQLCLASS HY (CLI-specific Condition)

HY000 CLI-specific condition

HY001 Memory allocation error

HY003 Invalid data type in application descriptor

HY004 Invalid data type

HY007 Associated statement is not prepared

Appendix B: Exception Codes and Messages

552

SQLSTATE Mapped Message

HY008 Operation canceled

HY009 Invalid use of null pointer

HY010 Function sequence error

HY011 Attribute cannot be set now

HY012 Invalid transaction operation code

HY013 Memory management error

HY014 Limit on the number of handles exceeded

HY015 No cursor name available

HY016 Cannot modify an implementation row descriptor

HY017 Invalid use of an automatically allocated descriptor handle

HY018 Server declined the cancellation request

HY019 Non-string data cannot be sent in pieces

HY020 Attempt to concatenate a null value

HY021 Inconsistent descriptor information

HY024 Invalid attribute value

HY055 Non-string data cannot be used with string routine

HY090 Invalid string length or buffer length

HY091 Invalid descriptor field identifier

HY092 Invalid attribute identifier

HY095 Invalid Function ID specified

HY096 Invalid information type

HY097 Column type out of range

HY098 Scope out of range

HY099 Nullable type out of range

HY100 Uniqueness option type out of range

HY101 Accuracy option type out of range

HY103 Invalid retrieval code

HY104 Invalid Length/Precision value

HY105 Invalid parameter type

HY106 Invalid fetch orientation

HY107 Row value out of range

HY109 Invalid cursor position

HY110 Invalid driver completion

Appendix B: Exception Codes and Messages

553

SQLSTATE Mapped Message

HY111 Invalid bookmark value

HYC00 Optional feature not implemented

HYT00 Timeout expired

HYT01 Connection timeout expired

SQLCLASS XX (Internal Error)

XX000 Internal error

XX001 Data corrupted

XX002 Index corrupted

SQLCODE and GDSCODE Error Codes and Descriptions
The table provides the SQLCODE groupings, the numeric and symbolic values for the GDSCODE
errors and the message texts.

SQLCODE has been used for many years and should be considered as deprecated
now. Support for SQLCODE is likely to be dropped in a future version.

Table 233. SQLCODE and GDSCODE Error Codes and Message Texts

SQL
CODE

GDSCODE Symbol Message Text

501 335544802 dialect_reset_warning Database dialect being changed from 3
to 1

301 335544808 dtype_renamed DATE data type is now called
TIMESTAMP

301 336003076 dsql_dialect_warning_expr Use of @1 expression that returns
different results in dialect 1 and dialect
3

301 336003080 dsql_warning_number_ambiguous WARNING: Numeric literal @1 is
interpreted as a floating-point

301 336003081 dsql_warning_number_ambiguous
1

value in SQL dialect 1, but as an exact
numeric value in SQL dialect 3.

301 336003082 dsql_warn_precision_ambiguous WARNING: NUMERIC and DECIMAL
fields with precision 10 or greater are
stored

301 336003083 dsql_warn_precision_ambiguous1 as approximate floating-point values in
SQL dialect 1, but as 64-bit

301 336003084 dsql_warn_precision_ambiguous2 integers in SQL dialect 3.

300 335544807 sqlwarn SQL warning code = @1

Appendix B: Exception Codes and Messages

554

SQL
CODE

GDSCODE Symbol Message Text

106 336068855 dyn_miss_priv_warning Warning: @1 on @2 is not granted to
@3.

101 335544366 segment segment buffer length shorter than
expected

100 335544338 from_no_match no match for first value expression

100 335544354 no_record invalid database key

100 335544367 segstr_eof attempted retrieval of more segments
than exist

0 335544875 bad_debug_format Bad debug info format

0 335544931 montabexh Monitoring table space exhausted

-84 335544554 nonsql_security_rel object has non-SQL security class
defined

-84 335544555 nonsql_security_fld column has non-SQL security class
defined

-84 335544668 dsql_procedure_use_err procedure @1 does not return any
values

-85 335544747 usrname_too_long The username entered is too long.
Maximum length is 31 bytes.

-85 335544748 password_too_long The password specified is too long.
Maximum length is 8 bytes.

-85 335544749 usrname_required A username is required for this
operation.

-85 335544750 password_required A password is required for this
operation

-85 335544751 bad_protocol The network protocol specified is
invalid

-85 335544752 dup_usrname_found A duplicate user name was found in the
security database

-85 335544753 usrname_not_found The user name specified was not found
in the security database

-85 335544754 error_adding_sec_record An error occurred while attempting to
add the user.

-85 335544755 error_modifying_sec_record An error occurred while attempting to
modify the user record.

-85 335544756 error_deleting_sec_record An error occurred while attempting to
delete the user record.

Appendix B: Exception Codes and Messages

555

SQL
CODE

GDSCODE Symbol Message Text

-85 335544757 error_updating_sec_db An error occurred while updating the
security database.

-103 335544571 dsql_constant_err Data type for constant unknown

-104 335544343 invalid_blr invalid request BLR at offset @1

-104 335544390 syntaxerr BLR syntax error: expected @1 at offset
@2, encountered @3

-104 335544425 ctxinuse context already in use (BLR error)

-104 335544426 ctxnotdef context not defined (BLR error)

-104 335544429 badparnum undefined parameter number

-104 335544440 bad_msg_vec

-104 335544456 invalid_sdl invalid slice description language at
offset @1

-104 335544570 dsql_command_err Invalid command

-104 335544579 dsql_internal_err Internal error

-104 335544590 dsql_dup_option Option specified more than once

-104 335544591 dsql_tran_err Unknown transaction option

-104 335544592 dsql_invalid_array Invalid array reference

-104 335544608 command_end_err Unexpected end of command

-104 335544612 token_err Token unknown

-104 335544634 dsql_token_unk_err Token unknown - line @1, column @2

-104 335544709 dsql_agg_ref_err Invalid aggregate reference

-104 335544714 invalid_array_id invalid blob id

-104 335544730 cse_not_supported Client/Server Express not supported in
this release

-104 335544743 token_too_long token size exceeds limit

-104 335544763 invalid_string_constant a string constant is delimited by double
quotes

-104 335544764 transitional_date DATE must be changed to TIMESTAMP

-104 335544796 sql_dialect_datatype_unsupport Client SQL dialect @1 does not support
reference to @2 datatype

-104 335544798 depend_on_uncommitted_rel You created an indirect dependency on
uncommitted metadata. You must roll
back the current transaction.

-104 335544821 dsql_column_pos_err Invalid column position used in the @1
clause

Appendix B: Exception Codes and Messages

556

SQL
CODE

GDSCODE Symbol Message Text

-104 335544822 dsql_agg_where_err Cannot use an aggregate or window
function in a WHERE clause, use
HAVING (for aggregate only) instead

-104 335544823 dsql_agg_group_err Cannot use an aggregate or window
function in a GROUP BY clause

-104 335544824 dsql_agg_column_err Invalid expression in the @1 (not
contained in either an aggregate
function or the GROUP BY clause)

-104 335544825 dsql_agg_having_err Invalid expression in the @1 (neither an
aggregate function nor a part of the
GROUP BY clause)

-104 335544826 dsql_agg_nested_err Nested aggregate and window functions
are not allowed

-104 335544849 malformed_string Malformed string

-104 335544851 command_end_err2 Unexpected end of command - line @1,
column @2

-104 335544930 too_big_blr BLR stream length @1 exceeds
implementation limit @2

-104 335544980 internal_rejected_params Incorrect parameters provided to
internal function @1

-104 335545022 cannot_copy_stmt Cannot copy statement @1

-104 335545023 invalid_boolean_usage Invalid usage of boolean expression

-104 335545035 svc_no_stdin No isc_info_svc_stdin in user request,
but service thread requested stdin data

-104 335545037 svc_no_switches All services except for getting server log
require switches

-104 335545038 svc_bad_size Size of stdin data is more than was
requested from client

-104 335545039 no_crypt_plugin Crypt plugin @1 failed to load

-104 335545040 cp_name_too_long Length of crypt plugin name should not
exceed @1 bytes

-104 335545045 null_spb NULL data with non-zero SPB length

-104 336003075 dsql_transitional_numeric Precision 10 to 18 changed from
DOUBLE PRECISION in SQL dialect 1 to
64-bit scaled integer in SQL dialect 3

-104 336003077 sql_db_dialect_dtype_unsupport Database SQL dialect @1 does not
support reference to @2 datatype

-104 336003087 dsql_invalid_label Label @1 @2 in the current scope

Appendix B: Exception Codes and Messages

557

SQL
CODE

GDSCODE Symbol Message Text

-104 336003088 dsql_datatypes_not_comparable Datatypes @1are not comparable in
expression @2

-104 336397215 dsql_max_sort_items cannot sort on more than 255 items

-104 336397216 dsql_max_group_items cannot group on more than 255 items

-104 336397217 dsql_conflicting_sort_field Cannot include the same field (@1.@2)
twice in the ORDER BY clause with
conflicting sorting options

-104 336397218 dsql_derived_table_more_columns column list from derived table @1 has
more columns than the number of items
in its SELECT statement

-104 336397219 dsql_derived_table_less_columns column list from derived table @1 has
less columns than the number of items
in its SELECT statement

-104 336397220 dsql_derived_field_unnamed no column name specified for column
number @1 in derived table @2

-104 336397221 dsql_derived_field_dup_name column @1 was specified multiple times
for derived table @2

-104 336397222 dsql_derived_alias_select Internal dsql error: alias type expected
by pass1_expand_select_node

-104 336397223 dsql_derived_alias_field Internal dsql error: alias type expected
by pass1_field

-104 336397224 dsql_auto_field_bad_pos Internal dsql error: column position out
of range in pass1_union_auto_cast

-104 336397225 dsql_cte_wrong_reference Recursive CTE member (@1) can refer
itself only in FROM clause

-104 336397226 dsql_cte_cycle CTE '@1' has cyclic dependencies

-104 336397227 dsql_cte_outer_join Recursive member of CTE can’t be
member of an outer join

-104 336397228 dsql_cte_mult_references Recursive member of CTE can’t
reference itself more than once

-104 336397229 dsql_cte_not_a_union Recursive CTE (@1) must be an UNION

-104 336397230 dsql_cte_nonrecurs_after_recurs CTE '@1' defined non-recursive member
after recursive

-104 336397231 dsql_cte_wrong_clause Recursive member of CTE '@1' has @2
clause

-104 336397232 dsql_cte_union_all Recursive members of CTE (@1) must be
linked with another members via
UNION ALL

Appendix B: Exception Codes and Messages

558

SQL
CODE

GDSCODE Symbol Message Text

-104 336397233 dsql_cte_miss_nonrecursive Non-recursive member is missing in
CTE '@1'

-104 336397234 dsql_cte_nested_with WITH clause can’t be nested

-104 336397235 dsql_col_more_than_once_using column @1 appears more than once in
USING clause

-104 336397237 dsql_cte_not_used CTE "@1" is not used in query

-104 336397238 dsql_col_more_than_once_view column @1 appears more than once in
ALTER VIEW

-104 336397257 dsql_max_distinct_items Cannot have more than 255 items in
DISTINCT list

-104 336397321 dsql_cte_recursive_aggregate Recursive member of CTE cannot use
aggregate or window function

-104 336397326 dsql_wlock_simple WITH LOCK can be used only with a
single physical table

-104 336397327 dsql_firstskip_rows FIRST/SKIP cannot be used with
OFFSET/FETCH or ROWS

-104 336397328 dsql_wlock_aggregates WITH LOCK cannot be used with
aggregates

-104 336397329 dsql_wlock_conflict WITH LOCK cannot be used with @1

-105 335544702 escape_invalid Invalid ESCAPE sequence

-105 335544789 extract_input_mismatch Specified EXTRACT part does not exist in
input datatype

-105 335544884 invalid_similar_pattern Invalid SIMILAR TO pattern

-150 335544360 read_only_rel attempted update of read-only table

-150 335544362 read_only_view cannot update read-only view @1

-150 335544446 non_updatable not updatable

-150 335544546 constaint_on_view Cannot define constraints on views

-151 335544359 read_only_field attempted update of read-only column

-155 335544658 dsql_base_table @1 is not a valid base table of the
specified view

-157 335544598 specify_field_err must specify column name for view
select expression

-158 335544599 num_field_err number of columns does not match
select list

-162 335544685 no_dbkey dbkey not available for multi-table
views

Appendix B: Exception Codes and Messages

559

SQL
CODE

GDSCODE Symbol Message Text

-170 335544512 prcmismat Input parameter mismatch for
procedure @1

-170 335544619 extern_func_err External functions cannot have more
than 10 parameters

-170 335544850 prc_out_param_mismatch Output parameter mismatch for
procedure @1

-170 335545101 fun_param_mismatch Input parameter mismatch for function
@1

-171 335544439 funmismat function @1 could not be matched

-171 335544458 invalid_dimension column not array or invalid dimensions
(expected @1, encountered @2)

-171 335544618 return_mode_err Return mode by value not allowed for
this data type

-171 335544873 array_max_dimensions Array data type can use up to @1
dimensions

-172 335544438 funnotdef function @1 is not defined

-172 335544932 modnotfound module name or entrypoint could not
be found

-203 335544708 dyn_fld_ambiguous Ambiguous column reference.

-204 335544463 gennotdef generator @1 is not defined

-204 335544502 stream_not_defined reference to invalid stream number

-204 335544509 charset_not_found CHARACTER SET @1 is not defined

-204 335544511 prcnotdef procedure @1 is not defined

-204 335544515 codnotdef status code @1 unknown

-204 335544516 xcpnotdef exception @1 not defined

-204 335544532 ref_cnstrnt_notfound Name of Referential Constraint not
defined in constraints table.

-204 335544551 grant_obj_notfound could not find object for GRANT

-204 335544568 text_subtype Implementation of text subtype @1 not
located.

-204 335544573 dsql_datatype_err Data type unknown

-204 335544580 dsql_relation_err Table unknown

-204 335544581 dsql_procedure_err Procedure unknown

-204 335544588 collation_not_found COLLATION @1 for CHARACTER SET @2
is not defined

Appendix B: Exception Codes and Messages

560

SQL
CODE

GDSCODE Symbol Message Text

-204 335544589 collation_not_for_charset COLLATION @1 is not valid for specified
CHARACTER SET

-204 335544595 dsql_trigger_err Trigger unknown

-204 335544620 alias_conflict_err alias @1 conflicts with an alias in the
same statement

-204 335544621 procedure_conflict_error alias @1 conflicts with a procedure in
the same statement

-204 335544622 relation_conflict_err alias @1 conflicts with a table in the
same statement

-204 335544635 dsql_no_relation_alias there is no alias or table named @1 at
this scope level

-204 335544636 indexname there is no index @1 for table @2

-204 335544640 collation_requires_text Invalid use of CHARACTER SET or
COLLATE

-204 335544662 dsql_blob_type_unknown BLOB SUB_TYPE @1 is not defined

-204 335544759 bad_default_value can not define a not null column with
NULL as default value

-204 335544760 invalid_clause invalid clause --- '@1'

-204 335544800 too_many_contexts Too many Contexts of
Relation/Procedure/Views. Maximum
allowed is 256

-204 335544817 bad_limit_param Invalid parameter to FETCH or FIRST.
Only integers >= 0 are allowed.

-204 335544818 bad_skip_param Invalid parameter to OFFSET or SKIP.
Only integers >= 0 are allowed.

-204 335544837 bad_substring_offset Invalid offset parameter @1 to
SUBSTRING. Only positive integers are
allowed.

-204 335544853 bad_substring_length Invalid length parameter @1 to
SUBSTRING. Negative integers are not
allowed.

-204 335544854 charset_not_installed CHARACTER SET @1 is not installed

-204 335544855 collation_not_installed COLLATION @1 for CHARACTER SET @2
is not installed

-204 335544867 subtype_for_internal_use Blob sub_types bigger than 1 (text) are
for internal use only

-204 335545104 invalid_attachment_charset CHARACTER SET @1 cannot be used as a
attachment character set

Appendix B: Exception Codes and Messages

561

SQL
CODE

GDSCODE Symbol Message Text

-204 336003085 dsql_ambiguous_field_name Ambiguous field name between @1 and
@2

-205 335544396 fldnotdef column @1 is not defined in table @2

-205 335544552 grant_fld_notfound could not find column for GRANT

-205 335544883 fldnotdef2 column @1 is not defined in procedure
@2

-206 335544578 dsql_field_err Column unknown

-206 335544587 dsql_blob_err Column is not a BLOB

-206 335544596 dsql_subselect_err Subselect illegal in this context

-206 336397208 dsql_line_col_error At line @1, column @2

-206 336397209 dsql_unknown_pos At unknown line and column

-206 336397210 dsql_no_dup_name Column @1 cannot be repeated in @2
statement

-208 335544617 order_by_err invalid ORDER BY clause

-219 335544395 relnotdef table @1 is not defined

-219 335544872 domnotdef domain @1 is not defined

-230 335544487 walw_err WAL Writer error

-231 335544488 logh_small Log file header of @1 too small

-232 335544489 logh_inv_version Invalid version of log file @1

-233 335544490 logh_open_flag Log file @1 not latest in the chain but
open flag still set

-234 335544491 logh_open_flag2 Log file @1 not closed properly;
database recovery may be required

-235 335544492 logh_diff_dbname Database name in the log file @1 is
different

-236 335544493 logf_unexpected_eof Unexpected end of log file @1 at offset
@2

-237 335544494 logr_incomplete Incomplete log record at offset @1 in log
file @2

-238 335544495 logr_header_small Log record header too small at offset @1
in log file @2

-239 335544496 logb_small Log block too small at offset @1 in log
file @2

-239 335544691 cache_too_small Insufficient memory to allocate page
buffer cache

-239 335544693 log_too_small Log size too small

Appendix B: Exception Codes and Messages

562

SQL
CODE

GDSCODE Symbol Message Text

-239 335544694 partition_too_small Log partition size too small

-240 335544497 wal_illegal_attach Illegal attempt to attach to an
uninitialized WAL segment for @1

-241 335544498 wal_invalid_wpb Invalid WAL parameter block option @1

-242 335544499 wal_err_rollover Cannot roll over to the next log file @1

-243 335544500 no_wal database does not use Write-ahead Log

-244 335544503 wal_subsys_error WAL subsystem encountered error

-245 335544504 wal_subsys_corrupt WAL subsystem corrupted

-246 335544513 wal_bugcheck Database @1: WAL subsystem bug for
pid @2 @3

-247 335544514 wal_cant_expand Could not expand the WAL segment for
database @1

-248 335544521 wal_err_rollover2 Unable to roll over please see Firebird
log.

-249 335544522 wal_err_logwrite WAL I/O error. Please see Firebird log.

-250 335544523 wal_err_jrn_comm WAL writer - Journal server
communication error. Please see
Firebird log.

-251 335544524 wal_err_expansion WAL buffers cannot be increased.
Please see Firebird log.

-252 335544525 wal_err_setup WAL setup error. Please see Firebird
log.

-253 335544526 wal_err_ww_sync obsolete

-254 335544527 wal_err_ww_start Cannot start WAL writer for the
database @1

-255 335544556 wal_cache_err Write-ahead Log without shared cache
configuration not allowed

-257 335544566 start_cm_for_wal WAL defined; Cache Manager must be
started first

-258 335544567 wal_ovflow_log_required Overflow log specification required for
round-robin log

-259 335544629 wal_shadow_err Write-ahead Log with shadowing
configuration not allowed

-260 335544690 cache_redef Cache redefined

-260 335544692 log_redef Log redefined

Appendix B: Exception Codes and Messages

563

SQL
CODE

GDSCODE Symbol Message Text

-261 335544695 partition_not_supp Partitions not supported in series of log
file specification

-261 335544696 log_length_spec Total length of a partitioned log must be
specified

-281 335544637 no_stream_plan table @1 is not referenced in plan

-282 335544638 stream_twice table @1 is referenced more than once
in plan; use aliases to distinguish

-282 335544643 dsql_self_join the table @1 is referenced twice; use
aliases to differentiate

-282 335544659 duplicate_base_table table @1 is referenced twice in view;
use an alias to distinguish

-282 335544660 view_alias view @1 has more than one base table;
use aliases to distinguish

-282 335544710 complex_view navigational stream @1 references a
view with more than one base table

-283 335544639 stream_not_found table @1 is referenced in the plan but
not the from list

-284 335544642 index_unused index @1 cannot be used in the
specified plan

-291 335544531 primary_key_notnull Column used in a PRIMARY constraint
must be NOT NULL.

-291 335545103 domain_primary_key_notnull Domain used in the PRIMARY KEY
constraint of table @1 must be NOT
NULL

-292 335544534 ref_cnstrnt_update Cannot update constraints
(RDB$REF_CONSTRAINTS).

-293 335544535 check_cnstrnt_update Cannot update constraints
(RDB$CHECK_CONSTRAINTS).

-294 335544536 check_cnstrnt_del Cannot delete CHECK constraint entry
(RDB$CHECK_CONSTRAINTS)

-295 335544545 rel_cnstrnt_update Cannot update constraints
(RDB$RELATION_CONSTRAINTS).

-296 335544547 invld_cnstrnt_type internal Firebird consistency check
(invalid RDB$CONSTRAINT_TYPE)

-297 335544558 check_constraint Operation violates CHECK constraint @1
on view or table @2

-313 335544669 dsql_count_mismatch count of column list and variable list do
not match

Appendix B: Exception Codes and Messages

564

SQL
CODE

GDSCODE Symbol Message Text

-313 336003099 upd_ins_doesnt_match_pk UPDATE OR INSERT field list does not
match primary key of table @1

-313 336003100 upd_ins_doesnt_match_matching UPDATE OR INSERT field list does not
match MATCHING clause

-313 336003111 dsql_wrong_param_num Wrong number of parameters (expected
@1, got @2)

-314 335544565 transliteration_failed Cannot transliterate character between
character sets

-315 336068815 dyn_dtype_invalid Cannot change datatype for column @1.
Changing datatype is not supported for
BLOB or ARRAY columns.

-383 336068814 dyn_dependency_exists Column @1 from table @2 is referenced
in @3

-401 335544647 invalid_operator invalid comparison operator for find
operation

-402 335544368 segstr_no_op attempted invalid operation on a BLOB

-402 335544414 blobnotsup BLOB and array data types are not
supported for @1 operation

-402 335544427 datnotsup data operation not supported

-406 335544457 out_of_bounds subscript out of bounds

-406 335545028 ss_out_of_bounds Subscript @1 out of bounds [@2, @3]

-407 335544435 nullsegkey null segment of UNIQUE KEY

-413 335544334 convert_error conversion error from string "@1"

-413 335544454 nofilter filter not found to convert type @1 to
type @2

-413 335544860 blob_convert_error Unsupported conversion to target type
BLOB (subtype @1)

-413 335544861 array_convert_error Unsupported conversion to target type
ARRAY

-501 335544577 dsql_cursor_close_err Attempt to reclose a closed cursor

-502 335544574 dsql_decl_err Invalid cursor declaration

-502 335544576 dsql_cursor_open_err Attempt to reopen an open cursor

-502 336003090 dsql_cursor_redefined Statement already has a cursor @1
assigned

-502 336003091 dsql_cursor_not_found Cursor @1 is not found in the current
context

Appendix B: Exception Codes and Messages

565

SQL
CODE

GDSCODE Symbol Message Text

-502 336003092 dsql_cursor_exists Cursor @1 already exists in the current
context

-502 336003093 dsql_cursor_rel_ambiguous Relation @1 is ambiguous in cursor @2

-502 336003094 dsql_cursor_rel_not_found Relation @1 is not found in cursor @2

-502 336003095 dsql_cursor_not_open Cursor is not open

-504 335544572 dsql_cursor_err Invalid cursor reference

-504 336003089 dsql_cursor_invalid Empty cursor name is not allowed

-508 335544348 no_cur_rec no current record for fetch operation

-510 335544575 dsql_cursor_update_err Cursor @1 is not updatable

-518 335544582 dsql_request_err Request unknown

-519 335544688 dsql_open_cursor_request The prepare statement identifies a
prepare statement with an open cursor

-530 335544466 foreign_key violation of FOREIGN KEY constraint
"@1" on table "@2"

-530 335544838 foreign_key_target_doesnt_exist Foreign key reference target does not
exist

-530 335544839 foreign_key_references_present Foreign key references are present for
the record

-531 335544597 dsql_crdb_prepare_err Cannot prepare a CREATE
DATABASE/SCHEMA statement

-532 335544469 trans_invalid transaction marked invalid and cannot
be committed

-532 335545002 attachment_in_use Attachment is in use

-532 335545003 transaction_in_use Transaction is in use

-532 335545017 async_active Asynchronous call is already running
for this attachment

-551 335544352 no_priv no permission for @1 access to @2 @3

-551 335544790 insufficient_svc_privileges Service @1 requires SYSDBA
permissions. Reattach to the Service
Manager using the SYSDBA account.

-551 335545033 trunc_limits expected length @1, actual @2

-551 335545034 info_access Wrong info requested in isc_svc_query()
for anonymous service

-551 335545036 svc_start_failed Start request for anonymous service is
impossible

Appendix B: Exception Codes and Messages

566

SQL
CODE

GDSCODE Symbol Message Text

-552 335544550 not_rel_owner only the owner of a table may reassign
ownership

-552 335544553 grant_nopriv user does not have GRANT privileges for
operation

-552 335544707 grant_nopriv_on_base user does not have GRANT privileges on
base table/view for operation

-552 335545058 protect_ownership Only the owner can change the
ownership

-553 335544529 existing_priv_mod cannot modify an existing user privilege

-595 335544645 stream_crack the current position is on a crack

-596 335544374 stream_eof attempt to fetch past the last record in a
record stream

-596 335544644 stream_bof attempt to fetch before the first record
in a record stream

-596 335545092 cursor_not_positioned Cursor @1 is not positioned in a valid
record

-597 335544632 dsql_file_length_err Preceding file did not specify length, so
@1 must include starting page number

-598 335544633 dsql_shadow_number_err Shadow number must be a positive
integer

-599 335544607 node_err gen.c: node not supported

-599 335544625 node_name_err A node name is not permitted in a
secondary, shadow, cache or log file
name

-600 335544680 crrp_data_err sort error: corruption in data structure

-601 335544646 db_or_file_exists database or file exists

-604 335544593 dsql_max_arr_dim_exceeded Array declared with too many
dimensions

-604 335544594 dsql_arr_range_error Illegal array dimension range

-605 335544682 dsql_field_ref Inappropriate self-reference of column

-607 335544351 no_meta_update unsuccessful metadata update

-607 335544549 systrig_update cannot modify or erase a system trigger

-607 335544657 dsql_no_blob_array Array/BLOB/DATE data types not
allowed in arithmetic

-607 335544746 reftable_requires_pk "REFERENCES table" without "(column)"
requires PRIMARY KEY on referenced
table

Appendix B: Exception Codes and Messages

567

SQL
CODE

GDSCODE Symbol Message Text

-607 335544815 generator_name GENERATOR @1

-607 335544816 udf_name Function @1

-607 335544858 must_have_phys_field Can’t have relation with only computed
fields or constraints

-607 336003074 dsql_dbkey_from_non_table Cannot SELECT RDB$DB_KEY from a
stored procedure.

-607 336003086 dsql_udf_return_pos_err External function should have return
position between 1 and @1

-607 336003096 dsql_type_not_supp_ext_tab Data type @1 is not supported for
EXTERNAL TABLES. Relation '@2', field
'@3'

-607 336003104 dsql_record_version_table To be used with
RDB$RECORD_VERSION, @1 must be a
table or a view of single table

-607 336068845 dyn_cannot_del_syscoll Cannot delete system collation

-607 336068866 dyn_cannot_mod_sysproc Cannot ALTER or DROP system
procedure @1

-607 336068867 dyn_cannot_mod_systrig Cannot ALTER or DROP system trigger
@1

-607 336068868 dyn_cannot_mod_sysfunc Cannot ALTER or DROP system function
@1

-607 336068869 dyn_invalid_ddl_proc Invalid DDL statement for procedure
@1

-607 336068870 dyn_invalid_ddl_trig Invalid DDL statement for trigger @1

-607 336068878 dyn_invalid_ddl_func Invalid DDL statement for function @1

-607 336397206 dsql_table_not_found Table @1 does not exist

-607 336397207 dsql_view_not_found View @1 does not exist

-607 336397212 dsql_no_array_computed Array and BLOB data types not allowed
in computed field

-607 336397214 dsql_only_can_subscript_array scalar operator used on field @1 which
is not an array

-612 336068812 dyn_domain_name_exists Cannot rename domain @1 to @2. A
domain with that name already exists.

-612 336068813 dyn_field_name_exists Cannot rename column @1 to @2. A
column with that name already exists in
table @3.

Appendix B: Exception Codes and Messages

568

SQL
CODE

GDSCODE Symbol Message Text

-615 335544475 relation_lock lock on table @1 conflicts with existing
lock

-615 335544476 record_lock requested record lock conflicts with
existing lock

-615 335544501 drop_wal cannot drop log file when journaling is
enabled

-615 335544507 range_in_use refresh range number @1 already in use

-616 335544530 primary_key_ref Cannot delete PRIMARY KEY being used
in FOREIGN KEY definition.

-616 335544539 integ_index_del Cannot delete index used by an Integrity
Constraint

-616 335544540 integ_index_mod Cannot modify index used by an
Integrity Constraint

-616 335544541 check_trig_del Cannot delete trigger used by a CHECK
Constraint

-616 335544543 cnstrnt_fld_del Cannot delete column being used in an
Integrity Constraint.

-616 335544630 dependency there are @1 dependencies

-616 335544674 del_last_field last column in a table cannot be deleted

-616 335544728 integ_index_deactivate Cannot deactivate index used by an
integrity constraint

-616 335544729 integ_deactivate_primary Cannot deactivate index used by a
PRIMARY/UNIQUE constraint

-617 335544542 check_trig_update Cannot update trigger used by a CHECK
Constraint

-617 335544544 cnstrnt_fld_rename Cannot rename column being used in an
Integrity Constraint.

-618 335544537 integ_index_seg_del Cannot delete index segment used by an
Integrity Constraint

-618 335544538 integ_index_seg_mod Cannot update index segment used by
an Integrity Constraint

-625 335544347 not_valid validation error for column @1, value
"@2"

-625 335544879 not_valid_for_var validation error for variable @1, value
"@2"

-625 335544880 not_valid_for validation error for @1, value "@2"

Appendix B: Exception Codes and Messages

569

SQL
CODE

GDSCODE Symbol Message Text

-637 335544664 dsql_duplicate_spec duplicate specification of @1 - not
supported

-637 336397213 dsql_implicit_domain_name Implicit domain name @1 not allowed
in user created domain

-660 335544533 foreign_key_notfound Non-existent PRIMARY or UNIQUE KEY
specified for FOREIGN KEY.

-660 335544628 idx_create_err cannot create index @1

-660 336003098 primary_key_required Primary key required on table @1

-663 335544624 idx_seg_err segment count of 0 defined for index @1

-663 335544631 idx_key_err too many keys defined for index @1

-663 335544672 key_field_err too few key columns found for index @1
(incorrect column name?)

-664 335544434 keytoobig key size exceeds implementation
restriction for index "@1"

-677 335544445 ext_err @1 extension error

-685 335544465 bad_segstr_type invalid BLOB type for operation

-685 335544670 blob_idx_err attempt to index BLOB column in index
@1

-685 335544671 array_idx_err attempt to index array column in index
@1

-689 335544403 badpagtyp page @1 is of wrong type (expected @2,
found @3)

-689 335544650 page_type_err wrong page type

-690 335544679 no_segments_err segments not allowed in expression
index @1

-691 335544681 rec_size_err new record size of @1 bytes is too big

-692 335544477 max_idx maximum indexes per table (@1)
exceeded

-693 335544663 req_max_clones_exceeded Too many concurrent executions of the
same request

-694 335544684 no_field_access cannot access column @1 in view @2

-802 335544321 arith_except arithmetic exception, numeric overflow,
or string truncation

-802 335544836 concat_overflow Concatenation overflow. Resulting
string cannot exceed 32765 bytes in
length.

Appendix B: Exception Codes and Messages

570

SQL
CODE

GDSCODE Symbol Message Text

-802 335544914 string_truncation string right truncation

-802 335544915 blob_truncation blob truncation when converting to a
string: length limit exceeded

-802 335544916 numeric_out_of_range numeric value is out of range

-802 336003105 dsql_invalid_sqlda_version SQLDA version expected between @1
and @2, found @3

-802 336003106 dsql_sqlvar_index at SQLVAR index @1

-802 336003107 dsql_no_sqlind empty pointer to NULL indicator
variable

-802 336003108 dsql_no_sqldata empty pointer to data

-802 336003109 dsql_no_input_sqlda No SQLDA for input values provided

-802 336003110 dsql_no_output_sqlda No SQLDA for output values provided

-803 335544349 no_dup attempt to store duplicate value (visible
to active transactions) in unique index
"@1"

-803 335544665 unique_key_violation violation of PRIMARY or UNIQUE KEY
constraint "@1" on table "@2"

-804 335544380 wronumarg wrong number of arguments on call

-804 335544583 dsql_sqlda_err SQLDA error

-804 335544584 dsql_var_count_err Count of read-write columns does not
equal count of values

-804 335544586 dsql_function_err Function unknown

-804 335544713 dsql_sqlda_value_err Incorrect values within SQLDA
structure

-804 335545050 wrong_message_length Message length passed from user
application does not match set of
columns

-804 335545051 no_output_format Resultset is missing output format
information

-804 335545052 item_finish Message metadata not ready - item @1
is not finished

-804 335545100 interface_version_too_old Interface @3 version too old: expected
@1, found @2

-804 336003097 dsql_feature_not_supported_ods Feature not supported on ODS version
older than @1.@2

-804 336397205 dsql_too_old_ods ODS versions before ODS@1 are not
supported

Appendix B: Exception Codes and Messages

571

SQL
CODE

GDSCODE Symbol Message Text

-806 335544600 col_name_err Only simple column names permitted
for VIEW WITH CHECK OPTION

-807 335544601 where_err No WHERE clause for VIEW WITH
CHECK OPTION

-808 335544602 table_view_err Only one table allowed for VIEW WITH
CHECK OPTION

-809 335544603 distinct_err DISTINCT, GROUP or HAVING not
permitted for VIEW WITH CHECK
OPTION

-810 335544605 subquery_err No subqueries permitted for VIEW
WITH CHECK OPTION

-811 335544652 sing_select_err multiple rows in singleton select

-816 335544651 ext_readonly_err Cannot insert because the file is
readonly or is on a read only medium.

-816 335544715 extfile_uns_op Operation not supported for EXTERNAL
FILE table @1

-817 335544361 read_only_trans attempted update during read-only
transaction

-817 335544371 segstr_no_write attempted write to read-only BLOB

-817 335544444 read_only operation not supported

-817 335544765 read_only_database attempted update on read-only database

-817 335544766 must_be_dialect_2_and_up SQL dialect @1 is not supported in this
database

-817 335544793 ddl_not_allowed_by_db_sql_dial Metadata update statement is not
allowed by the current database SQL
dialect @1

-817 336003079 sql_dialect_conflict_num DB dialect @1 and client dialect @2
conflict with respect to numeric
precision @3.

-817 336003101 upd_ins_with_complex_view UPDATE OR INSERT without MATCHING
could not be used with views based on
more than one table

-817 336003102 dsql_incompatible_trigger_type Incompatible trigger type

-817 336003103 dsql_db_trigger_type_cant_change Database trigger type can’t be changed

-820 335544356 obsolete_metadata metadata is obsolete

-820 335544379 wrong_ods unsupported on-disk structure for file
@1; found @2.@3, support @4.@5

Appendix B: Exception Codes and Messages

572

SQL
CODE

GDSCODE Symbol Message Text

-820 335544437 wrodynver wrong DYN version

-820 335544467 high_minor minor version too high found @1
expected @2

-820 335544881 need_difference Difference file name should be set
explicitly for database on raw device

-823 335544473 invalid_bookmark invalid bookmark handle

-824 335544474 bad_lock_level invalid lock level @1

-825 335544519 bad_lock_handle invalid lock handle

-826 335544585 dsql_stmt_handle Invalid statement handle

-827 335544655 invalid_direction invalid direction for find operation

-827 335544718 invalid_key Invalid key for find operation

-828 335544678 inval_key_posn invalid key position

-829 335544616 field_ref_err invalid column reference

-829 336068816 dyn_char_fld_too_small New size specified for column @1 must
be at least @2 characters.

-829 336068817 dyn_invalid_dtype_conversion Cannot change datatype for @1.
Conversion from base type @2 to @3 is
not supported.

-829 336068818 dyn_dtype_conv_invalid Cannot change datatype for column @1
from a character type to a non-character
type.

-829 336068829 max_coll_per_charset Maximum number of collations per
character set exceeded

-829 336068830 invalid_coll_attr Invalid collation attributes

-829 336068852 dyn_scale_too_big New scale specified for column @1 must
be at most @2.

-829 336068853 dyn_precision_too_small New precision specified for column @1
must be at least @2.

-829 336068857 dyn_cannot_addrem_computed Cannot add or remove COMPUTED from
column @1

-830 335544615 field_aggregate_err column used with aggregate

-831 335544548 primary_key_exists Attempt to define a second PRIMARY
KEY for the same table

-832 335544604 key_field_count_err FOREIGN KEY column count does not
match PRIMARY KEY

-833 335544606 expression_eval_err expression evaluation not supported

Appendix B: Exception Codes and Messages

573

SQL
CODE

GDSCODE Symbol Message Text

-833 335544810 date_range_exceeded value exceeds the range for valid dates

-833 335544912 time_range_exceeded value exceeds the range for a valid time

-833 335544913 datetime_range_exceeded value exceeds the range for valid
timestamps

-833 335544937 invalid_type_datetime_op Invalid data type in
DATE/TIME/TIMESTAMP addition or
subtraction in add_datettime()

-833 335544938 onlycan_add_timetodate Only a TIME value can be added to a
DATE value

-833 335544939 onlycan_add_datetotime Only a DATE value can be added to a
TIME value

-833 335544940 onlycansub_tstampfromtstamp TIMESTAMP values can be subtracted
only from another TIMESTAMP value

-833 335544941 onlyoneop_mustbe_tstamp Only one operand can be of type
TIMESTAMP

-833 335544942 invalid_extractpart_time Only HOUR, MINUTE, SECOND and
MILLISECOND can be extracted from
TIME values

-833 335544943 invalid_extractpart_date HOUR, MINUTE, SECOND and
MILLISECOND cannot be extracted from
DATE values

-833 335544944 invalidarg_extract Invalid argument for EXTRACT() not
being of DATE/TIME/TIMESTAMP type

-833 335544945 sysf_argmustbe_exact Arguments for @1 must be integral
types or NUMERIC/DECIMAL without
scale

-833 335544946 sysf_argmustbe_exact_or_fp First argument for @1 must be integral
type or floating point type

-833 335544947 sysf_argviolates_uuidtype Human readable UUID argument for @1
must be of string type

-833 335544948 sysf_argviolates_uuidlen Human readable UUID argument for @2
must be of exact length @1

-833 335544949 sysf_argviolates_uuidfmt Human readable UUID argument for @3
must have "-" at position @2 instead of
"@1"

-833 335544950 sysf_argviolates_guidigits Human readable UUID argument for @3
must have hex digit at position @2
instead of "@1"

Appendix B: Exception Codes and Messages

574

SQL
CODE

GDSCODE Symbol Message Text

-833 335544951 sysf_invalid_addpart_time Only HOUR, MINUTE, SECOND and
MILLISECOND can be added to TIME
values in @1

-833 335544952 sysf_invalid_add_datetime Invalid data type in addition of part to
DATE/TIME/TIMESTAMP in @1

-833 335544953 sysf_invalid_addpart_dtime Invalid part @1 to be added to a
DATE/TIME/TIMESTAMP value in @2

-833 335544954 sysf_invalid_add_dtime_rc Expected DATE/TIME/TIMESTAMP type
in evlDateAdd() result

-833 335544955 sysf_invalid_diff_dtime Expected DATE/TIME/TIMESTAMP type
as first and second argument to @1

-833 335544956 sysf_invalid_timediff The result of TIME-<value> in @1
cannot be expressed in YEAR, MONTH,
DAY or WEEK

-833 335544957 sysf_invalid_tstamptimediff The result of TIME-TIMESTAMP or
TIMESTAMP-TIME in @1 cannot be
expressed in HOUR, MINUTE, SECOND
or MILLISECOND

-833 335544958 sysf_invalid_datetimediff The result of DATE-TIME or TIME-DATE
in @1 cannot be expressed in HOUR,
MINUTE, SECOND and MILLISECOND

-833 335544959 sysf_invalid_diffpart Invalid part @1 to express the
difference between two
DATE/TIME/TIMESTAMP values in @2

-833 335544960 sysf_argmustbe_positive Argument for @1 must be positive

-833 335544961 sysf_basemustbe_positive Base for @1 must be positive

-833 335544962 sysf_argnmustbe_nonneg Argument #@1 for @2 must be zero or
positive

-833 335544963 sysf_argnmustbe_positive Argument #@1 for @2 must be positive

-833 335544964 sysf_invalid_zeropowneg Base for @1 cannot be zero if exponent
is negative

-833 335544965 sysf_invalid_negpowfp Base for @1 cannot be negative if
exponent is not an integral value

-833 335544966 sysf_invalid_scale The numeric scale must be between -128
and 127 in @1

-833 335544967 sysf_argmustbe_nonneg Argument for @1 must be zero or
positive

Appendix B: Exception Codes and Messages

575

SQL
CODE

GDSCODE Symbol Message Text

-833 335544968 sysf_binuuid_mustbe_str Binary UUID argument for @1 must be
of string type

-833 335544969 sysf_binuuid_wrongsize Binary UUID argument for @2 must use
@1 bytes

-833 335544976 sysf_argmustbe_nonzero Argument for @1 must be different than
zero

-833 335544977 sysf_argmustbe_range_inc1_1 Argument for @1 must be in the range [-
1, 1]

-833 335544978 sysf_argmustbe_gteq_one Argument for @1 must be greater or
equal than one

-833 335544979 sysf_argmustbe_range_exc1_1 Argument for @1 must be in the range]-
1, 1[

-833 335544981 sysf_fp_overflow Floating point overflow in built-in
function @1

-833 335545009 sysf_invalid_trig_namespace Invalid usage of context namespace
DDL_TRIGGER

-833 335545024 sysf_argscant_both_be_zero Arguments for @1 cannot both be zero

-833 335545046 max_args_exceeded Maximum (@1) number of arguments
exceeded for function @2

-833 336397240 dsql_eval_unknode Unknown node type @1 in
dsql/GEN_expr

-833 336397241 dsql_agg_wrongarg Argument for @1 in dialect 1 must be
string or numeric

-833 336397242 dsql_agg2_wrongarg Argument for @1 in dialect 3 must be
numeric

-833 336397243 dsql_nodateortime_pm_string Strings cannot be added to or subtracted
from DATE or TIME types

-833 336397244 dsql_invalid_datetime_subtract Invalid data type for subtraction
involving DATE, TIME or TIMESTAMP
types

-833 336397245 dsql_invalid_dateortime_add Adding two DATE values or two TIME
values is not allowed

-833 336397246 dsql_invalid_type_minus_date DATE value cannot be subtracted from
the provided data type

-833 336397247 dsql_nostring_addsub_dial3 Strings cannot be added or subtracted in
dialect 3

-833 336397248 dsql_invalid_type_addsub_dial3 Invalid data type for addition or
subtraction in dialect 3

Appendix B: Exception Codes and Messages

576

SQL
CODE

GDSCODE Symbol Message Text

-833 336397249 dsql_invalid_type_multip_dial1 Invalid data type for multiplication in
dialect 1

-833 336397250 dsql_nostring_multip_dial3 Strings cannot be multiplied in dialect 3

-833 336397251 dsql_invalid_type_multip_dial3 Invalid data type for multiplication in
dialect 3

-833 336397252 dsql_mustuse_numeric_div_dial1 Division in dialect 1 must be between
numeric data types

-833 336397253 dsql_nostring_div_dial3 Strings cannot be divided in dialect 3

-833 336397254 dsql_invalid_type_div_dial3 Invalid data type for division in dialect 3

-833 336397255 dsql_nostring_neg_dial3 Strings cannot be negated (applied the
minus operator) in dialect 3

-833 336397256 dsql_invalid_type_neg Invalid data type for negation (minus
operator)

-834 335544508 range_not_found refresh range number @1 not found

-835 335544649 bad_checksum bad checksum

-836 335544517 except exception @1

-836 335544848 except2 exception @1

-836 335545016 formatted_exception @1

-837 335544518 cache_restart restart shared cache manager

-838 335544560 shutwarn database @1 shutdown in @2 seconds

-839 335544686 jrn_format_err journal file wrong format

-840 335544687 jrn_file_full intermediate journal file full

-841 335544677 version_err too many versions

-842 335544697 precision_err Precision must be from 1 to 18

-842 335544698 scale_nogt Scale must be between zero and
precision

-842 335544699 expec_short Short integer expected

-842 335544700 expec_long Long integer expected

-842 335544701 expec_ushort Unsigned short integer expected

-842 335544712 expec_positive Positive value expected

-901 335544322 bad_dbkey invalid database key

-901 335544326 bad_dpb_form unrecognized database parameter block

-901 335544327 bad_req_handle invalid request handle

-901 335544328 bad_segstr_handle invalid BLOB handle

Appendix B: Exception Codes and Messages

577

SQL
CODE

GDSCODE Symbol Message Text

-901 335544329 bad_segstr_id invalid BLOB ID

-901 335544330 bad_tpb_content invalid parameter in transaction
parameter block

-901 335544331 bad_tpb_form invalid format for transaction
parameter block

-901 335544332 bad_trans_handle invalid transaction handle (expecting
explicit transaction start)

-901 335544337 excess_trans attempt to start more than @1
transactions

-901 335544339 infinap information type inappropriate for
object specified

-901 335544340 infona no information of this type available for
object specified

-901 335544341 infunk unknown information item

-901 335544342 integ_fail action cancelled by trigger (@1) to
preserve data integrity

-901 335544345 lock_conflict lock conflict on no wait transaction

-901 335544350 no_finish program attempted to exit without
finishing database

-901 335544353 no_recon transaction is not in limbo

-901 335544355 no_segstr_close BLOB was not closed

-901 335544357 open_trans cannot disconnect database with open
transactions (@1 active)

-901 335544358 port_len message length error (encountered @1,
expected @2)

-901 335544363 req_no_trans no transaction for request

-901 335544364 req_sync request synchronization error

-901 335544365 req_wrong_db request referenced an unavailable
database

-901 335544369 segstr_no_read attempted read of a new, open BLOB

-901 335544370 segstr_no_trans attempted action on BLOB outside
transaction

-901 335544372 segstr_wrong_db attempted reference to BLOB in
unavailable database

-901 335544376 unres_rel table @1 was omitted from the
transaction reserving list

Appendix B: Exception Codes and Messages

578

SQL
CODE

GDSCODE Symbol Message Text

-901 335544377 uns_ext request includes a DSRI extension not
supported in this implementation

-901 335544378 wish_list feature is not supported

-901 335544382 random @1

-901 335544383 fatal_conflict unrecoverable conflict with limbo
transaction @1

-901 335544392 bdbincon internal error

-901 335544407 dbbnotzer database handle not zero

-901 335544408 tranotzer transaction handle not zero

-901 335544418 trainlim transaction in limbo

-901 335544419 notinlim transaction not in limbo

-901 335544420 traoutsta transaction outstanding

-901 335544428 badmsgnum undefined message number

-901 335544431 blocking_signal blocking signal has been received

-901 335544442 noargacc_read database system cannot read argument
@1

-901 335544443 noargacc_write database system cannot write argument
@1

-901 335544450 misc_interpreted @1

-901 335544468 tra_state transaction @1 is @2

-901 335544485 bad_stmt_handle invalid statement handle

-901 335544510 lock_timeout lock time-out on wait transaction

-901 335544559 bad_svc_handle invalid service handle

-901 335544561 wrospbver wrong version of service parameter
block

-901 335544562 bad_spb_form unrecognized service parameter block

-901 335544563 svcnotdef service @1 is not defined

-901 335544609 index_name INDEX @1

-901 335544610 exception_name EXCEPTION @1

-901 335544611 field_name COLUMN @1

-901 335544613 union_err union not supported

-901 335544614 dsql_construct_err Unsupported DSQL construct

-901 335544623 dsql_domain_err Illegal use of keyword VALUE

-901 335544626 table_name TABLE @1

Appendix B: Exception Codes and Messages

579

SQL
CODE

GDSCODE Symbol Message Text

-901 335544627 proc_name PROCEDURE @1

-901 335544641 dsql_domain_not_found Specified domain or source column @1
does not exist

-901 335544656 dsql_var_conflict variable @1 conflicts with parameter in
same procedure

-901 335544666 srvr_version_too_old server version too old to support all
CREATE DATABASE options

-901 335544673 no_delete cannot delete

-901 335544675 sort_err sort error

-901 335544703 svcnoexe service @1 does not have an associated
executable

-901 335544704 net_lookup_err Failed to locate host machine.

-901 335544705 service_unknown Undefined service @1/@2.

-901 335544706 host_unknown The specified name was not found in the
hosts file or Domain Name Services.

-901 335544711 unprepared_stmt Attempt to execute an unprepared
dynamic SQL statement.

-901 335544716 svc_in_use Service is currently busy: @1

-901 335544719 net_init_error Error initializing the network software.

-901 335544720 loadlib_failure Unable to load required library @1.

-901 335544731 tra_must_sweep

-901 335544740 udf_exception A fatal exception occurred during the
execution of a user defined function.

-901 335544741 lost_db_connection connection lost to database

-901 335544742 no_write_user_priv User cannot write to
RDB$USER_PRIVILEGES

-901 335544767 blob_filter_exception A fatal exception occurred during the
execution of a blob filter.

-901 335544768 exception_access_violation Access violation. The code attempted to
access a virtual address without
privilege to do so.

-901 335544769 exception_datatype_missalignmen
t

Datatype misalignment. The attempted
to read or write a value that was not
stored on a memory boundary.

-901 335544770 exception_array_bounds_exceeded Array bounds exceeded. The code
attempted to access an array element
that is out of bounds.

Appendix B: Exception Codes and Messages

580

SQL
CODE

GDSCODE Symbol Message Text

-901 335544771 exception_float_denormal_operan
d

Float denormal operand. One of the
floating-point operands is too small to
represent a standard float value.

-901 335544772 exception_float_divide_by_zero Floating-point divide by zero. The code
attempted to divide a floating-point
value by zero.

-901 335544773 exception_float_inexact_result Floating-point inexact result. The result
of a floating-point operation cannot be
represented as a deciaml fraction.

-901 335544774 exception_float_invalid_operand Floating-point invalid operand. An
indeterminant error occurred during a
floating-point operation.

-901 335544775 exception_float_overflow Floating-point overflow. The exponent
of a floating-point operation is greater
than the magnitude allowed.

-901 335544776 exception_float_stack_check Floating-point stack check. The stack
overflowed or underflowed as the result
of a floating-point operation.

-901 335544777 exception_float_underflow Floating-point underflow. The exponent
of a floating-point operation is less than
the magnitude allowed.

-901 335544778 exception_integer_divide_by_zero Integer divide by zero. The code
attempted to divide an integer value by
an integer divisor of zero.

-901 335544779 exception_integer_overflow Integer overflow. The result of an
integer operation caused the most
significant bit of the result to carry.

-901 335544780 exception_unknown An exception occurred that does not
have a description. Exception number
@1.

-901 335544781 exception_stack_overflow Stack overflow. The resource
requirements of the runtime stack have
exceeded the memory available to it.

-901 335544782 exception_sigsegv Segmentation Fault. The code attempted
to access memory without privileges.

-901 335544783 exception_sigill Illegal Instruction. The Code attempted
to perfrom an illegal operation.

-901 335544784 exception_sigbus Bus Error. The Code caused a system
bus error.

Appendix B: Exception Codes and Messages

581

SQL
CODE

GDSCODE Symbol Message Text

-901 335544785 exception_sigfpe Floating Point Error. The Code caused
an Arithmetic Exception or a floating
point exception.

-901 335544786 ext_file_delete Cannot delete rows from external files.

-901 335544787 ext_file_modify Cannot update rows in external files.

-901 335544788 adm_task_denied Unable to perform operation. You must
be either SYSDBA or owner of the
database

-901 335544794 cancelled operation was cancelled

-901 335544797 svcnouser user name and password are required
while attaching to the services manager

-901 335544801 datype_notsup data type not supported for arithmetic

-901 335544803 dialect_not_changed Database dialect not changed.

-901 335544804 database_create_failed Unable to create database @1

-901 335544805 inv_dialect_specified Database dialect @1 is not a valid
dialect.

-901 335544806 valid_db_dialects Valid database dialects are @1.

-901 335544811 inv_client_dialect_specified passed client dialect @1 is not a valid
dialect.

-901 335544812 valid_client_dialects Valid client dialects are @1.

-901 335544814 service_not_supported Services functionality will be supported
in a later version of the product

-901 335544820 invalid_savepoint Unable to find savepoint with name @1
in transaction context

-901 335544835 bad_shutdown_mode Target shutdown mode is invalid for
database "@1"

-901 335544840 no_update cannot update

-901 335544842 stack_trace @1

-901 335544843 ctx_var_not_found Context variable @1 is not found in
namespace @2

-901 335544844 ctx_namespace_invalid Invalid namespace name @1 passed to
@2

-901 335544845 ctx_too_big Too many context variables

-901 335544846 ctx_bad_argument Invalid argument passed to @1

-901 335544847 identifier_too_long BLR syntax error. Identifier @1… is too
long

Appendix B: Exception Codes and Messages

582

SQL
CODE

GDSCODE Symbol Message Text

-901 335544859 invalid_time_precision Time precision exceeds allowed range
(0-@1)

-901 335544866 met_wrong_gtt_scope @1 cannot depend on @2

-901 335544868 illegal_prc_type Procedure @1 is not selectable (it does
not contain a SUSPEND statement)

-901 335544869 invalid_sort_datatype Datatype @1 is not supported for sorting
operation

-901 335544870 collation_name COLLATION @1

-901 335544871 domain_name DOMAIN @1

-901 335544874 max_db_per_trans_allowed A multi database transaction cannot
span more than @1 databases

-901 335544876 bad_proc_BLR Error while parsing procedure @1’s BLR

-901 335544877 key_too_big index key too big

-901 335544885 bad_teb_form Invalid TEB format

-901 335544886 tpb_multiple_txn_isolation Found more than one transaction
isolation in TPB

-901 335544887 tpb_reserv_before_table Table reservation lock type @1 requires
table name before in TPB

-901 335544888 tpb_multiple_spec Found more than one @1 specification
in TPB

-901 335544889 tpb_option_without_rc Option @1 requires READ COMMITTED
isolation in TPB

-901 335544890 tpb_conflicting_options Option @1 is not valid if @2 was used
previously in TPB

-901 335544891 tpb_reserv_missing_tlen Table name length missing after table
reservation @1 in TPB

-901 335544892 tpb_reserv_long_tlen Table name length @1 is too long after
table reservation @2 in TPB

-901 335544893 tpb_reserv_missing_tname Table name length @1 without table
name after table reservation @2 in TPB

-901 335544894 tpb_reserv_corrup_tlen Table name length @1 goes beyond the
remaining TPB size after table
reservation @2

-901 335544895 tpb_reserv_null_tlen Table name length is zero after table
reservation @1 in TPB

-901 335544896 tpb_reserv_relnotfound Table or view @1 not defined in system
tables after table reservation @2 in TPB

Appendix B: Exception Codes and Messages

583

SQL
CODE

GDSCODE Symbol Message Text

-901 335544897 tpb_reserv_baserelnotfound Base table or view @1 for view @2 not
defined in system tables after table
reservation @3 in TPB

-901 335544898 tpb_missing_len Option length missing after option @1 in
TPB

-901 335544899 tpb_missing_value Option length @1 without value after
option @2 in TPB

-901 335544900 tpb_corrupt_len Option length @1 goes beyond the
remaining TPB size after option @2

-901 335544901 tpb_null_len Option length is zero after table
reservation @1 in TPB

-901 335544902 tpb_overflow_len Option length @1 exceeds the range for
option @2 in TPB

-901 335544903 tpb_invalid_value Option value @1 is invalid for the option
@2 in TPB

-901 335544904 tpb_reserv_stronger_wng Preserving previous table reservation
@1 for table @2, stronger than new @3
in TPB

-901 335544905 tpb_reserv_stronger Table reservation @1 for table @2
already specified and is stronger than
new @3 in TPB

-901 335544906 tpb_reserv_max_recursion Table reservation reached maximum
recursion of @1 when expanding views
in TPB

-901 335544907 tpb_reserv_virtualtbl Table reservation in TPB cannot be
applied to @1 because it’s a virtual table

-901 335544908 tpb_reserv_systbl Table reservation in TPB cannot be
applied to @1 because it’s a system table

-901 335544909 tpb_reserv_temptbl Table reservation @1 or @2 in TPB
cannot be applied to @3 because it’s a
temporary table

-901 335544910 tpb_readtxn_after_writelock Cannot set the transaction in read only
mode after a table reservation
isc_tpb_lock_write in TPB

-901 335544911 tpb_writelock_after_readtxn Cannot take a table reservation
isc_tpb_lock_write in TPB because the
transaction is in read only mode

-901 335544917 shutdown_timeout Firebird shutdown is still in progress
after the specified timeout

Appendix B: Exception Codes and Messages

584

SQL
CODE

GDSCODE Symbol Message Text

-901 335544918 att_handle_busy Attachment handle is busy

-901 335544919 bad_udf_freeit Bad written UDF detected: pointer
returned in FREE_IT function was not
allocated by ib_util_malloc

-901 335544920 eds_provider_not_found External Data Source provider '@1' not
found

-901 335544921 eds_connection Execute statement error at @1 : @2Data
source : @3

-901 335544922 eds_preprocess Execute statement preprocess SQL error

-901 335544923 eds_stmt_expected Statement expected

-901 335544924 eds_prm_name_expected Parameter name expected

-901 335544925 eds_unclosed_comment Unclosed comment found near '@1'

-901 335544926 eds_statement Execute statement error at @1 :
@2Statement : @3 Data source : @4

-901 335544927 eds_input_prm_mismatch Input parameters mismatch

-901 335544928 eds_output_prm_mismatch Output parameters mismatch

-901 335544929 eds_input_prm_not_set Input parameter '@1' have no value set

-901 335544933 nothing_to_cancel nothing to cancel

-901 335544934 ibutil_not_loaded ib_util library has not been loaded to
deallocate memory returned by FREE_IT
function

-901 335544973 bad_epb_form Unrecognized events block

-901 335544982 udf_fp_overflow Floating point overflow in result from
UDF @1

-901 335544983 udf_fp_nan Invalid floating point value returned by
UDF @1

-901 335544985 out_of_temp_space No free space found in temporary
directories

-901 335544986 eds_expl_tran_ctrl Explicit transaction control is not
allowed

-901 335544988 package_name PACKAGE @1

-901 335544989 cannot_make_not_null Cannot make field @1 of table @2 NOT
NULL because there are NULLs present

-901 335544990 feature_removed Feature @1 is not supported anymore

-901 335544991 view_name VIEW @1

Appendix B: Exception Codes and Messages

585

SQL
CODE

GDSCODE Symbol Message Text

-901 335544993 invalid_fetch_option Fetch option @1 is invalid for a non-
scrollable cursor

-901 335544994 bad_fun_BLR Error while parsing function @1’s BLR

-901 335544995 func_pack_not_implemented Cannot execute function @1 of the
unimplemented package @2

-901 335544996 proc_pack_not_implemented Cannot execute procedure @1 of the
unimplemented package @2

-901 335544997 eem_func_not_returned External function @1 not returned by
the external engine plugin @2

-901 335544998 eem_proc_not_returned External procedure @1 not returned by
the external engine plugin @2

-901 335544999 eem_trig_not_returned External trigger @1 not returned by the
external engine plugin @2

-901 335545000 eem_bad_plugin_ver Incompatible plugin version @1 for
external engine @2

-901 335545001 eem_engine_notfound External engine @1 not found

-901 335545004 pman_cannot_load_plugin Error loading plugin @1

-901 335545005 pman_module_notfound Loadable module @1 not found

-901 335545006 pman_entrypoint_notfound Standard plugin entrypoint does not
exist in module @1

-901 335545007 pman_module_bad Module @1 exists but can not be loaded

-901 335545008 pman_plugin_notfound Module @1 does not contain plugin @2
type @3

-901 335545010 unexpected_null Value is NULL but isNull parameter was
not informed

-901 335545011 type_notcompat_blob Type @1 is incompatible with BLOB

-901 335545012 invalid_date_val Invalid date

-901 335545013 invalid_time_val Invalid time

-901 335545014 invalid_timestamp_val Invalid timestamp

-901 335545015 invalid_index_val Invalid index @1 in function @2

-901 335545018 private_function Function @1 is private to package @2

-901 335545019 private_procedure Procedure @1 is private to package @2

-901 335545021 bad_events_handle invalid events id (handle)

-901 335545025 spb_no_id missing service ID in spb

-901 335545026 ee_blr_mismatch_null External BLR message mismatch:
invalid null descriptor at field @1

Appendix B: Exception Codes and Messages

586

SQL
CODE

GDSCODE Symbol Message Text

-901 335545027 ee_blr_mismatch_length External BLR message mismatch: length
= @1, expected @2

-901 335545031 libtommath_generic Libtommath error code @1 in function
@2

-901 335545041 cp_process_active Crypt failed - already crypting database

-901 335545042 cp_already_crypted Crypt failed - database is already in
requested state

-901 335545047 ee_blr_mismatch_names_count External BLR message mismatch: names
count = @1, blr count = @2

-901 335545048 ee_blr_mismatch_name_not_found External BLR message mismatch: name
@1 not found

-901 335545049 bad_result_set Invalid resultset interface

-901 335545059 badvarnum undefined variable number

-901 335545071 info_unprepared_stmt Attempt to get information about an
unprepared dynamic SQL statement.

-901 335545072 idx_key_value Problematic key value is @1

-901 335545073 forupdate_virtualtbl Cannot select virtual table @1 for
update WITH LOCK

-901 335545074 forupdate_systbl Cannot select system table @1 for
update WITH LOCK

-901 335545075 forupdate_temptbl Cannot select temporary table @1 for
update WITH LOCK

-901 335545076 cant_modify_sysobj System @1 @2 cannot be modified

-901 335545077 server_misconfigured Server misconfigured - contact
administrator please

-901 335545078 alter_role Deprecated backward compatibility
ALTER ROLE … SET/DROP AUTO ADMIN
mapping may be used only for
RDB$ADMIN role

-901 335545079 map_already_exists Mapping @1 already exists

-901 335545080 map_not_exists Mapping @1 does not exist

-901 335545081 map_load @1 failed when loading mapping cache

-901 335545082 map_aster Invalid name <*> in authentication
block

-901 335545083 map_multi Multiple maps found for @1

-901 335545084 map_undefined Undefined mapping result - more than
one different results found

Appendix B: Exception Codes and Messages

587

SQL
CODE

GDSCODE Symbol Message Text

-901 335545088 map_nodb Global mapping is not available when
database @1 is not present

-901 335545089 map_notable Global mapping is not available when
table RDB$MAP is not present in
database @1

-901 335545090 miss_trusted_role Your attachment has no trusted role

-901 335545091 set_invalid_role Role @1 is invalid or unavailable

-901 335545093 dup_attribute Duplicated user attribute @1

-901 335545094 dyn_no_priv There is no privilege for this operation

-901 335545095 dsql_cant_grant_option Using GRANT OPTION on @1 not
allowed

-901 335545097 crdb_load @1 failed when working with CREATE
DATABASE grants

-901 335545098 crdb_nodb CREATE DATABASE grants check is not
possible when database @1 is not
present

-901 335545099 crdb_notable CREATE DATABASE grants check is not
possible when table RDB$DB_CREATORS
is not present in database @1

-901 335545102 savepoint_backout_err Error during savepoint backout -
transaction invalidated

-901 335545105 map_down Some database(s) were shutdown when
trying to read mapping data

-901 335545109 encrypt_error Page requires encryption but crypt
plugin is missing

-901 336068645 dyn_filter_not_found BLOB Filter @1 not found

-901 336068649 dyn_func_not_found Function @1 not found

-901 336068656 dyn_index_not_found Index not found

-901 336068662 dyn_view_not_found View @1 not found

-901 336068697 dyn_domain_not_found Domain not found

-901 336068717 dyn_cant_modify_auto_trig Triggers created automatically cannot
be modified

-901 336068740 dyn_dup_table Table @1 already exists

-901 336068748 dyn_proc_not_found Procedure @1 not found

-901 336068752 dyn_exception_not_found Exception not found

Appendix B: Exception Codes and Messages

588

SQL
CODE

GDSCODE Symbol Message Text

-901 336068754 dyn_proc_param_not_found Parameter @1 in procedure @2 not
found

-901 336068755 dyn_trig_not_found Trigger @1 not found

-901 336068759 dyn_charset_not_found Character set @1 not found

-901 336068760 dyn_collation_not_found Collation @1 not found

-901 336068763 dyn_role_not_found Role @1 not found

-901 336068767 dyn_name_longer Name longer than database column size

-901 336068784 dyn_column_does_not_exist column @1 does not exist in table/view
@2

-901 336068796 dyn_role_does_not_exist SQL role @1 does not exist

-901 336068797 dyn_no_grant_admin_opt user @1 has no grant admin option on
SQL role @2

-901 336068798 dyn_user_not_role_member user @1 is not a member of SQL role @2

-901 336068799 dyn_delete_role_failed @1 is not the owner of SQL role @2

-901 336068800 dyn_grant_role_to_user @1 is a SQL role and not a user

-901 336068801 dyn_inv_sql_role_name user name @1 could not be used for SQL
role

-901 336068802 dyn_dup_sql_role SQL role @1 already exists

-901 336068803 dyn_kywd_spec_for_role keyword @1 can not be used as a SQL
role name

-901 336068804 dyn_roles_not_supported SQL roles are not supported in on older
versions of the database. A backup and
restore of the database is required.

-901 336068820 dyn_zero_len_id Zero length identifiers are not allowed

-901 336068822 dyn_gen_not_found Sequence @1 not found

-901 336068840 dyn_wrong_gtt_scope @1 cannot reference @2

-901 336068843 dyn_coll_used_table Collation @1 is used in table @2 (field
name @3) and cannot be dropped

-901 336068844 dyn_coll_used_domain Collation @1 is used in domain @2 and
cannot be dropped

-901 336068846 dyn_cannot_del_def_coll Cannot delete default collation of
CHARACTER SET @1

-901 336068849 dyn_table_not_found Table @1 not found

-901 336068851 dyn_coll_used_procedure Collation @1 is used in procedure @2
(parameter name @3) and cannot be
dropped

Appendix B: Exception Codes and Messages

589

SQL
CODE

GDSCODE Symbol Message Text

-901 336068856 dyn_ods_not_supp_feature Feature '@1' is not supported in ODS
@2.@3

-901 336068858 dyn_no_empty_pw Password should not be empty string

-901 336068859 dyn_dup_index Index @1 already exists

-901 336068864 dyn_package_not_found Package @1 not found

-901 336068865 dyn_schema_not_found Schema @1 not found

-901 336068871 dyn_funcnotdef_package Function @1 has not been defined on
the package body @2

-901 336068872 dyn_procnotdef_package Procedure @1 has not been defined on
the package body @2

-901 336068873 dyn_funcsignat_package Function @1 has a signature mismatch
on package body @2

-901 336068874 dyn_procsignat_package Procedure @1 has a signature mismatch
on package body @2

-901 336068875 dyn_defvaldecl_package_proc Default values for parameters are
allowed only in declaration of packaged
procedure @1.@2

-901 336068877 dyn_package_body_exists Package body @1 already exists

-901 336068879 dyn_newfc_oldsyntax Cannot alter new style function @1 with
ALTER EXTERNAL FUNCTION. Use
ALTER FUNCTION instead.

-901 336068886 dyn_func_param_not_found Parameter @1 in function @2 not found

-901 336068887 dyn_routine_param_not_found Parameter @1 of routine @2 not found

-901 336068888 dyn_routine_param_ambiguous Parameter @1 of routine @2 is
ambiguous (found in both procedures
and functions). Use a specifier keyword.

-901 336068889 dyn_coll_used_function Collation @1 is used in function @2
(parameter name @3) and cannot be
dropped

-901 336068890 dyn_domain_used_function Domain @1 is used in function @2
(parameter name @3) and cannot be
dropped

-901 336068891 dyn_alter_user_no_clause ALTER USER requires at least one clause
to be specified

-901 336068894 dyn_duplicate_package_item Duplicate @1 @2

-901 336068895 dyn_cant_modify_sysobj System @1 @2 cannot be modified

Appendix B: Exception Codes and Messages

590

SQL
CODE

GDSCODE Symbol Message Text

-901 336068896 dyn_cant_use_zero_increment INCREMENT BY 0 is an illegal option for
sequence @1

-901 336068897 dyn_cant_use_in_foreignkey Can’t use @1 in FOREIGN KEY constraint

-901 336068898 dyn_defvaldecl_package_func Default values for parameters are
allowed only in declaration of packaged
function @1.@2

-901 336397211 dsql_too_many_values Too many values (more than @1) in
member list to match against

-901 336397236 dsql_unsupp_feature_dialect feature is not supported in dialect @1

-901 336397239 dsql_unsupported_in_auto_trans @1 is not supported inside IN
AUTONOMOUS TRANSACTION block

-901 336397258 dsql_alter_charset_failed ALTER CHARACTER SET @1 failed

-901 336397259 dsql_comment_on_failed COMMENT ON @1 failed

-901 336397260 dsql_create_func_failed CREATE FUNCTION @1 failed

-901 336397261 dsql_alter_func_failed ALTER FUNCTION @1 failed

-901 336397262 dsql_create_alter_func_failed CREATE OR ALTER FUNCTION @1 failed

-901 336397263 dsql_drop_func_failed DROP FUNCTION @1 failed

-901 336397264 dsql_recreate_func_failed RECREATE FUNCTION @1 failed

-901 336397265 dsql_create_proc_failed CREATE PROCEDURE @1 failed

-901 336397266 dsql_alter_proc_failed ALTER PROCEDURE @1 failed

-901 336397267 dsql_create_alter_proc_failed CREATE OR ALTER PROCEDURE @1
failed

-901 336397268 dsql_drop_proc_failed DROP PROCEDURE @1 failed

-901 336397269 dsql_recreate_proc_failed RECREATE PROCEDURE @1 failed

-901 336397270 dsql_create_trigger_failed CREATE TRIGGER @1 failed

-901 336397271 dsql_alter_trigger_failed ALTER TRIGGER @1 failed

-901 336397272 dsql_create_alter_trigger_failed CREATE OR ALTER TRIGGER @1 failed

-901 336397273 dsql_drop_trigger_failed DROP TRIGGER @1 failed

-901 336397274 dsql_recreate_trigger_failed RECREATE TRIGGER @1 failed

-901 336397275 dsql_create_collation_failed CREATE COLLATION @1 failed

-901 336397276 dsql_drop_collation_failed DROP COLLATION @1 failed

-901 336397277 dsql_create_domain_failed CREATE DOMAIN @1 failed

-901 336397278 dsql_alter_domain_failed ALTER DOMAIN @1 failed

-901 336397279 dsql_drop_domain_failed DROP DOMAIN @1 failed

Appendix B: Exception Codes and Messages

591

SQL
CODE

GDSCODE Symbol Message Text

-901 336397280 dsql_create_except_failed CREATE EXCEPTION @1 failed

-901 336397281 dsql_alter_except_failed ALTER EXCEPTION @1 failed

-901 336397282 dsql_create_alter_except_failed CREATE OR ALTER EXCEPTION @1
failed

-901 336397283 dsql_recreate_except_failed RECREATE EXCEPTION @1 failed

-901 336397284 dsql_drop_except_failed DROP EXCEPTION @1 failed

-901 336397285 dsql_create_sequence_failed CREATE SEQUENCE @1 failed

-901 336397286 dsql_create_table_failed CREATE TABLE @1 failed

-901 336397287 dsql_alter_table_failed ALTER TABLE @1 failed

-901 336397288 dsql_drop_table_failed DROP TABLE @1 failed

-901 336397289 dsql_recreate_table_failed RECREATE TABLE @1 failed

-901 336397290 dsql_create_pack_failed CREATE PACKAGE @1 failed

-901 336397291 dsql_alter_pack_failed ALTER PACKAGE @1 failed

-901 336397292 dsql_create_alter_pack_failed CREATE OR ALTER PACKAGE @1 failed

-901 336397293 dsql_drop_pack_failed DROP PACKAGE @1 failed

-901 336397294 dsql_recreate_pack_failed RECREATE PACKAGE @1 failed

-901 336397295 dsql_create_pack_body_failed CREATE PACKAGE BODY @1 failed

-901 336397296 dsql_drop_pack_body_failed DROP PACKAGE BODY @1 failed

-901 336397297 dsql_recreate_pack_body_failed RECREATE PACKAGE BODY @1 failed

-901 336397298 dsql_create_view_failed CREATE VIEW @1 failed

-901 336397299 dsql_alter_view_failed ALTER VIEW @1 failed

-901 336397300 dsql_create_alter_view_failed CREATE OR ALTER VIEW @1 failed

-901 336397301 dsql_recreate_view_failed RECREATE VIEW @1 failed

-901 336397302 dsql_drop_view_failed DROP VIEW @1 failed

-901 336397303 dsql_drop_sequence_failed DROP SEQUENCE @1 failed

-901 336397304 dsql_recreate_sequence_failed RECREATE SEQUENCE @1 failed

-901 336397305 dsql_drop_index_failed DROP INDEX @1 failed

-901 336397306 dsql_drop_filter_failed DROP FILTER @1 failed

-901 336397307 dsql_drop_shadow_failed DROP SHADOW @1 failed

-901 336397308 dsql_drop_role_failed DROP ROLE @1 failed

-901 336397309 dsql_drop_user_failed DROP USER @1 failed

-901 336397310 dsql_create_role_failed CREATE ROLE @1 failed

-901 336397311 dsql_alter_role_failed ALTER ROLE @1 failed

Appendix B: Exception Codes and Messages

592

SQL
CODE

GDSCODE Symbol Message Text

-901 336397312 dsql_alter_index_failed ALTER INDEX @1 failed

-901 336397313 dsql_alter_database_failed ALTER DATABASE failed

-901 336397314 dsql_create_shadow_failed CREATE SHADOW @1 failed

-901 336397315 dsql_create_filter_failed DECLARE FILTER @1 failed

-901 336397316 dsql_create_index_failed CREATE INDEX @1 failed

-901 336397317 dsql_create_user_failed CREATE USER @1 failed

-901 336397318 dsql_alter_user_failed ALTER USER @1 failed

-901 336397319 dsql_grant_failed GRANT failed

-901 336397320 dsql_revoke_failed REVOKE failed

-901 336397322 dsql_mapping_failed @2 MAPPING @1 failed

-901 336397323 dsql_alter_sequence_failed ALTER SEQUENCE @1 failed

-901 336397324 dsql_create_generator_failed CREATE GENERATOR @1 failed

-901 336397325 dsql_set_generator_failed SET GENERATOR @1 failed

-901 336397330 dsql_max_exception_arguments Number of arguments (@1) exceeds the
maximum (@2) number of EXCEPTION
USING arguments

-901 336397331 dsql_string_byte_length String literal with @1 bytes exceeds the
maximum length of @2 bytes

-901 336397332 dsql_string_char_length String literal with @1 characters
exceeds the maximum length of @2
characters for the @3 character set

-901 336397333 dsql_max_nesting Too many BEGIN…END nesting.
Maximum level is @1

-902 335544333 bug_check internal Firebird consistency check (@1)

-902 335544335 db_corrupt database file appears corrupt (@1)

-902 335544344 io_error I/O error during "@1" operation for file
"@2"

-902 335544346 metadata_corrupt corrupt system table

-902 335544373 sys_request operating system directive @1 failed

-902 335544384 badblk internal error

-902 335544385 invpoolcl internal error

-902 335544387 relbadblk internal error

-902 335544388 blktoobig block size exceeds implementation
restriction

Appendix B: Exception Codes and Messages

593

SQL
CODE

GDSCODE Symbol Message Text

-902 335544394 badodsver incompatible version of on-disk
structure

-902 335544397 dirtypage internal error

-902 335544398 waifortra internal error

-902 335544399 doubleloc internal error

-902 335544400 nodnotfnd internal error

-902 335544401 dupnodfnd internal error

-902 335544402 locnotmar internal error

-902 335544404 corrupt database corrupted

-902 335544405 badpage checksum error on database page @1

-902 335544406 badindex index is broken

-902 335544409 trareqmis transaction—request mismatch
(synchronization error)

-902 335544410 badhndcnt bad handle count

-902 335544411 wrotpbver wrong version of transaction parameter
block

-902 335544412 wroblrver unsupported BLR version (expected @1,
encountered @2)

-902 335544413 wrodpbver wrong version of database parameter
block

-902 335544415 badrelation database corrupted

-902 335544416 nodetach internal error

-902 335544417 notremote internal error

-902 335544422 dbfile internal error

-902 335544423 orphan internal error

-902 335544432 lockmanerr lock manager error

-902 335544436 sqlerr SQL error code = @1

-902 335544448 bad_sec_info

-902 335544449 invalid_sec_info

-902 335544470 buf_invalid cache buffer for page @1 invalid

-902 335544471 indexnotdefined there is no index in table @1 with id @2

-902 335544472 login Your user name and password are not
defined. Ask your database
administrator to set up a Firebird login.

Appendix B: Exception Codes and Messages

594

SQL
CODE

GDSCODE Symbol Message Text

-902 335544478 jrn_enable enable journal for database before
starting online dump

-902 335544479 old_failure online dump failure. Retry dump

-902 335544480 old_in_progress an online dump is already in progress

-902 335544481 old_no_space no more disk/tape space. Cannot
continue online dump

-902 335544482 no_wal_no_jrn journaling allowed only if database has
Write-ahead Log

-902 335544483 num_old_files maximum number of online dump files
that can be specified is 16

-902 335544484 wal_file_open error in opening Write-ahead Log file
during recovery

-902 335544486 wal_failure Write-ahead log subsystem failure

-902 335544505 no_archive must specify archive file when enabling
long term journal for databases with
round-robin log files

-902 335544506 shutinprog database @1 shutdown in progress

-902 335544520 jrn_present long-term journaling already enabled

-902 335544528 shutdown database @1 shutdown

-902 335544557 shutfail database shutdown unsuccessful

-902 335544564 no_jrn long-term journaling not enabled

-902 335544569 dsql_error Dynamic SQL Error

-902 335544653 psw_attach cannot attach to password database

-902 335544654 psw_start_trans cannot start transaction for password
database

-902 335544717 err_stack_limit stack size insufficent to execute current
request

-902 335544721 network_error Unable to complete network request to
host "@1".

-902 335544722 net_connect_err Failed to establish a connection.

-902 335544723 net_connect_listen_err Error while listening for an incoming
connection.

-902 335544724 net_event_connect_err Failed to establish a secondary
connection for event processing.

-902 335544725 net_event_listen_err Error while listening for an incoming
event connection request.

Appendix B: Exception Codes and Messages

595

SQL
CODE

GDSCODE Symbol Message Text

-902 335544726 net_read_err Error reading data from the connection.

-902 335544727 net_write_err Error writing data to the connection.

-902 335544732 unsupported_network_drive Access to databases on file servers is not
supported.

-902 335544733 io_create_err Error while trying to create file

-902 335544734 io_open_err Error while trying to open file

-902 335544735 io_close_err Error while trying to close file

-902 335544736 io_read_err Error while trying to read from file

-902 335544737 io_write_err Error while trying to write to file

-902 335544738 io_delete_err Error while trying to delete file

-902 335544739 io_access_err Error while trying to access file

-902 335544745 login_same_as_role_name Your login @1 is same as one of the SQL
role name. Ask your database
administrator to set up a valid Firebird
login.

-902 335544791 file_in_use The file @1 is currently in use by
another process. Try again later.

-902 335544795 unexp_spb_form unexpected item in service parameter
block, expected @1

-902 335544809 extern_func_dir_error Function @1 is in @2, which is not in a
permitted directory for external
functions.

-902 335544819 io_32bit_exceeded_err File exceeded maximum size of 2GB.
Add another database file or use a 64 bit
I/O version of Firebird.

-902 335544831 conf_access_denied Use of @1 at location @2 is not allowed
by server configuration

-902 335544834 cursor_not_open Cursor is not open

-902 335544841 cursor_already_open Cursor is already open

-902 335544856 att_shutdown connection shutdown

-902 335544882 long_login Login name too long (@1 characters,
maximum allowed @2)

-902 335544936 psw_db_error Security database error

-902 335544970 missing_required_spb Missing required item @1 in service
parameter block

-902 335544971 net_server_shutdown @1 server is shutdown

Appendix B: Exception Codes and Messages

596

SQL
CODE

GDSCODE Symbol Message Text

-902 335544974 no_threads Could not start first worker thread -
shutdown server

-902 335544975 net_event_connect_timeout Timeout occurred while waiting for a
secondary connection for event
processing

-902 335544984 instance_conflict Database is probably already opened by
another engine instance in another
Windows session

-902 335544987 no_trusted_spb Use of TRUSTED switches in
spb_command_line is prohibited

-902 335545029 missing_data_structures Install incomplete, please read the
Compatibility chapter in the release
notes for this version

-902 335545030 protect_sys_tab @1 operation is not allowed for system
table @2

-902 335545032 wroblrver2 unsupported BLR version (expected
between @1 and @2, encountered @3)

-902 335545043 decrypt_error Missing crypt plugin, but page appears
encrypted

-902 335545044 no_providers No providers loaded

-902 335545053 miss_config Missing configuration file: @1

-902 335545054 conf_line @1: illegal line <@2>

-902 335545055 conf_include Invalid include operator in @1 for <@2>

-902 335545056 include_depth Include depth too big

-902 335545057 include_miss File to include not found

-902 335545060 sec_context Missing security context for @1

-902 335545061 multi_segment Missing segment @1 in multisegment
connect block parameter

-902 335545062 login_changed Different logins in connect and attach
packets - client library error

-902 335545063 auth_handshake_limit Exceeded exchange limit during
authentication handshake

-902 335545064 wirecrypt_incompatible Incompatible wire encryption levels
requested on client and server

-902 335545065 miss_wirecrypt Client attempted to attach unencrypted
but wire encryption is required

Appendix B: Exception Codes and Messages

597

SQL
CODE

GDSCODE Symbol Message Text

-902 335545066 wirecrypt_key Client attempted to start wire
encryption using unknown key @1

-902 335545067 wirecrypt_plugin Client attempted to start wire
encryption using unsupported plugin
@1

-902 335545068 secdb_name Error getting security database name
from configuration file

-902 335545069 auth_data Client authentication plugin is missing
required data from server

-902 335545070 auth_datalength Client authentication plugin expected
@2 bytes of @3 from server, got @1

-902 335545106 login_error Error occurred during login, please
check server firebird.log for details

-902 335545107 already_opened Database already opened with engine
instance, incompatible with current

-902 335545108 bad_crypt_key Invalid crypt key @1

-904 335544324 bad_db_handle invalid database handle (no active
connection)

-904 335544375 unavailable unavailable database

-904 335544381 imp_exc Implementation limit exceeded

-904 335544386 nopoolids too many requests

-904 335544389 bufexh buffer exhausted

-904 335544391 bufinuse buffer in use

-904 335544393 reqinuse request in use

-904 335544424 no_lock_mgr no lock manager available

-904 335544430 virmemexh unable to allocate memory from
operating system

-904 335544451 update_conflict update conflicts with concurrent update

-904 335544453 obj_in_use object @1 is in use

-904 335544455 shadow_accessed cannot attach active shadow file

-904 335544460 shadow_missing a file in manual shadow @1 is
unavailable

-904 335544661 index_root_page_full cannot add index, index root page is
full.

-904 335544676 sort_mem_err sort error: not enough memory

Appendix B: Exception Codes and Messages

598

SQL
CODE

GDSCODE Symbol Message Text

-904 335544683 req_depth_exceeded request depth exceeded. (Recursive
definition?)

-904 335544758 sort_rec_size_err sort record size of @1 bytes is too big

-904 335544761 too_many_handles too many open handles to database

-904 335544762 optimizer_blk_exc size of optimizer block exceeded

-904 335544792 service_att_err Cannot attach to services manager

-904 335544799 svc_name_missing The service name was not specified.

-904 335544813 optimizer_between_err Unsupported field type specified in
BETWEEN predicate.

-904 335544827 exec_sql_invalid_arg Invalid argument in EXECUTE
STATEMENT - cannot convert to string

-904 335544828 exec_sql_invalid_req Wrong request type in EXECUTE
STATEMENT '@1'

-904 335544829 exec_sql_invalid_var Variable type (position @1) in EXECUTE
STATEMENT '@2' INTO does not match
returned column type

-904 335544830 exec_sql_max_call_exceeded Too many recursion levels of EXECUTE
STATEMENT

-904 335544832 wrong_backup_state Cannot change difference file name
while database is in backup mode

-904 335544833 wal_backup_err Physical backup is not allowed while
Write-Ahead Log is in use

-904 335544852 partner_idx_incompat_type partner index segment no @1 has
incompatible data type

-904 335544857 blobtoobig Maximum BLOB size exceeded

-904 335544862 record_lock_not_supp Stream does not support record locking

-904 335544863 partner_idx_not_found Cannot create foreign key constraint
@1. Partner index does not exist or is
inactive.

-904 335544864 tra_num_exc Transactions count exceeded. Perform
backup and restore to make database
operable again

-904 335544865 field_disappeared Column has been unexpectedly deleted

-904 335544878 concurrent_transaction concurrent transaction number is @1

-904 335544935 circular_computed Cannot have circular dependencies with
computed fields

-904 335544992 lock_dir_access Can not access lock files directory @1

Appendix B: Exception Codes and Messages

599

SQL
CODE

GDSCODE Symbol Message Text

-904 335545020 request_outdated Request can’t access new records in
relation @1 and should be recompiled

-904 335545096 read_conflict read conflicts with concurrent update

-906 335544452 unlicensed product @1 is not licensed

-906 335544744 max_att_exceeded Maximum user count exceeded. Contact
your database administrator.

-909 335544667 drdb_completed_with_errs drop database completed with errors

-911 335544459 rec_in_limbo record from transaction @1 is stuck in
limbo

-913 335544336 deadlock deadlock

-922 335544323 bad_db_format file @1 is not a valid database

-923 335544421 connect_reject connection rejected by remote interface

-923 335544461 cant_validate secondary server attachments cannot
validate databases

-923 335544462 cant_start_journal secondary server attachments cannot
start journaling

-923 335544464 cant_start_logging secondary server attachments cannot
start logging

-924 335544325 bad_dpb_content bad parameters on attach or create
database

-924 335544433 journerr communication error with journal "@1"

-924 335544441 bad_detach database detach completed with errors

-924 335544648 conn_lost Connection lost to pipe server

-924 335544972 bad_conn_str Invalid connection string

-924 335545085 baddpb_damaged_mode Incompatible mode of attachment to
damaged database

-924 335545086 baddpb_buffers_range Attempt to set in database number of
buffers which is out of acceptable range
[@1:@2]

-924 335545087 baddpb_temp_buffers Attempt to temporarily set number of
buffers less than @1

-926 335544447 no_rollback no rollback performed

-999 335544689 ib_error Firebird error

Appendix B: Exception Codes and Messages

600

Appendix C: Reserved Words and Keywords
Reserved words are part of the Firebird SQL language. They cannot be used as identifiers (e.g. as
table or procedure names), except when enclosed in double quotes in Dialect 3. However, you
should avoid this unless you have a compelling reason.

Keywords are also part of the language. They have a special meaning when used in the proper
context, but they are not reserved for Firebird’s own and exclusive use. You can use them as
identifiers without double-quoting.

Reserved words
Full list of reserved words in Firebird 3.0:

ADD ADMIN ALL

ALTER AND ANY

AS AT AVG

BEGIN BETWEEN BIGINT

BIT_LENGTH BLOB BOOLEAN

BOTH BY CASE

CAST CHAR CHARACTER

CHARACTER_LENGTH CHAR_LENGTH CHECK

CLOSE COLLATE COLUMN

COMMIT CONNECT CONSTRAINT

CORR COUNT COVAR_POP

COVAR_SAMP CREATE CROSS

CURRENT CURRENT_CONNECTION CURRENT_DATE

CURRENT_ROLE CURRENT_TIME CURRENT_TIMESTAMP

CURRENT_TRANSACTION CURRENT_USER CURSOR

DATE DAY DEC

DECIMAL DECLARE DEFAULT

DELETE DELETING DETERMINISTIC

DISCONNECT DISTINCT DOUBLE

DROP ELSE END

ESCAPE EXECUTE EXISTS

EXTERNAL EXTRACT FALSE

FETCH FILTER FLOAT

FOR FOREIGN FROM

FULL FUNCTION GDSCODE

GLOBAL GRANT GROUP

HAVING HOUR IN

Appendix C: Reserved Words and Keywords

601

INDEX INNER INSENSITIVE

INSERT INSERTING INT

INTEGER INTO IS

JOIN LEADING LEFT

LIKE LONG LOWER

MAX MERGE MIN

MINUTE MONTH NATIONAL

NATURAL NCHAR NO

NOT NULL NUMERIC

OCTET_LENGTH OF OFFSET

ON ONLY OPEN

OR ORDER OUTER

OVER PARAMETER PLAN

POSITION POST_EVENT PRECISION

PRIMARY PROCEDURE RDB$DB_KEY

RDB$RECORD_VERSION REAL RECORD_VERSION

RECREATE RECURSIVE REFERENCES

REGR_AVGX REGR_AVGY REGR_COUNT

REGR_INTERCEPT REGR_R2 REGR_SLOPE

REGR_SXX REGR_SXY REGR_SYY

RELEASE RETURN RETURNING_VALUES

RETURNS REVOKE RIGHT

ROLLBACK ROW ROWS

ROW_COUNT SAVEPOINT SCROLL

SECOND SELECT SENSITIVE

SET SIMILAR SMALLINT

SOME SQLCODE SQLSTATE

START STDDEV_POP STDDEV_SAMP

SUM TABLE THEN

TIME TIMESTAMP TO

TRAILING TRIGGER TRIM

TRUE UNION UNIQUE

UNKNOWN UPDATE UPDATING

UPPER USER USING

VALUE VALUES VARCHAR

VARIABLE VARYING VAR_POP

VAR_SAMP VIEW WHEN

WHERE WHILE WITH

YEAR

Appendix C: Reserved Words and Keywords

602

Keywords
The following terms have a special meaning in Firebird 3.0 DSQL. Some of them are also reserved
words, others are not.

!< ^< ^=

^> , :=

!= !> (

) < ⇐

<> = >

>= || ~<

~= ~> ABS

ABSOLUTE ACCENT ACOS

ACOSH ACTION ACTIVE

ADD ADMIN AFTER

ALL ALTER ALWAYS

AND ANY AS

ASC ASCENDING ASCII_CHAR

ASCII_VAL ASIN ASINH

AT ATAN ATAN2

ATANH AUTO AUTONOMOUS

AVG BACKUP BEFORE

BEGIN BETWEEN BIGINT

BIN_AND BIN_NOT BIN_OR

BIN_SHL BIN_SHR BIN_XOR

BIT_LENGTH BLOB BLOCK

BODY BOOLEAN BOTH

BREAK BY CALLER

CASCADE CASE CAST

CEIL CEILING CHAR

CHARACTER CHARACTER_LENGTH CHAR_LENGTH

CHAR_TO_UUID CHECK CLOSE

COALESCE COLLATE COLLATION

COLUMN COMMENT COMMIT

COMMITTED COMMON COMPUTED

CONDITIONAL CONNECT CONSTRAINT

CONTAINING CONTINUE CORR

COS COSH COT

COUNT COVAR_POP COVAR_SAMP

CREATE CROSS CSTRING

Appendix C: Reserved Words and Keywords

603

CURRENT CURRENT_CONNECTION CURRENT_DATE

CURRENT_ROLE CURRENT_TIME CURRENT_TIMESTAMP

CURRENT_TRANSACTION CURRENT_USER CURSOR

DATA DATABASE DATE

DATEADD DATEDIFF DAY

DB_KEY DDL DEC

DECIMAL DECLARE DECODE

DECRYPT DEFAULT DELETE

DELETING DENSE_RANK DESC

DESCENDING DESCRIPTOR DETERMINISTIC

DIFFERENCE DISCONNECT DISTINCT

DO DOMAIN DOUBLE

DROP ELSE ENCRYPT

END ENGINE ENTRY_POINT

ESCAPE EXCEPTION EXECUTE

EXISTS EXIT EXP

EXTERNAL EXTRACT FALSE

FETCH FILE FILTER

FIRST FIRSTNAME FIRST_VALUE

FLOAT FLOOR FOR

FOREIGN FREE_IT FROM

FULL FUNCTION GDSCODE

GENERATED GENERATOR GEN_ID

GEN_UUID GLOBAL GRANT

GRANTED GROUP HASH

HAVING HOUR IDENTITY

IF IGNORE IIF

IN INACTIVE INCREMENT

INDEX INNER INPUT_TYPE

INSENSITIVE INSERT INSERTING

INT INTEGER INTO

IS ISOLATION JOIN

KEY LAG LAST

LASTNAME LAST_VALUE LEAD

LEADING LEAVE LEFT

LENGTH LEVEL LIKE

LIMBO LINGER LIST

LN LOCALTIME LOCALTIMESTAMP

LOCK LOG LOG10

Appendix C: Reserved Words and Keywords

604

LONG LOWER LPAD

MANUAL MAPPING MATCHED

MATCHING MAX MAXVALUE

MERGE MIDDLENAME MILLISECOND

MIN MINUTE MINVALUE

MOD MODULE_NAME MONTH

NAME NAMES NATIONAL

NATURAL NCHAR NEXT

NO NOT NTH_VALUE

NULL NULLIF NULLS

NUMERIC OCTET_LENGTH OF

OFFSET ON ONLY

OPEN OPTION OR

ORDER OS_NAME OUTER

OUTPUT_TYPE OVER OVERFLOW

OVERLAY PACKAGE PAD

PAGE PAGES PAGE_SIZE

PARAMETER PARTITION PASSWORD

PI PLACING PLAN

PLUGIN POSITION POST_EVENT

POWER PRECISION PRESERVE

PRIMARY PRIOR PRIVILEGES

PROCEDURE PROTECTED RAND

RANK RDB$DB_KEY RDB$GET_CONTEXT

RDB$RECORD_VERSION RDB$SET_CONTEXT RDB_GET_CONTEXT

RDB_SET_CONTEXT READ REAL

RECORD_VERSION RECREATE RECURSIVE

REFERENCES REGR_AVGX REGR_AVGY

REGR_COUNT REGR_INTERCEPT REGR_R2

REGR_SLOPE REGR_SXX REGR_SXY

REGR_SYY RELATIVE RELEASE

REPLACE REQUESTS RESERV

RESERVING RESTART RESTRICT

RETAIN RETURN RETURNING

RETURNING_VALUES RETURNS REVERSE

REVOKE RIGHT ROLE

ROLLBACK ROUND ROW

ROWS ROW_COUNT ROW_NUMBER

RPAD SAVEPOINT SCALAR_ARRAY

Appendix C: Reserved Words and Keywords

605

SCHEMA SCROLL SECOND

SEGMENT SELECT SENSITIVE

SEQUENCE SERVERWIDE SET

SHADOW SHARED SIGN

SIMILAR SIN SINGULAR

SINH SIZE SKIP

SMALLINT SNAPSHOT SOME

SORT SOURCE SPACE

SQLCODE SQLSTATE SQRT

STABILITY START STARTING

STARTS STATEMENT STATISTICS

STDDEV_POP STDDEV_SAMP SUBSTRING

SUB_TYPE SUM SUSPEND

TABLE TAGS TAN

TANH TEMPORARY THEN

TIME TIMEOUT TIMESTAMP

TO TRAILING TRANSACTION

TRIGGER TRIM TRUE

TRUNC TRUSTED TWO_PHASE

TYPE UNCOMMITTED UNDO

UNION UNIQUE UNKNOWN

UPDATE UPDATING UPPER

USAGE USER USING

UUID_TO_CHAR VALUE VALUES

VARCHAR VARIABLE VARYING

VAR_POP VAR_SAMP VIEW

WAIT WEEK WEEKDAY

WHEN WHERE WHILE

WITH WORK WRITE

YEAR YEARDAY

Appendix C: Reserved Words and Keywords

606

Appendix D: System Tables
When you create a database, the Firebird engine creates a lot of system tables. Metadata — the
descriptions and attributes of all database objects — are stored in these system tables.

System table identifiers all begin with the prefix RDB$.

List of System Tables

RDB$AUTH_MAPPING

Stores authentication and other security mappings

RDB$BACKUP_HISTORY

History of backups performed using nBackup

RDB$CHARACTER_SETS

Names and describes the character sets available in the database

RDB$CHECK_CONSTRAINTS

Cross references between the names of constraints (NOT NULL constraints, CHECK constraints and
ON UPDATE and ON DELETE clauses in foreign key constraints) and their associated system-
generated triggers

RDB$COLLATIONS

Collation sequences for all character sets

RDB$DATABASE

Basic information about the database

RDB$DB_CREATORS

A list of users granted the CREATE DATABASE privilege when using the specified database as a
security database

RDB$DEPENDENCIES

Information about dependencies between database objects

RDB$EXCEPTIONS

Custom database exceptions

RDB$FIELDS

Column and domain definitions, both system and custom

RDB$FIELD_DIMENSIONS

Dimensions of array columns

RDB$FILES

Information about secondary files and shadow files

Appendix D: System Tables

607

RDB$FILTERS

Information about BLOB filters

RDB$FORMATS

Information about changes in the formats of tables

RDB$FUNCTIONS

Information about external functions

RDB$FUNCTION_ARGUMENTS

Attributes of the parameters of external functions

RDB$GENERATORS

Information about generators (sequences)

RDB$INDEX_SEGMENTS

Segments and index positions

RDB$INDICES

Definitions of all indexes in the database (system- or user-defined)

RDB$LOG_FILES

Not used in the current version

RDB$PACKAGES

Stores the definition (header and body) of SQL packages

RDB$PAGES

Information about database pages

RDB$PROCEDURES

Definitions of stored procedures

RDB$PROCEDURE_PARAMETERS

Parameters of stored procedures

RDB$REF_CONSTRAINTS

Definitions of referential constraints (foreign keys)

RDB$RELATIONS

Headers of tables and views

RDB$RELATION_CONSTRAINTS

Definitions of all table-level constraints

RDB$RELATION_FIELDS

Top-level definitions of table columns

Appendix D: System Tables

608

RDB$ROLES

Role definitions

RDB$SECURITY_CLASSES

Access control lists

RDB$TRANSACTIONS

State of multi-database transactions

RDB$TRIGGERS

Trigger definitions

RDB$TRIGGER_MESSAGES

Trigger messages

RDB$TYPES

Definitions of enumerated data types

RDB$USER_PRIVILEGES

SQL privileges granted to system users

RDB$VIEW_RELATIONS

Tables that are referred to in view definitions: one record for each table in a view

RDB$AUTH_MAPPING
RDB$AUTH_MAPPING stores authentication and other security mappings.

Column Name Data Type Description

RDB$MAP_NAME CHAR(31) Name of the mapping

RDB$MAP_USING CHAR(1) Using definition:

P - plugin (specific or any)
S - any plugin serverwide
M - mapping
* - any method

RDB$MAP_PLUGIN CHAR(31) Mapping applies for authentication
information from this specific plugin

RDB$MAP_DB CHAR(31) Mapping applies for authentication
information from this specific database

RDB$MAP_FROM_TYPE CHAR(31) The type of authentication object
(defined by plugin) to map from, or * for
any type

RDB$MAP_FROM CHAR(255) The name of the authentication object to
map from

Appendix D: System Tables

609

Column Name Data Type Description

RDB$MAP_TO_TYPE SMALLINT The type to map to

0 - USER
1 - ROLE

RDB$MAP_TO CHAR(31) The name to map to

RDB$SYSTEM_FLAG SMALLINT Flag:

0 - user-defined
1 or higher - system-defined

RDB$DESCRIPTION BLOB TEXT Optional description of the mapping
(comment)

RDB$BACKUP_HISTORY
RDB$BACKUP_HISTORY stores the history of backups performed using the nBackup utility.

Column Name Data Type Description

RDB$BACKUP_ID INTEGER The identifier assigned by the engine

RDB$TIMESTAMP TIMESTAMP Backup date and time

RDB$BACKUP_LEVEL INTEGER Backup level

RDB$GUID CHAR(38) Unique identifier

RDB$SCN INTEGER System (scan) number

RDB$FILE_NAME VARCHAR(255) Full path and file name of backup file

RDB$CHARACTER_SETS
RDB$CHARACTER_SETS names and describes the character sets available in the database.

Column Name Data Type Description

RDB$CHARACTER_SET_NAME CHAR(31) Character set name

RDB$FORM_OF_USE CHAR(31) Not used

RDB$NUMBER_OF_CHARACTERS INTEGER The number of characters in the set. Not
used for existing character sets

RDB$DEFAULT_COLLATE_NAME CHAR(31) The name of the default collation
sequence for the character set

RDB$CHARACTER_SET_ID SMALLINT Unique character set identifier

RDB$SYSTEM_FLAG SMALLINT System flag: value is 1 if the character
set is defined in the system when the
database is created; value is 0 for a user-
defined character set

Appendix D: System Tables

610

Column Name Data Type Description

RDB$DESCRIPTION BLOB TEXT Could store text description of the
character set

RDB$FUNCTION_NAME CHAR(31) For a user-defined character set that is
accessed via an external function, the
name of the external function

RDB$BYTES_PER_CHARACTER SMALLINT The maximum number of bytes
representing one character

RDB$SECURITY_CLASS CHAR(31) May reference a security class defined
in the table RDB$SECURITY_CLASSES, in
order to apply access control limits to all
users of this character set

RDB$OWNER_NAME CHAR(31) The user name of the user who created
the character set originally

RDB$CHECK_CONSTRAINTS
RDB$CHECK_CONSTRAINTS provides the cross references between the names of system-generated
triggers for constraints and the names of the associated constraints (NOT NULL constraints, CHECK
constraints and the ON UPDATE and ON DELETE clauses in foreign key constraints).

Column Name Data Type Description

RDB$CONSTRAINT_NAME CHAR(31) Constraint name, defined by the user or
automatically generated by the system

RDB$TRIGGER_NAME CHAR(31) For a CHECK constraint, it is the name of
the trigger that enforces this constraint.
For a NOT NULL constraint, it is the name
of the table the constraint is applied to.
For a foreign key constraint, it is the
name of the trigger that enforces the ON
UPDATE, ON DELETE clauses.

RDB$COLLATIONS
RDB$COLLATIONS stores collation sequences for all character sets.

Column Name Data Type Description

RDB$COLLATION_NAME CHAR(31) Collation sequence name

RDB$COLLATION_ID SMALLINT Collation sequence identifier. Together
with the character set identifier, it is a
unique collation sequence identifier

Appendix D: System Tables

611

Column Name Data Type Description

RDB$CHARACTER_SET_ID SMALLINT Character set identifier. Together with
the collection sequence identifier, it is a
unique identifier

RDB$COLLATION_ATTRIBUTES SMALLINT Collation attributes. It is a bit mask
where the first bit shows whether
trailing spaces should be taken into
account in collations (0 - NO PAD; 1 -
PAD SPACE); the second bit shows
whether the collation is case-sensitive (0
- CASE SENSITIVE, 1 - CASE
INSENSITIVE); the third bit shows
whether the collation is accent-sensitive
(0 - ACCENT SENSITIVE, 1 - ACCENT
SENSITIVE). Thus, the value of 5 means
that the collation does not take into
account trailing spaces and is accent-
insensitive

RDB$SYSTEM_FLAG SMALLINT Flag: the value of 0 means it is user-
defined; the value of 1 means it is
system-defined

RDB$DESCRIPTION BLOB TEXT Could store text description of the
collation sequence

RDB$FUNCTION_NAME CHAR(31) Not currently used

RDB$BASE_COLLATION_NAME CHAR(31) The name of the base collation sequence
for this collation sequence

RDB$SPECIFIC_ATTRIBUTES BLOB TEXT Describes specific attributes

RDB$SECURITY_CLASS CHAR(31) May reference a security class defined
in the table RDB$SECURITY_CLASSES, in
order to apply access control limits to all
users of this collation

RDB$OWNER_NAME CHAR(31) The user name of the user who created
the collation originally

RDB$DATABASE
RDB$DATABASE stores basic information about the database. It contains only one record.

Column Name Data Type Description

RDB$DESCRIPTION BLOB TEXT Database comment text

RDB$RELATION_ID SMALLINT A number that steps up by one each
time a table or view is added to the
database

Appendix D: System Tables

612

Column Name Data Type Description

RDB$SECURITY_CLASS CHAR(31) The security class defined in
RDB$SECURITY_CLASSES in order to apply
access control limits common to the
entire database

RDB$CHARACTER_SET_NAME CHAR(31) The name of the default character set
for the database set in the DEFAULT
CHARACTER SET clause when the database
is created. NULL for character set NONE.

RDB$LINGER INTEGER Number of seconds "delay" (established
with the ALTER DATABASE SET LINGER
statement) until the database file is
closed after the last connection to this
database is closed (in SuperServer). NULL
if no delay is set.

RDB$DB_CREATORS
RDB$DB_CREATORS contains a list of users granted the CREATE DATABASE privilege when using the
specified database as a security database.

Column Name Data Type Description

RDB$USER CHAR(31) User or role name

RDB$USER_TYPE SMALLINT Type of user

8 - user
13 - role

RDB$DEPENDENCIES
RDB$DEPENDENCIES stores the dependencies between database objects.

Column Name Data Type Description

RDB$DEPENDENT_NAME CHAR(31) The name of the view, procedure,
trigger, CHECK constraint or computed
column the dependency is defined for,
i.e., the dependent object

RDB$DEPENDED_ON_NAME CHAR(31) The name of the object that the defined
object — the table, view, procedure,
trigger, CHECK constraint or computed
column — depends on

Appendix D: System Tables

613

Column Name Data Type Description

RDB$FIELD_NAME CHAR(31) The column name in the depended-on
object that is referred to by the
dependent view, procedure, trigger,
CHECK constraint or computed column

RDB$DEPENDENT_TYPE SMALLINT Identifies the type of the dependent
object:

0 - table
1 - view
2 - trigger
3 - computed column
4 - CHECK constraint
5 - procedure
6 - index expression
7 - exception
8 - user
9 - column
10 - index
15 - stored function
18 - package header
19 - package body

RDB$DEPENDED_ON_TYPE SMALLINT Identifies the type of the object
depended on:

0 - table (or a column in it)
1 - view
2 - trigger
3 - computed column
4 - CHECK constraint
5 - procedure (or its parameter(s))
6 - index expression
7 - exception
8 - user
9 - column
10 - index
14 - generator (sequence)
15 - UDF or stored function
17 - collation 18 - package header
19 - package body

RDB$PACKAGE_NAME CHAR(31) The package of a procedure or function
for which this describes the
dependency.

Appendix D: System Tables

614

RDB$EXCEPTIONS
RDB$EXCEPTIONS stores custom database exceptions.

Column Name Data Type Description

RDB$EXCEPTION_NAME CHAR(31) Custom exception name

RDB$EXCEPTION_NUMBER INTEGER The unique number of the exception
assigned by the system

RDB$MESSAGE VARCHAR(1021) Exception message text

RDB$DESCRIPTION BLOB TEXT Could store text description of the
exception

RDB$SYSTEM_FLAG SMALLINT Flag:

0 - user-defined
1 or higher - system-defined

RDB$SECURITY_CLASS CHAR(31) May reference a security class defined
in the table RDB$SECURITY_CLASSES, in
order to apply access control limits to all
users of this exception

RDB$OWNER_NAME CHAR(31) The user name of the user who created
the exception originally

RDB$FIELDS
RDB$FIELDS stores definitions of columns and domains, both system and custom. This is where the
detailed data attributes are stored for all columns.

The column RDB$FIELDS.RDB$FIELD_NAME links to
RDB$RELATION_FIELDS.RDB$FIELD_SOURCE, not to RDB$RELATION_FIELDS.RDB$FIELD_NAME.

Column Name Data Type Description

RDB$FIELD_NAME CHAR(31) The unique name of the domain created
by the user or of the domain
automatically built for the table column
by the system. System-created domain
names start with the “RDB$” prefix

RDB$QUERY_NAME CHAR(31) Not used

RDB$VALIDATION_BLR BLOB BLR The binary language representation
(BLR) of the SQL expression specifying
the check of the CHECK value in the
domain

Appendix D: System Tables

615

Column Name Data Type Description

RDB$VALIDATION_SOURCE BLOB TEXT The original source text in the SQL
language specifying the check of the
CHECK value

RDB$COMPUTED_BLR BLOB BLR The binary language representation
(BLR) of the SQL expression the
database server uses for evaluation
when accessing a COMPUTED BY column

RDB$COMPUTED_SOURCE BLOB TEXT The original source text of the
expression that defines a COMPUTED BY
column

RDB$DEFAULT_VALUE BLOB BLR The default value, if any, for the field or
domain, in binary language
representation (BLR)

RDB$DEFAULT_SOURCE BLOB TEXT The default value in the source code, as
an SQL constant or expression

RDB$FIELD_LENGTH SMALLINT Column size in bytes. BOOLEAN occupies 1
byte. FLOAT, DATE, TIME, INTEGER occupy 4
bytes. DOUBLE PRECISION, BIGINT,
TIMESTAMP and BLOB identifier occupy 8
bytes. For the CHAR and VARCHAR data
types, the column stores the maximum
number of bytes specified when a string
domain (column) is defined

RDB$FIELD_SCALE SMALLINT The negative number that specifies the
scale for DECIMAL and NUMERIC
columns — the number of digits after
the decimal point

Appendix D: System Tables

616

Column Name Data Type Description

RDB$FIELD_TYPE SMALLINT Data type code for the column:

7 - SMALLINT
`8 - INTEGER
`10 - FLOAT
12 - DATE
13 - TIME
14 - CHAR
16 - BIGINT
23 - BOOLEAN
27 - DOUBLE PRECISION
35 - TIMESTAMP
37 - VARCHAR
261 - BLOB

Codes for DECIMAL and NUMERIC are the
same as for the integer types used to
store them

Appendix D: System Tables

617

Column Name Data Type Description

RDB$FIELD_SUB_TYPE SMALLINT Specifies the subtype for the BLOB data
type:

0 - untyped (binary)
1 - text
2 - BLR
3 - access control list
4 - reserved for future use
5 - encoded table metadata description
6 - for storing the details of a cross-
database transaction that ends
abnormally
7 - external file description
8 - debug information (for PSQL)
< 0 - user-defined

Specifies for the CHAR data type:

0 - untyped data
1 - fixed binary data

Specifies the particular data type for the
integer data types (SMALLINT, INTEGER,
BIGINT) and for fixed-point numbers
(NUMERIC, DECIMAL):

0 or NULL - the data type matches the
value in the RDB$FIELD_TYPE field
1 - NUMERIC
2 - DECIMAL

RDB$MISSING_VALUE BLOB BLR Not used

RDB$MISSING_SOURCE BLOB TEXT Not used

RDB$DESCRIPTION BLOB TEXT Any domain (table column) comment
text

RDB$SYSTEM_FLAG SMALLINT Flag: the value of 1 means the domain is
automatically created by the system, the
value of 0 means that the domain is
defined by the user

RDB$QUERY_HEADER BLOB TEXT Not used

RDB$SEGMENT_LENGTH SMALLINT Specifies the length of the BLOB buffer in
bytes for BLOB columns. Stores NULL for
all other data types

RDB$EDIT_STRING VARCHAR(127) Not used

Appendix D: System Tables

618

Column Name Data Type Description

RDB$EXTERNAL_LENGTH SMALLINT The length of the column in bytes if it
belongs to an external table. Always
NULL for regular tables

RDB$EXTERNAL_SCALE SMALLINT The scale factor of an integer-type field
in an external table; represents the
power of 10 by which the integer is
multiplied

RDB$EXTERNAL_TYPE SMALLINT The data type of the field as it is
represented in an external table:

7 - SMALLINT
8 - INTEGER
10 - FLOAT
12 - DATE
13 - TIME
14 - CHAR
16 - BIGINT
23 - BOOLEAN
27 - DOUBLE PRECISION
35 - TIMESTAMP
37 - VARCHAR
261 - BLOB

RDB$DIMENSIONS SMALLINT Defines the number of dimensions in an
array if the column is defined as an
array. Always NULL for columns that are
not arrays

RDB$NULL_FLAG SMALLINT Specifies whether the column can take
an empty value (the field will contain
NULL) or not (the field will contain the
value of 1)

RDB$CHARACTER_LENGTH SMALLINT The length of CHAR or VARCHAR columns in
characters (not in bytes)

RDB$COLLATION_ID SMALLINT The identifier of the collation sequence
for a character column or domain. If it
is not defined, the value of the field will
be 0

RDB$CHARACTER_SET_ID SMALLINT The identifier of the character set for a
character column, BLOB TEXT column or
domain

Appendix D: System Tables

619

Column Name Data Type Description

RDB$FIELD_PRECISION SMALLINT Specifies the total number of digits for
the fixed-point numeric data type
(DECIMAL and NUMERIC). The value is 0 for
the integer data types, NULL is for other
data types

RDB$SECURITY_CLASS CHAR(31) May reference a security class defined
in the table RDB$SECURITY_CLASSES, in
order to apply access control limits to all
users of this domain

RDB$OWNER_NAME CHAR(31) The user name of the user who created
the domain originally

RDB$FIELD_DIMENSIONS
RDB$FIELD_DIMENSIONS stores the dimensions of array columns.

Column Name Data Type Description

RDB$FIELD_NAME CHAR(31) The name of the array column. It must
be present in the RDB$FIELD_NAME field of
the RDB$FIELDS table

RDB$DIMENSION SMALLINT Identifies one dimension in the array
column. The numbering of dimensions
starts with 0

RDB$LOWER_BOUND INTEGER The lower bound of this dimension

RDB$UPPER_BOUND INTEGER The upper bound of this dimension

RDB$FILES
RDB$FILES stores information about secondary files and shadow files.

Column Name Data Type Description

RDB$FILE_NAME VARCHAR(255) The full path to the file and the name of
either

• the database secondary file in a
multi-file database, or

• the shadow file

RDB$FILE_SEQUENCE SMALLINT The sequential number of the secondary
file in a sequence or of the shadow file
in a shadow file set

RDB$FILE_START INTEGER The initial page number in the
secondary file or shadow file

Appendix D: System Tables

620

Column Name Data Type Description

RDB$FILE_LENGTH INTEGER File length in database pages

RDB$FILE_FLAGS SMALLINT For internal use

RDB$SHADOW_NUMBER SMALLINT Shadow set number. If the row
describes a database secondary file, the
field will be NULL or its value will be 0

RDB$FILTERS
RDB$FILTERS stores information about BLOB filters.

Column Name Data Type Description

RDB$FUNCTION_NAME CHAR(31) The unique identifier of the BLOB filter

RDB$DESCRIPTION BLOB TEXT Documentation about the BLOB filter and
the two subtypes it is used with, written
by the user

RDB$MODULE_NAME VARCHAR(255) The name of the dynamic library or
shared object where the code of the BLOB
filter is located

RDB$ENTRYPOINT CHAR(255) The exported name of the BLOB filter in
the filter library. Note, this is often not
the same as RDB$FUNCTION_NAME, which is
the identifier with which the BLOB filter
is declared to the database

RDB$INPUT_SUB_TYPE SMALLINT The BLOB subtype of the data to be
converted by the function

RDB$OUTPUT_SUB_TYPE SMALLINT The BLOB subtype of the converted data

RDB$SYSTEM_FLAG SMALLINT Flag indicating whether the filter is
user-defined or internally defined:

0 - user-defined
1 or greater - internally defined

RDB$SECURITY_CLASS CHAR(31) May reference a security class defined
in the table RDB$SECURITY_CLASSES, in
order to apply access control limits to all
users of this filter

RDB$OWNER_NAME CHAR(31) The user name of the user who created
the filter originally

RDB$FORMATS
RDB$FORMATS stores information about changes in tables. Each time any metadata change to a table is
committed, it gets a new format number. When the format number of any table reaches 255, the

Appendix D: System Tables

621

entire database becomes inoperable. To return to normal, the database must be backed up with the
gbak utility and restored from that backup copy.

Column Name Data Type Description

RDB$RELATION_ID SMALLINT Table or view identifier

RDB$FORMAT SMALLINT Table format identifier — maximum
255. The critical time comes when this
number approaches 255 for any table or
view

RDB$DESCRIPTOR BLOB FORMAT Stores column names and data
attributes as BLOB, as they were at the
time the format record was created

RDB$FUNCTIONS
RDB$FUNCTIONS stores the information needed by the engine about stored functions and external
functions (user-defined functions, UDFs).

Column Name Data Type Description

RDB$FUNCTION_NAME CHAR(31) The unique (declared) name of the
external function

RDB$FUNCTION_TYPE SMALLINT Not currently used

RDB$QUERY_NAME CHAR(31) Not currently used

RDB$DESCRIPTION BLOB TEXT Any text with comments related to the
external function

RDB$MODULE_NAME VARCHAR(255) The name of the dynamic library or
shared object where the code of the
external function is located

RDB$ENTRYPOINT CHAR(255) The exported name of the external
function in the function library. Note,
this is often not the same as
RDB$FUNCTION_NAME, which is the
identifier with which the external
function is declared to the database

RDB$RETURN_ARGUMENT SMALLINT The position number of the returned
argument in the list of parameters
corresponding to input arguments

RDB$SYSTEM_FLAG SMALLINT Flag indicating whether the filter is
user-defined or internally defined:

0 - user-defined
1 - internally defined

Appendix D: System Tables

622

Column Name Data Type Description

RDB$ENGINE_NAME CHAR(31) Engine for external functions. 'UDR' for
UDR functions. NULL for legacy UDF or
PSQL functions

RDB$PACKAGE_NAME CHAR(31) Package that contains this function (or
NULL)

RDB$PRIVATE_FLAG SMALLINT NULL for normal (top-level) functions, 0
for package function defined in the
header, 1 for package function only
defined in the package body.

RDB$FUNCTION_SOURCE BLOB TEXT The PSQL sourcecode of the function

RDB$FUNCTION_ID SMALLINT Unique identifier of the function

RDB$FUNCTION_BLR BLOB BLR The binary language representation
(BLR) of the function code (PSQL
function only)

RDB$VALID_BLR SMALLINT Indicates whether the source PSQL of
the stored procedure remains valid
after the latest ALTER FUNCTION
modification

RDB$DEBUG_INFO BLOB DEBUG_INFORMATION Contains debugging information about
variables used in the function (PSQL
function only)

RDB$SECURITY_CLASS CHAR(31) May reference a security class defined
in the table RDB$SECURITY_CLASSES, in
order to apply access control limits to all
users of this function

RDB$OWNER_NAME CHAR(31) The user name of the user who created
the function originally

RDB$LEGACY_FLAG SMALLINT The legacy style attribute of the
function. 1 - if the function is described
in legacy style (DECLARE EXTERNAL
FUNCTION), otherwise CREATE FUNCTION.

RDB$DETERMINISTIC_FLAG SMALLINT Deterministic flag. 1 - if function is
deterministic

RDB$FUNCTION_ARGUMENTS
RDB$FUNCTION_ARGUMENTS stores the parameters of external functions and their attributes.

Column Name Data Type Description

RDB$FUNCTION_NAME CHAR(31) The unique name (declared identifier)
of the external function

Appendix D: System Tables

623

Column Name Data Type Description

RDB$ARGUMENT_POSITION SMALLINT The position of the argument in the list
of arguments

RDB$MECHANISM SMALLINT Flag: how this argument is passed:

0 - by value
1 - by reference
2 - by descriptor
3 - by BLOB descriptor
4 - by scalar array
5 - by reference with null

RDB$FIELD_TYPE SMALLINT Data type code defined for the column:

7 - SMALLINT
8 - INTEGER
12 - DATE
13 - TIME
14 - CHAR
16 - BIGINT
23 - BOOLEAN
27 - DOUBLE PRECISION
35 - TIMESTAMP
37 - VARCHAR
40 - CSTRING (null-terminated text)
45 - BLOB_ID
261 - BLOB

RDB$FIELD_SCALE SMALLINT The scale of an integer or a fixed-point
argument. It is an exponent of 10

RDB$FIELD_LENGTH SMALLINT Argument length in bytes:

BOOLEAN = 1
SMALLINT = 2
INTEGER = 4
DATE = 4
TIME = 4
BIGINT = 8
DOUBLE PRECISION = 8
TIMESTAMP = 8
BLOB_ID = 8

RDB$FIELD_SUB_TYPE SMALLINT Stores the BLOB subtype for an argument
of a BLOB data type

RDB$CHARACTER_SET_ID SMALLINT The identifier of the character set for a
character argument

Appendix D: System Tables

624

Column Name Data Type Description

RDB$FIELD_PRECISION SMALLINT The number of digits of precision
available for the data type of the
argument

RDB$CHARACTER_LENGTH SMALLINT The length of a CHAR or VARCHAR
argument in characters (not in bytes)

RDB$PACKAGE_NAME CHAR(31) Package name of the function (or NULL
for a top-level function)

RDB$ARGUMENT_NAME CHAR(31) Parameter name

RDB$FIELD_SOURCE CHAR(31) The name of the user-created domain,
when a domain is referenced instead of
a data type. If the name starts with the
prefix “RDB$”, it is the name of the
domain automatically generated by the
system for the parameter.

RDB$DEFAULT_VALUE BLOB BLR The default value for the parameter, in
the binary language representation
(BLR)

RDB$DEFAULT_SOURCE BLOB TEXT The default value for the parameter, in
PSQL code

RDB$COLLATION_ID SMALLINT The identifier of the collation sequence
used for a character parameter

RDB$NULL_FLAG SMALLINT The flag indicating whether NULL is
allowable

RDB$ARGUMENT_MECHANISM SMALLINT Parameter passing mechanism for non-
legacy functions:

0 - by value
1 - by reference
2 - through a descriptor
3 - via the BLOB descriptor

RDB$FIELD_NAME CHAR(31) The name of the column the parameter
references, if it was declared using TYPE
OF COLUMN instead of a regular data type.
Used in conjunction with
RDB$RELATION_NAME (see next).

RDB$RELATION_NAME CHAR(31) The name of the table the parameter
references, if it was declared using TYPE
OF COLUMN instead of a regular data type

Appendix D: System Tables

625

Column Name Data Type Description

RDB$SYSTEM_FLAG SMALLINT Flag:

0 - user-defined
1 or higher - system-defined

RDB$DESCRIPTION BLOB TEXT Optional description of the function
argument (comment)

RDB$GENERATORS
RDB$GENERATORS stores generators (sequences) and keeps them up-to-date.

Column Name Data Type Description

RDB$GENERATOR_NAME CHAR(31) The unique name of the generator

RDB$GENERATOR_ID SMALLINT The unique identifier assigned to the
generator by the system

RDB$SYSTEM_FLAG SMALLINT Flag:

0 - user-defined
1 or greater - system-defined 6 - internal
generator for identity column

RDB$DESCRIPTION BLOB TEXT Could store comments related to the
generator

RDB$SECURITY_CLASS CHAR(31) May reference a security class defined
in the table RDB$SECURITY_CLASSES, in
order to apply access control limits to all
users of this generator

RDB$OWNER_NAME CHAR(31) The user name of the user who created
the generator originally

RDB$INITIAL_VALUE BIGINT Stores the initial value (START WITH
value) of the generator

RDB$GENERATOR_INCREMENT INTEGER Stores the increment of the value
(INCREMENT BY value) of the generator

RDB$INDICES
RDB$INDICES stores definitions of both system- and user-defined indexes. The attributes of each
column belonging to an index are stored in one row of the table RDB$INDEX_SEGMENTS.

Column Name Data Type Description

RDB$INDEX_NAME CHAR(31) The unique name of the index specified
by the user or automatically generated
by the system

Appendix D: System Tables

626

Column Name Data Type Description

RDB$RELATION_NAME CHAR(31) The name of the table to which the
index belongs. It corresponds to an
identifier in
RDB$RELATION_NAME.RDB$RELATIONS

RDB$INDEX_ID SMALLINT The internal (system) identifier of the
index

RDB$UNIQUE_FLAG SMALLINT Specifies whether the index is unique:

0 - not unique
1 - unique

RDB$DESCRIPTION BLOB TEXT Could store comments concerning the
index

RDB$SEGMENT_COUNT SMALLINT The number of segments (columns) in
the index

RDB$INDEX_INACTIVE SMALLINT Indicates whether the index is currently
active:

0 - active
1 - inactive

RDB$INDEX_TYPE SMALLINT Distinguishes between an ascending (0
or NULL) and descending index (1). Not
used in databases created before
Firebird 2.0; hence, indexes in upgraded
databases are more likely to store NULL
in this column

RDB$FOREIGN_KEY CHAR(31) The name of the primary or unique key
index referenced by the foreign key
backed by this index; NULL if this index is
not used by a foreign key.

RDB$SYSTEM_FLAG SMALLINT Indicates whether the index is system-
defined or user-defined:

0 - user-defined
1 or greater - system-defined

RDB$EXPRESSION_BLR BLOB BLR Expression for an expression index,
written in the binary language
representation (BLR), used for
calculating the values for the index at
runtime.

RDB$EXPRESSION_SOURCE BLOB TEXT The source code of the expression for an
expression index

Appendix D: System Tables

627

Column Name Data Type Description

RDB$STATISTICS DOUBLE PRECISION Stores the last known selectivity of the
entire index, calculated by execution of
a SET STATISTICS statement over the
index. It is also recalculated whenever
the database is first opened by the
server. The selectivity of each separate
segment of the index is stored in
RDB$INDEX_SEGMENTS.

RDB$INDEX_SEGMENTS
RDB$INDEX_SEGMENTS stores the segments (table columns) of indexes and their positions in the key. A
separate row is stored for each column in an index.

Column Name Data Type Description

RDB$INDEX_NAME CHAR(31) The name of the index this segment is
related to. The master record is
RDB$INDICES.RDB$INDEX_NAME.

RDB$FIELD_NAME CHAR(31) The name of a column belonging to the
index, corresponding to an identifier for
the table and that column in
RDB$RELATION_FIELDS.RDB$FIELD_NAME

RDB$FIELD_POSITION SMALLINT The column position in the index.
Positions are numbered left-to-right,
starting at zero

RDB$STATISTICS DOUBLE PRECISION The last known (calculated) selectivity
of this column in the index. The higher
the number, the lower the selectivity.

RDB$LOG_FILES
RDB$LOG_FILES is not currently used.

RDB$PACKAGES
RDB$PACKAGES stores the definition (header and body) of SQL packages.

Column Name Data Type Description

RDB$PACKAGE_NAME CHAR(31) Name of the package

RDB$PACKAGE_HEADER_SOURCE BLOB TEXT The PSQL sourcecode of the package
header

RDB$PACKAGE_BODY_SOURCE BLOB TEXT The PSQL sourcecode of the package
body

Appendix D: System Tables

628

Column Name Data Type Description

RDB$VALID_BODY_FLAG SMALLINT Indicates whether the body of the
package is still valid. NULL or 0 indicates
the body is not valid.

RDB$SECURITY_CLASS CHAR(31) May reference a security class defined
in the table RDB$SECURITY_CLASSES, in
order to apply access control limits to all
users of this package

RDB$OWNER_NAME CHAR(31) The user name of the user who created
the package originally

RDB$SYSTEM_FLAG SMALLINT Flag:

0 - user-defined
1 or higher - system-defined

RDB$DESCRIPTION BLOB TEXT Optional description of the package
(comment)

RDB$PAGES
RDB$PAGES stores and maintains information about database pages and their usage.

Column Name Data Type Description

RDB$PAGE_NUMBER INTEGER The unique number of a physically
created database page

RDB$RELATION_ID SMALLINT The identifier of the table to which the
page is allocated

RDB$PAGE_SEQUENCE INTEGER The number of the page in the sequence
of all pages allocated to this table

RDB$PAGE_TYPE SMALLINT Indicates the page type (data, index,
BLOB, etc.). For system use

RDB$PROCEDURES
RDB$PROCEDURES stores the definitions of stored procedures, including their PSQL source code and
the binary language representation (BLR) of it. The next table, RDB$PROCEDURE_PARAMETERS, stores the
definitions of input and output parameters.

Column Name Data Type Description

RDB$PROCEDURE_NAME CHAR(31) Stored procedure name (identifier)

RDB$PROCEDURE_ID SMALLINT The procedure’s unique, system-
generated identifier

RDB$PROCEDURE_INPUTS SMALLINT Indicates the number of input
parameters. NULL if there are none

Appendix D: System Tables

629

Column Name Data Type Description

RDB$PROCEDURE_OUTPUTS SMALLINT Indicates the number of output
parameters. NULL if there are none

RDB$DESCRIPTION BLOB TEXT Any text comments related to the
procedure

RDB$PROCEDURE_SOURCE BLOB TEXT The PSQL source code of the procedure

RDB$PROCEDURE_BLR BLOB BLR The binary language representation
(BLR) of the procedure code

RDB$SECURITY_CLASS CHAR(31) May point to the security class defined
in the system table RDB$SECURITY_CLASSES
in order to apply access control limits

RDB$OWNER_NAME CHAR(31) The user name of the procedure’s
Owner — the user who was CURRENT_USER
when the procedure was first created. It
may or may not be the user name of the
author.

RDB$RUNTIME BLOB A metadata description of the
procedure, used internally for
optimization

RDB$SYSTEM_FLAG SMALLINT Indicates whether the procedure is
defined by a user (value 0) or by the
system (a value of 1 or greater)

RDB$PROCEDURE_TYPE SMALLINT Procedure type:

1 - selectable stored procedure (contains
a SUSPEND statement)
2 - executable stored procedure
NULL - not known *

* for procedures created before Firebird
1.5

RDB$VALID_BLR SMALLINT Indicates whether the source PSQL of
the stored procedure remains valid
after the latest ALTER PROCEDURE
modification

RDB$DEBUG_INFO BLOB DEBUG_INFORMATION Contains debugging information about
variables used in the stored procedure

RDB$ENGINE_NAME CHAR(31) Engine for external functions. 'UDR' for
UDR procedures. NULL for PSQL stored
procedures

Appendix D: System Tables

630

Column Name Data Type Description

RDB$ENTRYPOINT CHAR(255) The exported name of the external
function in the procedure library. Note,
this is often not the same as
RDB$PROCEDURE_NAME, which is the
identifier with which the external
stored procedure is declared to the
database

RDB$PACKAGE_NAME CHAR(31) Package name of the procedure (or NULL
for a top-level stored procedure)

RDB$PRIVATE_FLAG SMALLINT NULL for normal (top-level) stored
procedures, 0 for package procedures
defined in the header, 1 for package
procedures only defined in the package
body.

RDB$PROCEDURE_PARAMETERS
RDB$PROCEDURE_PARAMETERS stores the parameters of stored procedures and their attributes. It holds
one row for each parameter.

Column Name Data Type Description

RDB$PARAMETER_NAME CHAR(31) Parameter name

RDB$PROCEDURE_NAME CHAR(31) The name of the procedure where the
parameter is defined

RDB$PARAMETER_NUMBER SMALLINT The sequential number of the
parameter

RDB$PARAMETER_TYPE SMALLINT Indicates whether the parameter is for
input (value 0) or output (value 1)

RDB$FIELD_SOURCE CHAR(31) The name of the user-created domain,
when a domain is referenced instead of
a data type. If the name starts with the
prefix “RDB$”, it is the name of the
domain automatically generated by the
system for the parameter.

RDB$DESCRIPTION BLOB TEXT Could store comments related to the
parameter

RDB$SYSTEM_FLAG SMALLINT Indicates whether the parameter was
defined by the system (value or greater)
or by a user (value 0)

RDB$DEFAULT_VALUE BLOB BLR The default value for the parameter, in
the binary language representation
(BLR)

Appendix D: System Tables

631

Column Name Data Type Description

RDB$DEFAULT_SOURCE BLOB TEXT The default value for the parameter, in
PSQL code

RDB$COLLATION_ID SMALLINT The identifier of the collation sequence
used for a character parameter

RDB$NULL_FLAG SMALLINT The flag indicating whether NULL is
allowable

RDB$PARAMETER_MECHANISM SMALLINT Flag: indicates how this parameter is
passed:

0 - by value
1 - by reference
2 - by descriptor
3 - by BLOB descriptor

RDB$FIELD_NAME CHAR(31) The name of the column the parameter
references, if it was declared using TYPE
OF COLUMN instead of a regular data type.
Used in conjunction with
RDB$RELATION_NAME (see next).

RDB$RELATION_NAME CHAR(31) The name of the table the parameter
references, if it was declared using TYPE
OF COLUMN instead of a regular data type

RDB$PACKAGE_NAME CHAR(31) Package name of the procedure (or NULL
for a top-level stored procedure)

RDB$REF_CONSTRAINTS
RDB$REF_CONSTRAINTS stores the attributes of the referential constraints — Foreign Key relationships
and referential actions.

Column Name Data Type Description

RDB$CONSTRAINT_NAME CHAR(31) Foreign key constraint name, defined by
the user or automatically generated by
the system

RDB$CONST_NAME_UQ CHAR(31) The name of the primary or unique key
constraint linked by the REFERENCES
clause in the constraint definition

RDB$MATCH_OPTION CHAR(7) Not used. The current value is FULL in all
cases

Appendix D: System Tables

632

Column Name Data Type Description

RDB$UPDATE_RULE CHAR(11) Referential integrity actions applied to
the foreign key record(s) when the
primary (unique) key of the parent table
is updated: RESTRICT, NO ACTION, CASCADE,
SET NULL, SET DEFAULT

RDB$DELETE_RULE CHAR(11) Referential integrity actions applied to
the foreign key record(s) when the
primary (unique) key of the parent table
is deleted: RESTRICT, NO ACTION, CASCADE,
SET NULL, SET DEFAULT

RDB$RELATIONS
RDB$RELATIONS stores the top-level definitions and attributes of all tables and views in the system.

Column Name Data Type Description

RDB$VIEW_BLR BLOB BLR Stores the query specification for a
view, in the binary language
representation (BLR). The field stores
NULL for a table

RDB$VIEW_SOURCE BLOB TEXT Contains the original source text of the
query for a view, in SQL language. User
comments are included. The field stores
NULL for a table

RDB$DESCRIPTION BLOB TEXT Could store comments related to the
table or view

RDB$RELATION_ID SMALLINT Internal identifier of the table or view

RDB$SYSTEM_FLAG SMALLINT indicates whether the table or view is
user-defined (value 0) or system-defined
(value 1 or greater)

RDB$DBKEY_LENGTH SMALLINT The total length of the database key. For
a table: 8 bytes. For a view, the length is
8 multiplied by the number of tables
referenced by the view

RDB$FORMAT SMALLINT Internal use, points to the relation’s
record in RDB$FORMATS — do not modify

RDB$FIELD_ID SMALLINT The field ID for the next column to be
added. The number is not decremented
when a column is dropped.

RDB$RELATION_NAME CHAR(31) Table or view name

Appendix D: System Tables

633

Column Name Data Type Description

RDB$SECURITY_CLASS CHAR(31) May reference a security class defined
in the table RDB$SECURITY_CLASSES, in
order to apply access control limits to all
users of this table or view

RDB$EXTERNAL_FILE VARCHAR(255) The full path to the external data file if
the table is defined with the EXTERNAL
FILE clause

RDB$RUNTIME BLOB Table metadata description, used
internally for optimization

RDB$EXTERNAL_DESCRIPTION BLOB Could store comments related to the
external file of an external table

RDB$OWNER_NAME CHAR(31) The user name of the user who created
the table or view originally

RDB$DEFAULT_CLASS CHAR(31) Default security class, used when a new
column is added to the table

RDB$FLAGS SMALLINT Internal flags

RDB$RELATION_TYPE SMALLINT The type of the relation object being
described:

0 - system or user-defined table
1 - view
2 - external table
3 - monitoring table
4 - connection-level GTT (PRESERVE ROWS)
5 - transaction-level GTT (DELETE ROWS)

RDB$RELATION_CONSTRAINTS
RDB$RELATION_CONSTRAINTS stores the definitions of all table-level constraints: primary, unique,
foreign key, CHECK, NOT NULL constraints.

Column Name Data Type Description

RDB$CONSTRAINT_NAME CHAR(31) The name of the table-level constraint
defined by the user, or otherwise
automatically generated by the system

RDB$CONSTRAINT_TYPE CHAR(11) The name of the constraint type: PRIMARY
KEY, UNIQUE, FOREIGN KEY, CHECK or NOT
NULL

RDB$RELATION_NAME CHAR(31) The name of the table this constraint
applies to

RDB$DEFERRABLE CHAR(3) Currently NO in all cases: Firebird does
not yet support deferrable constraints

Appendix D: System Tables

634

Column Name Data Type Description

RDB$INITIALLY_DEFERRED CHAR(3) Currently NO in all cases

RDB$INDEX_NAME CHAR(31) The name of the index that supports this
constraint. For a CHECK or a NOT NULL
constraint, it is NULL.

RDB$RELATION_FIELDS
RDB$RELATION_FIELDS stores the definitions of table and view columns.

Column Name Data Type Description

RDB$FIELD_NAME CHAR(31) Column name

RDB$RELATION_NAME CHAR(31) The name of the table or view that the
column belongs to

RDB$FIELD_SOURCE CHAR(31) Domain name on which the column is
based, either a user-defined one
specified in the table definition or one
created automatically by the system
using the set of attributes defined. The
attributes are in the table RDB$FIELDS:
this column matches
RDB$FIELDS.RDB$FIELD_NAME.

RDB$QUERY_NAME CHAR(31) Not currently used

RDB$BASE_FIELD CHAR(31) Only populated for a view, it is the name
of the column from the base table

RDB$EDIT_STRING VARCHAR(127) Not used

RDB$FIELD_POSITION SMALLINT The zero-based ordinal position of the
column in the table or view, numbering
from left to right

RDB$QUERY_HEADER BLOB TEXT Not used

RDB$UPDATE_FLAG SMALLINT Indicates whether the column is a
regular one (value 1) or a computed one
(value 0)

RDB$FIELD_ID SMALLINT An ID assigned from
RDB$RELATIONS.RDB$FIELD_ID at the time
the column was added to the table or
view. It should always be treated as
transient

RDB$VIEW_CONTEXT SMALLINT For a view column, the internal
identifier of the base table from which
this field derives

Appendix D: System Tables

635

Column Name Data Type Description

RDB$DESCRIPTION BLOB TEXT Comments related to the table or view
column

RDB$DEFAULT_VALUE BLOB BLR The value stored for the DEFAULT clause
for this column, if there is one, written
in binary language representation (BLR)

RDB$SYSTEM_FLAG SMALLINT Indicates whether the column is user-
defined (value 0) or system-defined
(value 1 or greater)

RDB$SECURITY_CLASS CHAR(31) May reference a security class defined
in RDB$SECURITY_CLASSES, in order to
apply access control limits to all users of
this column

RDB$COMPLEX_NAME CHAR(31) Not used

RDB$NULL_FLAG SMALLINT Indicates whether the column is
nullable (NULL) non-nullable (value 1)

RDB$DEFAULT_SOURCE BLOB TEXT The source text of the DEFAULT clause, if
any

RDB$COLLATION_ID SMALLINT The identifier of the collation sequence
in the character set for the column, if it
is not the default collation

RDB$GENERATOR_NAME CHAR(31) Internal generator name for generating
an identity value for the column.

RDB$IDENTITY_TYPE SMALLINT The identity type of the column

NULL - not an identity column
0 - identity column, GENERATED ALWAYS
(not supported in Firebird 3.0, will be
introduced in Firebird 4.0)
1 - identity column, GENERATED BY
DEFAULT

RDB$ROLES
RDB$ROLES stores the roles that have been defined in this database.

Column Name Data Type Description

RDB$ROLE_NAME CHAR(31) Role name

RDB$OWNER_NAME CHAR(31) The user name of the role owner

RDB$DESCRIPTION BLOB TEXT Could store comments related to the
role

RDB$SYSTEM_FLAG SMALLINT System flag

Appendix D: System Tables

636

Column Name Data Type Description

RDB$SECURITY_CLASS CHAR(31) May reference a security class defined
in the table RDB$SECURITY_CLASSES, in
order to apply access control limits to all
users of this role

RDB$SECURITY_CLASSES
RDB$SECURITY_CLASSES stores the access control lists

Column Name Data Type Description

RDB$SECURITY_CLASS CHAR(31) Security class name

RDB$ACL BLOB ACL The access control list related to the
security class. It enumerates users and
their privileges

RDB$DESCRIPTION BLOB TEXT Could store comments related to the
security class

RDB$TRANSACTIONS
RDB$TRANSACTIONS stores the states of distributed transactions and other transactions that were
prepared for two-phase commit with an explicit prepare message.

Column Name Data Type Description

RDB$TRANSACTION_ID INTEGER The unique identifier of the transaction
being tracked

RDB$TRANSACTION_STATE SMALLINT Transaction state:

0 - in limbo
1 - committed
2 - rolled back

RDB$TIMESTAMP TIMESTAMP Not used

RDB$TRANSACTION_DESCRIPTION BLOB Describes the prepared transaction and
could be a custom message supplied to
isc_prepare_transaction2, even if it is
not a distributed transaction. It may be
used when a lost connection cannot be
restored

RDB$TRIGGERS
RDB$TRIGGERS stores the trigger definitions for all tables and views.

Appendix D: System Tables

637

Column Name Data Type Description

RDB$TRIGGER_NAME CHAR(31) Trigger name

RDB$RELATION_NAME CHAR(31) The name of the table or view the
trigger applies to. NULL if the trigger is
applicable to a database event
(“database trigger”)

RDB$TRIGGER_SEQUENCE SMALLINT Position of this trigger in the sequence.
Zero usually means that no sequence
position is specified

RDB$TRIGGER_TYPE BIGINT The event the trigger fires on, see
RDB$TRIGGER_TYPE Value

RDB$TRIGGER_SOURCE BLOB TEXT Stores the source code of the trigger in
PSQL

RDB$TRIGGER_BLR BLOB BLR Stores the trigger in the binary language
representation (BLR)

RDB$DESCRIPTION BLOB TEXT Trigger comment text

RDB$TRIGGER_INACTIVE SMALLINT Indicates whether the trigger is
currently inactive (1) or active (0)

RDB$SYSTEM_FLAG SMALLINT Flag: indicates whether the trigger is
user-defined (value 0) or system-defined
(value 1 or greater)

RDB$FLAGS SMALLINT Internal use

RDB$VALID_BLR SMALLINT Indicates whether the text of the trigger
remains valid after the latest
modification by the the ALTER TRIGGER
statement

RDB$DEBUG_INFO BLOB Contains debugging information about
variables used in the trigger

RDB$ENGINE_NAME CHAR(31) Engine for external triggers. 'UDR' for
UDR triggers. NULL for PSQL triggers

RDB$ENTRYPOINT CHAR(255) The exported name of the external
trigger in the trigger library. Note, this is
often not the same as RDB$TRIGGER_NAME,
which is the identifier with which the
trigger is declared to the database

RDB$TRIGGER_TYPE Value

The value of RDB$TRIGGER_TYPE is built from:

1 before insert

Appendix D: System Tables

638

2 after insert

3 before update

4 after update

5 before delete

6 after delete

17 before insert or update

18 after insert or update

25 before insert or delete

26 after insert or delete

27 before update or delete

28 after update or delete

113 before insert or update or delete

114 after insert or update or delete

8192 on connect

8193 on disconnect

8194 on transaction start

8195 on transaction commit

8196 on transaction rollback

Identification of the exact RDB$TRIGGER_TYPE code is a little more complicated, since
it is a bitmap, calculated according to which phase and events are covered and the
order in which they are defined. For the curious, the calculation is explained in
this code comment by Mark Rotteveel.

For DDL triggers, the trigger type is obtained by bitwise OR above the event phase (0 — BEFORE,
1 — AFTER) and all listed types events:

0x0000000000004002 CREATE TABLE

0x0000000000004004 ALTER TABLE

0x0000000000004008 DROP TABLE

0x0000000000004010 CREATE PROCEDURE

0x0000000000004020 ALTER PROCEDURE

Appendix D: System Tables

639

https://tinyurl.com/fb-triggertype

0x0000000000004040 DROP PROCEDURE

0x0000000000004080 CREATE FUNCTION

0x0000000000004100 ALTER FUNCTION

0x0000000000004200 DROP FUNCTION

0x0000000000004400 CREATE TRIGGER

0x0000000000004800 ALTER TRIGGER

0x0000000000005000 DROP TRIGGER

0x0000000000014000 CREATE EXCEPTION

0x0000000000024000 ALTER EXCEPTION

0x0000000000044000 DROP EXCEPTION

0x0000000000084000 CREATE VIEW

0x0000000000104000 ALTER VIEW

0x0000000000204000 DROP VIEW

0x0000000000404000 CREATE DOMAIN

0x0000000000804000 ALTER DOMAIN

0x0000000001004000 DROP DOMAIN

0x0000000002004000 CREATE ROLE

0x0000000004004000 ALTER ROLE

0x0000000008004000 DROP ROLE

0x0000000010004000 CREATE INDEX

0x0000000020004000 ALTER INDEX

0x0000000040004000 DROP INDEX

0x0000000080004000 CREATE SEQUENCE

0x0000000100004000 ALTER SEQUENCE

0x0000000200004000 DROP SEQUENCE

0x0000000400004000 CREATE USER

0x0000000800004000 ALTER USER

0x0000001000004000 DROP USER

0x0000002000004000 CREATE COLLATION

0x0000004000004000 DROP COLLATION

0x0000008000004000 ALTER CHARACTER SET

Appendix D: System Tables

640

0x0000010000004000 CREATE PACKAGE

0x0000020000004000 ALTER PACKAGE

0x0000040000004000 DROP PACKAGE

0x0000080000004000 CREATE PACKAGE BODY

0x0000100000004000 DROP PACKAGE BODY

0x0000200000004000 CREATE MAPPING

0x0000400000004000 ALTER MAPPING

0x0000800000004000 DROP MAPPING

0x7FFFFFFFFFFFDFFE ANY DDL STATEMENT

For example a trigger with
BEFORE CREATE PROCEDURE OR CREATE FUNCTION will be of type 0x0000000000004090,
AFTER CREATE PROCEDURE OR CREATE FUNCTION — 0x0000000000004091,
BEFORE DROP FUNCTION OR DROP EXCEPTION — 0x00000000000044200,
AFTER DROP FUNCTION OR DROP EXCEPTION — 0x00000000000044201,
BEFORE DROP TRIGGER OR DROP DOMAIN — 0x00000000001005000,
AFTER DROP TRIGGER OR DROP DOMAIN — 0x00000000001005001.

RDB$TRIGGER_MESSAGES
RDB$TRIGGER_MESSAGES stores the trigger messages.

Column Name Data Type Description

RDB$TRIGGER_NAME CHAR(31) The name of the trigger the message is
associated with

RDB$MESSAGE_NUMBER SMALLINT The number of the message within this
trigger (from 1 to 32,767)

RDB$MESSAGE VARCHAR(1023) Text of the trigger message

RDB$TYPES
RDB$TYPES stores the defining sets of enumerated types used throughout the system.

Column Name Data Type Description

RDB$FIELD_NAME CHAR(31) Enumerated type name. Each type name
masters its own set of types, e.g., object
types, data types, character sets, trigger
types, blob subtypes, etc.

Appendix D: System Tables

641

Column Name Data Type Description

RDB$TYPE SMALLINT The object type identifier. A unique
series of numbers is used within each
separate enumerated type. For example,
in this selection from the set mastered
under RDB$OBJECT_TYPE in
RDB$FIELD_NAME, some object types are
enumerated:

0 - TABLE
1 - VIEW
2 - TRIGGER
3 - COMPUTED_FIELD
4 - VALIDATION
5 - PROCEDURE
 …

RDB$TYPE_NAME CHAR(31) The name of a member of an
enumerated type, e.g., TABLE, VIEW,
TRIGGER, etc. in the example above. In
the RDB$CHARACTER_SET enumerated type,
RDB$TYPE_NAME stores the names of the
character sets.

RDB$DESCRIPTION BLOB TEXT Any text comments related to the
enumerated type

RDB$SYSTEM_FLAG SMALLINT Flag: indicates whether the type-
member is user-defined (value 0) or
system-defined (value 1 or greater)

RDB$USER_PRIVILEGES
RDB$USER_PRIVILEGES stores the SQL access privileges for Firebird users and privileged objects.

Column Name Data Type Description

RDB$USER CHAR(31) The user or object that is granted this
privilege

RDB$GRANTOR CHAR(31) The user who grants the privilege

Appendix D: System Tables

642

Column Name Data Type Description

RDB$PRIVILEGE CHAR(6) The privilege granted hereby:

A - all (all privileges)
S - select (selecting data)
I - insert (inserting rows)
D - delete (deleting rows)
R - references (foreign key)
U - update (updating data)
X - executing (procedure)
G - usage (of other object types)
M - role membership
C - DDL privilege create
L - DDL privilege alter
O - DDL privilege drop

RDB$GRANT_OPTION SMALLINT Whether the WITH GRANT OPTION
authority is included with the privilege:

0 - not included
1 - included

RDB$RELATION_NAME CHAR(31) The name of the object (table, view,
procedure or role) the privilege is
granted ON

RDB$FIELD_NAME CHAR(31) The name of the column the privilege is
applicable to, for a column-level
privilege (an UPDATE or REFERENCES
privilege)

RDB$USER_TYPE SMALLINT Identifies the type of user the privilege
is granted TO (a user, a procedure, a
view, etc.)

Appendix D: System Tables

643

Column Name Data Type Description

RDB$OBJECT_TYPE SMALLINT Identifies the type of the object the
privilege is granted ON

0 - table
1 - view
2 - trigger
5 - procedure
7 - exception
8 - user
9 - domain
11 - character set
13 - role
14 - generator (sequence)
15 - function
16 - BLOB filter
17 - collation
18 - package

RDB$VIEW_RELATIONS
RDB$VIEW_RELATIONS stores the tables that are referred to in view definitions. There is one record for
each table in a view.

Column Name Data Type Description

RDB$VIEW_NAME CHAR(31) View name

RDB$RELATION_NAME CHAR(31) The name of the table, view or stored
procedure the view references

RDB$VIEW_CONTEXT SMALLINT The alias used to reference the view
column in the BLR code of the query
definition

RDB$CONTEXT_NAME CHAR(255) The text associated with the alias
reported in the RDB$VIEW_CONTEXT column

RDB$CONTEXT_TYPE SMALLINT Context type:

0 - table
1 - view
2 - stored procedure

RDB$PACKAGE_NAME CHAR(31) Package name for a stored procedure in
a package

Appendix D: System Tables

644

Appendix E: Monitoring Tables
The Firebird engine can monitor activities in a database and make them available for user queries
via the monitoring tables. The definitions of these tables are always present in the database, all
named with the prefix MON$. The tables are virtual: they are populated with data only at the moment
when the user queries them. That is also one good reason why it is no use trying to create triggers
for them!

The key notion in understanding the monitoring feature is an activity snapshot. The activity
snapshot represents the current state of the database at the start of the transaction in which the
monitoring table query runs. It delivers a lot of information about the database itself, active
connections, users, transactions prepared, running queries and more.

The snapshot is created when any monitoring table is queried for the first time. It is preserved until
the end of the current transaction to maintain a stable, consistent view for queries across multiple
tables, such as a master-detail query. In other words, monitoring tables always behave as though
they were in SNAPSHOT TABLE STABILITY (“consistency”) isolation, even if the current transaction is
started with a lower isolation level.

To refresh the snapshot, the current transaction must be completed and the monitoring tables must
be re-queried in a new transaction context.

Access Security

• SYSDBA and the database owner have full access to all information available from the
monitoring tables

• Regular users can see information about their own connections; other connections are not
visible to them

In a highly loaded environment, collecting information via the monitoring tables
could have a negative impact on system performance.

List of Monitoring Tables

MON$ATTACHMENTS

Information about active attachments to the database

MON$CALL_STACK

Calls to the stack by active queries of stored procedures and triggers

MON$CONTEXT_VARIABLES

Information about custom context variables

MON$DATABASE

Information about the database to which the CURRENT_CONNECTION is attached

MON$IO_STATS

Input/output statistics

Appendix E: Monitoring Tables

645

MON$MEMORY_USAGE

Memory usage statistics

MON$RECORD_STATS

Record-level statistics

MON$STATEMENTS

Statements prepared for execution

MON$TABLE_STATS

Table-level statistics

MON$TRANSACTIONS

Started transactions

MON$ATTACHMENTS
MON$ATTACHMENTS displays information about active attachments to the database.

Column Name Data Type Description

MON$ATTACHMENT_ID BIGINT Connection identifier

MON$SERVER_PID INTEGER Server process identifier

MON$STATE SMALLINT Connection state:

0 - idle
1 - active

MON$ATTACHMENT_NAME VARCHAR(255) Connection string — the file name and
full path to the primary database file

MON$USER CHAR(31) The name of the user who is using this
connection

MON$ROLE CHAR(31) The role name specified when the
connection was established. If no role
was specified when the connection was
established, the field contains the text
NONE

MON$REMOTE_PROTOCOL VARCHAR(10) Remote protocol name

MON$REMOTE_ADDRESS VARCHAR(255) Remote address (address and server
name)

MON$REMOTE_PID INTEGER Remote client process identifier

MON$CHARACTER_SET_ID SMALLINT Connection character set identifier (see
RDB$CHARACTER_SET in system table
RDB$TYPES)

MON$TIMESTAMP TIMESTAMP The date and time when the connection
was started

Appendix E: Monitoring Tables

646

Column Name Data Type Description

MON$GARBAGE_COLLECTION SMALLINT Garbage collection flag (as specified in
the attachment’s DPB): 1=allowed, 0=not
allowed

MON$REMOTE_PROCESS VARCHAR(255) The full file name and path to the
executable file that established this
connection

MON$STAT_ID INTEGER Statistics identifier

MON$CLIENT_VERSION VARCHAR(255) Client library version

MON$REMOTE_VERSION VARCHAR(255) Remote protocol version

MON$REMOTE_HOST VARCHAR(255) Name of the remote host

MON$REMOTE_OS_USER VARCHAR(255) Name of remote user

MON$AUTH_METHOD VARCHAR(255) Name of authentication plugin used to
connect

MON$SYSTEM_FLAG SMALLINT Flag that indicates the type of
connection:

0 - normal connection
1 - system connection

Retrieving information about client applications

SELECT MON$USER, MON$REMOTE_ADDRESS, MON$REMOTE_PID, MON$TIMESTAMP
FROM MON$ATTACHMENTS
WHERE MON$ATTACHMENT_ID <> CURRENT_CONNECTION

Using MON$ATTACHMENTS to Kill a Connection

Monitoring tables are read-only. However, the server has a built-in mechanism for deleting (and
only deleting) records in the MON$ATTACHMENTS table, which makes it possible to close a connection to
the database.

Notes

• All the current activity in the connection being deleted is immediately stopped
and all active transactions are rolled back

• The closed connection will return an error with the isc_att_shutdown code to
the application

• Subsequent attempts to use this connection (i.e., use its handle in API calls) will
return errors

• Termination of system connections (MON$SYSTEM_FLAG = 1) is not possible. The
server will skip system connections in a DELETE FROM MON$ATTACHMENTS.

Appendix E: Monitoring Tables

647

Closing all connections except for your own (current):

DELETE FROM MON$ATTACHMENTS
WHERE MON$ATTACHMENT_ID <> CURRENT_CONNECTION

MON$CALL_STACK
MON$CALL_STACK displays calls to the stack from queries executing in stored procedures and triggers.

Column Name Data Type Description

MON$CALL_ID BIGINT Call identifier

MON$STATEMENT_ID BIGINT The identifier of the top-level SQL
statement, the one that initiated the
chain of calls. Use this identifier to find
the records about the active statement
in the MON$STATEMENTS table

MON$CALLER_ID BIGINT The identifier of the calling trigger or
stored procedure

MON$OBJECT_NAME CHAR(31) PSQL object (module) name

MON$OBJECT_TYPE SMALLINT PSQL object type (trigger or stored
procedure):

2 - trigger
5 - stored procedure
15 - stored function

MON$TIMESTAMP TIMESTAMP The date and time when the call was
started

MON$SOURCE_LINE INTEGER The number of the source line in the
SQL statement being executed at the
moment of the snapshot

MON$SOURCE_COLUMN INTEGER The number of the source column in the
SQL statement being executed at the
moment of the snapshot

MON$STAT_ID INTEGER Statistics identifier

MON$PACKAGE_NAME CHAR(31) Package name for stored procedures or
functions in a package

Information about calls during the execution of the EXECUTE STATEMENT statement
does not get into the call stack.

Get the call stack for all connections except your own

WITH RECURSIVE
 HEAD AS (

Appendix E: Monitoring Tables

648

 SELECT
 CALL.MON$STATEMENT_ID, CALL.MON$CALL_ID,
 CALL.MON$OBJECT_NAME, CALL.MON$OBJECT_TYPE
 FROM MON$CALL_STACK CALL
 WHERE CALL.MON$CALLER_ID IS NULL
 UNION ALL
 SELECT
 CALL.MON$STATEMENT_ID, CALL.MON$CALL_ID,
 CALL.MON$OBJECT_NAME, CALL.MON$OBJECT_TYPE
 FROM MON$CALL_STACK CALL
 JOIN HEAD ON CALL.MON$CALLER_ID = HEAD.MON$CALL_ID
)
SELECT MON$ATTACHMENT_ID, MON$OBJECT_NAME, MON$OBJECT_TYPE
FROM HEAD
 JOIN MON$STATEMENTS STMT ON STMT.MON$STATEMENT_ID = HEAD.MON$STATEMENT_ID
WHERE STMT.MON$ATTACHMENT_ID <> CURRENT_CONNECTION

MON$CONTEXT_VARIABLES
MON$CONTEXT_VARIABLES displays information about custom context variables.

Column Name Data Type Description

MON$ATTACHMENT_ID BIGINT Connection identifier. It contains a valid
value only for a connection-level
context variable. For transaction-level
variables it is NULL.

MON$TRANSACTION_ID BIGINT Transaction identifier. It contains a
valid value only for transaction-level
context variables. For connection-level
variables it is NULL.

MON$VARIABLE_NAME VARCHAR(80) Context variable name

MON$VARIABLE_VALUE VARCHAR(32765) Context variable value

Retrieving all session context variables for the current connection

SELECT
 VAR.MON$VARIABLE_NAME,
 VAR.MON$VARIABLE_VALUE
FROM MON$CONTEXT_VARIABLES VAR
WHERE VAR.MON$ATTACHMENT_ID = CURRENT_CONNECTION

MON$DATABASE
MON$DATABASE displays the header information from the database the current user is connected to.

Appendix E: Monitoring Tables

649

Column Name Data Type Description

MON$DATABASE_NAME VARCHAR(255) The file name and full path of the
primary database file, or the database
alias

MON$PAGE_SIZE SMALLINT Database page size in bytes

MON$ODS_MAJOR SMALLINT Major ODS version, e.g., 11

MON$ODS_MINOR SMALLINT Minor ODS version, e.g., 2

MON$OLDEST_TRANSACTION BIGINT The number of the oldest [interesting]
transaction (OIT)

MON$OLDEST_ACTIVE BIGINT The number of the oldest active
transaction (OAT)

MON$OLDEST_SNAPSHOT BIGINT The number of the transaction that was
active at the moment when the OAT was
started — oldest snapshot transaction
(OST)

MON$NEXT_TRANSACTION BIGINT The number of the next transaction, as
it stood when the monitoring snapshot
was taken

MON$PAGE_BUFFERS INTEGER The number of pages allocated in RAM
for the database page cache

MON$SQL_DIALECT SMALLINT Database SQL Dialect: 1 or 3

MON$SHUTDOWN_MODE SMALLINT The current shutdown state of the
database:

0 - the database is online
1 - multi-user shutdown
2 - single-user shutdown
3 - full shutdown

MON$SWEEP_INTERVAL INTEGER Sweep interval

MON$READ_ONLY SMALLINT Flag indicating whether the database is
read-only (value 1) or read-write (value
0)

MON$FORCED_WRITES SMALLINT Indicates whether the write mode of the
database is set for synchronous write
(forced writes ON, value is 1) or
asynchronous write (forced writes OFF,
value is 0)

MON$RESERVE_SPACE SMALLINT The flag indicating reserve_space (value
1) or use_all_space (value 0) for filling
database pages

Appendix E: Monitoring Tables

650

Column Name Data Type Description

MON$CREATION_DATE TIMESTAMP The date and time when the database
was created or was last restored

MON$PAGES BIGINT The number of pages allocated for the
database on an external device

MON$STAT_ID INTEGER Statistics identifier

MON$BACKUP_STATE SMALLINT Current physical backup (nBackup)
state:

0 - normal
1 - stalled
2 - merge

MON$CRYPT_PAGE BIGINT Number of encrypted pages

MON$OWNER CHAR(31) Username of the database owner

MON$SEC_DATABASE CHAR(7) Displays what type of security database
is used:

Default - default security database, i.e.
security3.fdb
Self - current database is used as
security database
Other - another database is used as
security database (not itself or
security3.fdb)

MON$IO_STATS
MON$IO_STATS displays input/output statistics. The counters are cumulative, by group, for each group
of statistics.

Column Name Data Type Description

MON$STAT_ID INTEGER Statistics identifier

MON$STAT_GROUP SMALLINT Statistics group:

0 - database
1 - connection
2 - transaction
3 - statement
4 - call

MON$PAGE_READS BIGINT Count of database pages read

MON$PAGE_WRITES BIGINT Count of database pages written to

MON$PAGE_FETCHES BIGINT Count of database pages fetched

Appendix E: Monitoring Tables

651

Column Name Data Type Description

MON$PAGE_MARKS BIGINT Count of database pages marked

MON$MEMORY_USAGE
MON$MEMORY_USAGE displays memory usage statistics.

Column Name Data Type Description

MON$STAT_ID INTEGER Statistics identifier

MON$STAT_GROUP SMALLINT Statistics group:

0 - database
1 - connection
2 - transaction
3 - operator
4 - call

MON$MEMORY_USED BIGINT The amount of memory in use, in bytes.
This data is about the high-level
memory allocation performed by the
server. It can be useful to track down
memory leaks and excessive memory
usage in connections, procedures, etc.

MON$MEMORY_ALLOCATED BIGINT The amount of memory allocated by the
operating system, in bytes. This data is
about the low-level memory allocation
performed by the Firebird memory
manager — the amount of memory
allocated by the operating
system — which can allow you to
control the physical memory usage.

MON$MAX_MEMORY_USED BIGINT The maximum number of bytes used by
this object

MON$MAX_MEMORY_ALLOCATED BIGINT The maximum number of bytes
allocated for this object by the operating
system

Counters associated with database-level records MON$DATABASE (MON$STAT_GROUP = 0),
display memory allocation for all connections. In the Classic and SuperClassic zero
values of the counters indicate that these architectures have no common cache.

Minor memory allocations are not accrued here but are added to the database
memory pool instead.

Appendix E: Monitoring Tables

652

Getting 10 requests consuming the most memory

SELECT
 STMT.MON$ATTACHMENT_ID,
 STMT.MON$SQL_TEXT,
 MEM.MON$MEMORY_USED
FROM MON$MEMORY_USAGE MEM
NATURAL JOIN MON$STATEMENTS STMT
ORDER BY MEM.MON$MEMORY_USED DESC
FETCH FIRST 10 ROWS ONLY

MON$RECORD_STATS
MON$RECORD_STATS displays record-level statistics. The counters are cumulative, by group, for each
group of statistics.

Column Name Data Type Description

MON$STAT_ID INTEGER Statistics identifier

MON$STAT_GROUP SMALLINT Statistics group:

0 - database
1 - connection
2 - transaction
3 - statement
4 - call

MON$RECORD_SEQ_READS BIGINT Count of records read sequentially

MON$RECORD_IDX_READS BIGINT Count of records read via an index

MON$RECORD_INSERTS BIGINT Count of inserted records

MON$RECORD_UPDATES BIGINT Count of updated records

MON$RECORD_DELETES BIGINT Count of deleted records

MON$RECORD_BACKOUTS BIGINT Count of records backed out

MON$RECORD_PURGES BIGINT Count of records purged

MON$RECORD_EXPUNGES BIGINT Count of records expunged

MON$RECORD_LOCKS BIGINT Number of records locked

MON$RECORD_WAITS BIGINT Number of update, delete or lock
attempts on records owned by other
active transactions. Transaction is in
WAIT mode.

MON$RECORD_CONFLICTS BIGINT Number of unsuccessful update, delete
or lock attempts on records owned by
other active transactions. These are
reported as update conflicts.

Appendix E: Monitoring Tables

653

Column Name Data Type Description

MON$BACKVERSION_READS BIGINT Number of back-versions read to find
visible records

MON$FRAGMENT_READS BIGINT Number of fragmented records read

MON$RECORD_RPT_READS BIGINT Number of repeated reads of records

MON$STATEMENTS
MON$STATEMENTS displays statements prepared for execution.

Column Name Data Type Description

MON$STATEMENT_ID BIGINT Statement identifier

MON$ATTACHMENT_ID BIGINT Connection identifier

MON$TRANSACTION_ID BIGINT Transaction identifier

MON$STATE SMALLINT Statement state:

0 - idle
1 - active
2 - stalled

MON$TIMESTAMP TIMESTAMP The date and time when the statement
was prepared

MON$SQL_TEXT BLOB TEXT Statement text in SQL

MON$STAT_ID INTEGER Statistics identifier

MON$EXPLAINED_PLAN BLOB TEXT Explained execution plan

The STALLED state indicates that, at the time of the snapshot, the statement had an open cursor and
was waiting for the client to resume fetching rows.

Display active queries, excluding those running in your connection

SELECT
 ATT.MON$USER,
 ATT.MON$REMOTE_ADDRESS,
 STMT.MON$SQL_TEXT,
 STMT.MON$TIMESTAMP
FROM MON$ATTACHMENTS ATT
JOIN MON$STATEMENTS STMT ON ATT.MON$ATTACHMENT_ID = STMT.MON$ATTACHMENT_ID
WHERE ATT.MON$ATTACHMENT_ID <> CURRENT_CONNECTION
AND STMT.MON$STATE = 1

Using MON$STATEMENTS to Cancel a Query

Monitoring tables are read-only. However, the server has a built-in mechanism for deleting (and
only deleting) records in the MON$STATEMENTS table, which makes it possible to cancel a running

Appendix E: Monitoring Tables

654

query.

Notes

• If no statements are currently being executed in the connection, any attempt to
cancel queries will not proceed

• After a query is cancelled, calling execute/fetch API functions will return an
error with the isc_cancelled code

• Subsequent queries from this connection will proceed as normal

• Cancellation of the statement does not occur synchronously, it only marks the
request for cancellation, and the cancellation itself is done asynchronously by
the server

Example

Cancelling all active queries for the specified connection:

DELETE FROM MON$STATEMENTS
 WHERE MON$ATTACHMENT_ID = 32

MON$TABLE_STATS
MON$TABLE_STATS reports table-level statistics.

Column Name Data Type Description

MON$STAT_ID INTEGER Statistics identifier

MON$STAT_GROUP SMALLINT Statistics group:

0 - database
1 - connection
2 - transaction
3 - statement
4 - call

MON$TABLE_NAME CHAR(31) Name of the table

MON$RECORD_STAT_ID INTEGER Link to MON$RECORD_STATS

Getting statistics at the record level for each table for the current connection

SELECT
 t.mon$table_name,
 r.mon$record_inserts,
 r.mon$record_updates,
 r.mon$record_deletes,
 r.mon$record_backouts,
 r.mon$record_purges,
 r.mon$record_expunges,

Appendix E: Monitoring Tables

655

 r.mon$record_seq_reads,
 r.mon$record_idx_reads,
 r.mon$record_rpt_reads,
 r.mon$backversion_reads,
 r.mon$fragment_reads,

 r.mon$record_locks,
 r.mon$record_waits,
 r.mon$record_conflicts,

 a.mon$stat_id
FROM mon$record_stats r
JOIN mon$table_stats t ON r.mon$stat_id = t.mon$record_stat_id
JOIN mon$attachments a ON t.mon$stat_id = a.mon$stat_id
WHERE a.mon$attachment_id = CURRENT_CONNECTION

MON$TRANSACTIONS
MON$TRANSACTIONS reports started transactions.

Column Name Data Type Description

MON$TRANSACTION_ID BIGINT Transaction identifier (number)

MON$ATTACHMENT_ID BIGINT Connection identifier

MON$STATE SMALLINT Transaction state:

0 - idle
1 - active

MON$TIMESTAMP TIMESTAMP The date and time when the transaction
was started

MON$TOP_TRANSACTION BIGINT Top-level transaction identifier
(number)

MON$OLDEST_TRANSACTION BIGINT Transaction ID of the oldest [interesting]
transaction (OIT)

MON$OLDEST_ACTIVE BIGINT Transaction ID of the oldest active
transaction (OAT)

MON$ISOLATION_MODE SMALLINT Isolation mode (level):

0 - consistency (snapshot table stability)
1 - concurrency (snapshot)
2 - read committed record version
3 - read committed no record version

Appendix E: Monitoring Tables

656

Column Name Data Type Description

MON$LOCK_TIMEOUT SMALLINT Lock timeout:

-1 - wait forever
0 - no waiting
1 or greater - lock timeout in seconds

MON$READ_ONLY SMALLINT Flag indicating whether the transaction
is read-only (value 1) or read-write
(value 0)

MON$AUTO_COMMIT SMALLINT Flag indicating whether automatic
commit is used for the transaction
(value 1) or not (value 0)

MON$AUTO_UNDO SMALLINT Flag indicating whether the logging
mechanism automatic undo is used for
the transaction (value 1) or not (value 0)

MON$STAT_ID INTEGER Statistics identifier

Getting all connections that started Read Write transactions with isolation level above Read Commited

SELECT DISTINCT a. *
FROM mon$attachments a
JOIN mon$transactions t ON a.mon$attachment_id = t.mon$attachment_id
WHERE NOT (t.mon$read_only = 1 AND t.mon$isolation_mode >= 2)

Appendix E: Monitoring Tables

657

Appendix F: Security tables
The names of the security tables have SEC$ as prefix. They display data from the current security
database. These tables are virtual in the sense that before access by the user, no data is recorded in
them. They are filled with data at the time of user request. However, the descriptions of these tables
are constantly present in the database. In this sense, these virtual tables are like tables of the MON$
-family used to monitor the server.

Security

• SYSDBA, users with the RDB$ADMIN role in the security database and the current database, and
the owner of the security database have full access to all information provided by the security
tables.

• Regular users can only see information on themselves, other users are not visible.

These features are highly dependent on the user management plugin. Keep in
mind that some options are ignored when using a legacy control plugin users.

List of security tables

SEC$DB_CREATORS

Lists users and roles granted the CREATE DATABASE privilege

SEC$GLOBAL_AUTH_MAPPING

Information about global authentication mappings

SEC$USERS

Lists users in the current security database

SEC$USER_ATTRIBUTES

Additional attributes of users

SEC$DB_CREATORS
Lists users and roles granted the CREATE DATABASE privilege.

Column Name Data Type Description

SEC$USER CHAR(31) Name of the user or role

SEC$USER_TYPE SMALLINT Type of user:

8 - user
13 - role

SEC$GLOBAL_AUTH_MAPPING
Lists users and roles granted the CREATE DATABASE privilege.

Appendix F: Security tables

658

Column Name Data Type Description

SEC$MAP_NAME CHAR(31) Name of the mapping

SEC$MAP_USING CHAR(1) Using definition:

P - plugin (specific or any)
S - any plugin serverwide
M - mapping
* - any method

SEC$MAP_PLUGIN CHAR(31) Mapping applies for authentication
information from this specific plugin

SEC$MAP_DB CHAR(31) Mapping applies for authentication
information from this specific database

SEC$MAP_FROM_TYPE CHAR(31) The type of authentication object
(defined by plugin) to map from, or * for
any type

SEC$MAP_FROM CHAR(255) The name of the authentication object to
map from

SEC$MAP_TO_TYPE SMALLINT Nullable The type to map to

0 - USER
1 - ROLE

SEC$MAP_TO CHAR(31) The name to map to

SEC$USERS
Lists users in the current security database.

Column Name Data Type Description

SEC$USER_NAME CHAR(31) Username

SEC$FIRST_NAME VARCHAR(32) First name

SEC$MIDDLE_NAME VARCHAR(32) Middle name

SEC$LAST_NAME VARCHAR(32) Last name

SEC$ACTIVE BOOLEAN true - active, false - inactive

SEC$ADMIN BOOLEAN true - user has admin role in security
database, false otherwise

SEC$DESCRIPTION BLOB TEXT Description (comment) on the user

SEC$PLUGIN CHAR(31) Authentication plugin name that
manages this user

Multiple users van exist with the same username, each managed by a different
authentication plugin.

Appendix F: Security tables

659

SEC$USER_ATTRIBUTES
Additional attributes of users

Column Name Data Type Description

SEC$USER_NAME CHAR(31) Username

SEC$KEY VARCHAR(31) Attribute name

SEC$VALUE VARCHAR(255) Attribute value

SEC$PLUGIN CHAR(31) Authentication plugin name that
manages this user

Displaying a list of users and their attributes

SELECT
 U.SEC$USER_NAME AS LOGIN,
 A.SEC$KEY AS TAG,
 A.SEC$VALUE AS "VALUE",
 U.SEC$PLUGIN AS "PLUGIN"
FROM SEC$USERS U
LEFT JOIN SEC$USER_ATTRIBUTES A
 ON U.SEC$USER_NAME = A.SEC$USER_NAME
 AND U.SEC$PLUGIN = A.SEC$PLUGIN;

LOGIN TAG VALUE PLUGIN
======== ======= ======= ===================
SYSDBA <null> <null> Srp
ALEX B x Srp
ALEX C sample Srp
SYSDBA <null> <null> Legacy_UserManager

Appendix F: Security tables

660

Appendix G: Character Sets and Collation
Sequences
Table 234. Character Sets and Collation Sequences

Character Set ID Bytes
per

Char

Collation Language

ASCII 2 1 ASCII English

BIG_5 56 2 BIG_5 Chinese, Vietnamese, Korean

CP943C 68 2 CP943C Japanese

 〃 〃 〃 CP943C_UNICODE Japanese

CYRL 50 1 CYRL Russian

 〃 〃 〃 DB_RUS Russian dBase

 〃 〃 〃 PDOX_CYRL Russian Paradox

DOS437 10 1 DOS437 U.S. English

 〃 〃 〃 DB_DEU437 German dBase

 〃 〃 〃 DB_ESP437 Spanish dBase

 〃 〃 〃 DB_FIN437 Finnish dBase

 〃 〃 〃 DB_FRA437 French dBase

 〃 〃 〃 DB_ITA437 Italian dBase

 〃 〃 〃 DB_NLD437 Dutch dBase

 〃 〃 〃 DB_SVE437 Swedish dBase

 〃 〃 〃 DB_UK437 English (Great Britain) dBase

 〃 〃 〃 DB_US437 U.S. English dBase

 〃 〃 〃 PDOX_ASCII Code page Paradox-ASCII

 〃 〃 〃 PDOX_INTL International English Paradox

 〃 〃 〃 PDOX_SWEDFIN Swedish / Finnish Paradox

DOS737 9 1 DOS737 Greek

DOS775 15 1 DOS775 Baltic

DOS850 11 1 DOS850 Latin I (no Euro symbol)

 〃 〃 〃 DB_DEU850 German

 〃 〃 〃 DB_ESP850 Spanish

 〃 〃 〃 DB_FRA850 French

 〃 〃 〃 DB_FRC850 French-Canada

 〃 〃 〃 DB_ITA850 Italian

Appendix G: Character Sets and Collation Sequences

661

Character Set ID Bytes
per

Char

Collation Language

 〃 〃 〃 DB_NLD850 Dutch

 〃 〃 〃 DB_PTB850 Portuguese-Brazil

 〃 〃 〃 DB_SVE850 Swedish

 〃 〃 〃 DB_UK850 English-Great Britain

 〃 〃 〃 DB_US850 U.S. English

DOS852 45 1 DOS852 Latin II

 〃 〃 〃 DB_CSY Czech dBase

 〃 〃 〃 DB_PLK Polish dBase

 〃 〃 〃 DB_SLO Slovene dBase

 〃 〃 〃 PDOX_CSY Czech Paradox

 〃 〃 〃 PDOX_HUN Hungarian Paradox

 〃 〃 〃 PDOX_PLK Polish Paradox

 〃 〃 〃 PDOX_SLO Slovene Paradox

DOS857 46 1 DOS857 Turkish

 〃 〃 〃 DB_TRK Turkish dBase

DOS858 16 1 DOS858 Latin I (with Euro symbol)

DOS860 13 1 DOS860 Portuguese

 〃 〃 〃 DB_PTG860 Portuguese dBase

DOS861 47 1 DOS861 Icelandic

 〃 〃 〃 PDOX_ISL Icelandic Paradox

DOS862 17 1 DOS862 Hebrew

DOS863 14 1 DOS863 French-Canada

 〃 〃 〃 DB_FRC863 French dBase-Canada

DOS864 18 1 DOS864 Arabic

DOS865 12 1 DOS865 Scandinavian

 〃 〃 〃 DB_DAN865 Danish dBase

 〃 〃 〃 DB_NOR865 Norwegian dBase

 〃 〃 〃 PDOX_NORDAN4 Paradox Norway and Denmark

DOS866 48 1 DOS866 Russian

DOS869 49 1 DOS869 Modern Greek

EUCJ_0208 6 2 EUCJ_0208 Japanese EUC

GB18030 69 4 GB18030 Chinese

Appendix G: Character Sets and Collation Sequences

662

Character Set ID Bytes
per

Char

Collation Language

 〃 〃 〃 GB18030_UNICODE Chinese

GBK 67 2 GBK Chinese

 〃 〃 〃 GBK_UNICODE Chinese

GB_2312 57 2 GB_2312 Simplified Chinese (Hong Kong,
Korea)

ISO8859_1 21 1 ISO8859_1 Latin I

 〃 〃 〃 DA_DA Danish

 〃 〃 〃 DE_DE German

 〃 〃 〃 DU_NL Dutch

 〃 〃 〃 EN_UK English-Great Britain

 〃 〃 〃 EN_US U.S. English

 〃 〃 〃 ES_ES Spanish

 〃 〃 〃 ES_ES_CI_AI Spanish — case insensitive and +
accent-insensitive

 〃 〃 〃 FI_FI Finnish

 〃 〃 〃 FR_CA French-Canada

 〃 〃 〃 FR_CA_CI_AI French-Canada — case insensitive
+ accent insensitive

 〃 〃 〃 FR_FR French

 〃 〃 〃 FR_FR_CI_AI French — case insensitive + accent
insensitive

 〃 〃 〃 IS_IS Icelandic

 〃 〃 〃 IT_IT Italian

 〃 〃 〃 NO_NO Norwegian

 〃 〃 〃 PT_BR Portuguese-Brazil

 〃 〃 〃 PT_PT Portuguese

 〃 〃 〃 SV_SV Swedish

ISO8859_2 22 1 ISO8859_2 Latin 2 — Central Europe
(Croatian, Czech, Hungarian,
Polish, Romanian, Serbian, Slovak,
Slovenian)

 〃 〃 〃 CS_CZ Czech

 〃 〃 〃 ISO_HUN Hungarian — case insensitive,
accent sensitive

Appendix G: Character Sets and Collation Sequences

663

Character Set ID Bytes
per

Char

Collation Language

 〃 〃 〃 ISO_PLK Polish

ISO8859_3 23 1 ISO8859_3 Latin 3 — Southern Europe (Malta,
Esperanto)

ISO8859_4 34 1 ISO8859_4 Latin 4 — Northern Europe
(Estonian, Latvian, Lithuanian,
Greenlandic, Lappish)

ISO8859_5 35 1 ISO8859_5 Cyrillic (Russian)

ISO8859_6 36 1 ISO8859_6 Arabic

ISO8859_7 37 1 ISO8859_7 Greek

ISO8859_8 38 1 ISO8859_8 Hebrew

ISO8859_9 39 1 ISO8859_9 Latin 5

ISO8859_13 40 1 ISO8859_13 Latin 7 — Baltic

 〃 〃 〃 LT_LT Lithuanian

KOI8R 63 1 KOI8R Russian — dictionary ordering

 〃 〃 〃 KOI8R_RU Russian

KOI8U 64 1 KOI8U Ukrainian — dictionary ordering

 〃 〃 〃 KOI8U_UA Ukrainian

KSC_5601 44 2 KSC_5601 Korean

 〃 〃 〃 KSC_DICTIONARY Korean — dictionary sort order

NEXT 19 1 NEXT Coding NeXTSTEP

 〃 〃 〃 NXT_DEU German

 〃 〃 〃 NXT_ESP Spanish

 〃 〃 〃 NXT_FRA French

 〃 〃 〃 NXT_ITA Italian

 〃 19 1 NXT_US U.S. English

NONE 0 1 NONE Neutral code page. Translation to
upper case is performed only for
code ASCII 97-122.
Recommendation: avoid this
character set

OCTETS 1 1 OCTETS Binary character encoding

SJIS_0208 5 2 SJIS_0208 Japanese

TIS620 66 1 TIS620 Thai

 〃 〃 〃 TIS620_UNICODE Thai

Appendix G: Character Sets and Collation Sequences

664

Character Set ID Bytes
per

Char

Collation Language

UNICODE_FSS 3 3 UNICODE_FSS All English

UTF8 4 4 UTF8 Any language that is supported in
Unicode 4.0

 〃 〃 〃 UCS_BASIC Any language that is supported in
Unicode 4.0

 〃 〃 〃 UNICODE Any language that is supported in
Unicode 4.0

 〃 〃 〃 UNICODE_CI Any language that is supported in
Unicode 4.0 — Case insensitive

 〃 〃 〃 UNICODE_CI_AI Any language that is supported in
Unicode 4.0 — Case insensitive and
accent insensitive

WIN1250 51 1 WIN1250 ANSI — Central Europe

 〃 〃 〃 BS_BA Bosnian

 〃 〃 〃 PXW_CSY Czech

 〃 〃 〃 PXW_HUN Hungarian — case insensitive,
accent sensitive

 〃 〃 〃 PXW_HUNDC Hungarian — dictionary ordering

 〃 〃 〃 PXW_PLK Polish

 〃 〃 〃 PXW_SLOV Slovenian

 〃 〃 〃 WIN_CZ Czech

 〃 〃 〃 WIN_CZ_CI_AI Czech — Case insensitive and
accent insensitive

WIN1251 52 1 WIN1251 ANSI Cyrillic

 〃 〃 〃 PXW_CYRL Paradox Cyrillic (Russian)

 〃 〃 〃 WIN1251_UA Ukrainian

WIN1252 53 1 WIN1252 ANSI — Latin I

 〃 〃 〃 PXW_INTL English International

 〃 〃 〃 PXW_INTL850 Paradox multilingual Latin I

 〃 〃 〃 PXW_NORDAN4 Norwegian and Danish

 〃 〃 〃 PXW_SPAN Paradox Spanish

 〃 〃 〃 PXW_SWEDFIN Swedish and Finnish

 〃 〃 〃 WIN_PTBR Portuguese — Brazil

WIN1253 54 1 WIN1253 ANSI Greek

Appendix G: Character Sets and Collation Sequences

665

Character Set ID Bytes
per

Char

Collation Language

 〃 〃 〃 PXW_GREEK Paradox Greek

WIN1254 55 1 WIN1254 ANSI Turkish

 〃 〃 〃 PXW_TURK Paradox Turkish

WIN1255 58 1 WIN1255 ANSI Hebrew

WIN1256 59 1 WIN1256 ANSI Arabic

WIN1257 60 1 WIN1257 ANSI Baltic

 〃 〃 〃 WIN1257_EE Estonian — Dictionary ordering

 〃 〃 〃 WIN1257_LT Lithuanian — Dictionary ordering

 〃 〃 〃 WIN1257_LV Latvian — Dictionary ordering

WIN1258 65 1 WIN1258 Vietnamese

Appendix G: Character Sets and Collation Sequences

666

Appendix H: License notice
The contents of this Documentation are subject to the Public Documentation License Version 1.0
(the “License”); you may only use this Documentation if you comply with the terms of this License.
Copies of the License are available at https://www.firebirdsql.org/pdfmanual/pdl.pdf (PDF) and
https://www.firebirdsql.org/manual/pdl.html (HTML).

The Original Documentation is titled Firebird 3.0 Language Reference. This Documentation was
derived from Firebird 2.5 Language Reference.

The Initial Writers of the Original Documentation are: Paul Vinkenoog, Dmitry Yemanov, Thomas
Woinke and Mark Rotteveel. Writers of text originally in Russian are Denis Simonov, Dmitry
Filippov, Alexander Karpeykin, Alexey Kovyazin and Dmitry Kuzmenko.

Copyright © 2008-2024. All Rights Reserved. Initial Writers contact: paul at vinkenoog dot nl.

Writers and Editors of included PDL-licensed material are: J. Beesley, Helen Borrie, Arno Brinkman,
Frank Ingermann, Vlad Khorsun, Alex Peshkov, Nickolay Samofatov, Adriano dos Santos Fernandes,
Dmitry Yemanov.

Included portions are Copyright © 2001-2024 by their respective authors. All Rights Reserved.

Contributor(s): Mark Rotteveel.

Portions created by Mark Rotteveel are Copyright © 2018-2024. All Rights Reserved. (Contributor
contact(s): mrotteveel at users dot sourceforge dot net).

Appendix H: License notice

667

https://www.firebirdsql.org/pdfmanual/pdl.pdf
https://www.firebirdsql.org/manual/pdl.html

Appendix I: Document History
The exact file history is recorded in our git repository; see https://github.com/FirebirdSQL/firebird-
documentation

Revision History

1.1
9

17 Jan
2024

M
R

• Corrected result type description of SUM

• Removed ALTER PACKAGE BODY documentation, as this feature doesn’t exist
(#200)

1.1
8

15 Dec
2023

M
R

Added types 4 and 5 to RDB$FUNCTION_ARGUMENTS.RDB$MECHANISM (#192)

1.1
7

09 Nov
2023

M
R

• Fixed incorrect "equivalent" for REGR_COUNT

• Added negative subtype to RDB$FIELDS.RDB$FIELD_SUB_TYPE, and fixed
formatting

• Wrong link from ALTER TRIGGER to CREATE TRIGGER (#189)

• Added TCPv6 to NETWORK_PROTOCOL for SYSTEM namespace (#170)

• Fixed description of RDB$INDICES.RDB$FOREIGN_KEY (#191)

1.1
6

20 Jun
2023

M
R

• Computed columns can be indexed with expression indexes

• Replaced firebird-docs references with firebird-devel

• Add caution about relying on ordered derived tables for LIST()

1.1
5

26 May
2023

M
R

• Added missing context variable names for RDB$GET_CONTEXT()

• CURRENT_CONNECTION returns BIGINT

• Removed section Joins with stored procedures as it no longer applies

• Replaced mention that implicit join is deprecated and might get removed;
its use is merely discouraged.

• Removed incorrect ROLE keyword from example in Granting the RDB$ADMIN
Role in a Regular Database

1.1
4

10 May
2023

M
R

Removed incorrect <common-table-expression> production in SELECT syntax

1.1
3

30 Jan
2023

M
R

Fixed typo in collation name UCS_BASIC

1.1
2

27 Oct
2022

M
R

• Fixed incorrect whitespace in table names

• Added missing table name in FROM in Deterministic functions (#177)

1.1
1

31 Jul
2022

M
R

Move RDB$TRIGGER_TYPE description to separate section to prevent truncation
of table cell in PDF

1.1
0

18 Jul
2022

M
R

Fix documentation for RDB$INDICES.RDB$INDEX_TYPE (#174)

Appendix I: Document History

668

https://github.com/FirebirdSQL/firebird-documentation
https://github.com/FirebirdSQL/firebird-documentation
https://github.com/FirebirdSQL/firebird-documentation/issues/200
https://github.com/FirebirdSQL/firebird-documentation/issues/192
https://github.com/FirebirdSQL/firebird-documentation/issues/189
https://github.com/FirebirdSQL/firebird-documentation/pull/170
https://github.com/FirebirdSQL/firebird-documentation/issues/191
https://github.com/FirebirdSQL/firebird-documentation/issues/177
https://github.com/FirebirdSQL/firebird-documentation/issues/174

Revision History

1.9 13 Jul
2022

M
R

DATEDIFF unit MILLISECOND returns NUMERIC(18,1) since Firebird 3.0.8 (#173)

1.8 03 Jan
2022

M
R

Values for RDB$RELATION_FIELDS.RDB$IDENTITY_TYPE were swapped (#168)

1.7 16 Oct
2021

M
R

EXECUTE STATEMENT named parameters are regular identifiers (#164)

1.6 29 Sep
2021

M
R

Explicitly document transaction isolation level of ON CONNECT/ON DISCONNECT
triggers (#163)

1.5 31 Jul
2021

M
R

Fix behaviour documented for SNAPSHOT TABLE STABILITY (#158)

1.4 23 Jul
2021

M
R

Remove extra SELECT in select syntax

1.3 13 Jun
2021

M
R

• Fixed wrong table title NUMERIC → DECIMAL

• Fixed wrong link title DATEADD → DATEDIFF

1.2 27 Apr
2021

M
R

• Added missing } in regular expression special characters (see issue 124)

• Fixed rendering issue hiding the _ in regular expression special characters

• Improve wording of CURRENT_CONNECTION and CURRENT_TRANSACTION (see issue
96)

1.1 05 Apr
2021

M
R

Corrected syntax mistake in SUBSTRING(… SIMILAR …) documentation.

1.0 20 Feb
2021

M
R

Using the Firebird 2.5 Language Reference as a starting point, incorporated all
changes in Firebird 3.0, using the Firebird 3 Release Notes and the Russian
Firebird 3.0 Language Reference.

Some restructuring was done for maintainability and readability.

Appendix I: Document History

669

https://github.com/FirebirdSQL/firebird-documentation/issues/173
https://github.com/FirebirdSQL/firebird-documentation/issues/168
https://github.com/FirebirdSQL/firebird-documentation/issues/164
https://github.com/FirebirdSQL/firebird-documentation/issues/163
https://github.com/FirebirdSQL/firebird-documentation/issues/158
https://github.com/FirebirdSQL/firebird-documentation/issues/124
https://github.com/FirebirdSQL/firebird-documentation/issues/96
https://github.com/FirebirdSQL/firebird-documentation/issues/96

	Firebird 3.0 Language Reference
	Table of Contents
	Chapter 1. About the Firebird 3.0 Language Reference
	1.1. Subject
	1.2. Authorship
	1.2.1. Contributors

	1.3. Acknowledgments
	1.4. Contributing

	Chapter 2. SQL Language Structure
	2.1. Background to Firebird’s SQL Language
	2.1.1. SQL Flavours
	2.1.2. SQL Dialects
	2.1.3. Error Conditions

	2.2. Basic Elements: Statements, Clauses, Keywords
	2.3. Identifiers
	2.3.1. Rules for Regular Object Identifiers
	2.3.2. Rules for Delimited Object Identifiers

	2.4. Literals
	2.5. Operators and Special Characters
	2.6. Comments

	Chapter 3. Data Types and Subtypes
	3.1. Integer Data Types
	3.1.1. SMALLINT
	3.1.2. INTEGER
	3.1.3. BIGINT
	3.1.4. Hexadecimal Format for Integer Numbers

	3.2. Floating-Point Data Types
	3.2.1. FLOAT
	3.2.2. DOUBLE PRECISION

	3.3. Fixed-Point Data Types
	3.3.1. NUMERIC
	3.3.2. DECIMAL

	3.4. Data Types for Dates and Times
	3.4.1. DATE
	3.4.2. TIME
	3.4.3. TIMESTAMP
	3.4.4. Operations Using Date and Time Values

	3.5. Character Data Types
	3.5.1. Unicode
	3.5.2. Client Character Set
	3.5.3. Special Character Sets
	3.5.4. Collation Sequence
	Case-Insensitive Searching
	UTF8 Collation Sequences

	3.5.5. Character Indexes
	3.5.6. Character Types in Detail
	CHAR
	VARCHAR
	NCHAR

	3.6. Boolean Data Type
	3.6.1. BOOLEAN
	The IS Operator
	BOOLEAN Examples
	Use of Boolean against other data types

	3.7. Binary Data Types
	3.7.1. BLOB Subtypes
	3.7.2. BLOB Specifics
	3.7.3. ARRAY Type
	Specifying Explicit Boundaries for Dimensions
	Adding More Dimensions
	PSQL Source for SHOW_LANGS, a procedure involving an array

	3.8. Special Data Types
	3.8.1. SQL_NULL Data Type

	3.9. Conversion of Data Types
	3.9.1. Explicit Data Type Conversion
	Casting to a Domain
	Casting to TYPE OF COLUMN
	Conversions Possible for the CAST Function
	Literal Formats
	Shorthand Casts for Date and Time Data Types

	3.9.2. Implicit Data Type Conversion
	Implicit Conversion During String Concatenation

	3.10. Custom Data Types — Domains
	3.10.1. Domain Attributes
	3.10.2. Domain Override
	3.10.3. Creating and Administering Domains
	Altering a Domain
	Deleting (Dropping) a Domain

	3.11. Data Type Declaration Syntax
	3.11.1. Scalar Data Types Syntax
	Use of Domains in Declarations
	Use of Column Type in Declarations

	3.11.2. BLOB Data Types Syntax
	3.11.3. Array Data Types Syntax

	Chapter 4. Common Language Elements
	4.1. Expressions
	4.1.1. Literals (Constants)
	String Literals
	String Literals in Hexadecimal Notation
	Alternative String Literals
	Introducer Syntax for String Literals

	Number Literals
	Hexadecimal Notation for Numbers
	Hexadecimal Value Ranges

	Boolean Literals

	4.1.2. SQL Operators
	Operator Precedence
	Concatenation Operator
	Arithmetic Operators
	Comparison Operators
	Logical Operators

	NEXT VALUE FOR

	4.1.3. Conditional Expressions
	CASE
	Simple CASE
	Searched CASE

	4.1.4. NULL in Expressions
	Expressions Returning NULL
	NULL in Logical Expressions

	4.1.5. Subqueries
	Correlated Subqueries
	Scalar Results

	4.2. Predicates
	4.2.1. Conditions
	4.2.2. Comparison Predicates
	Other Comparison Predicates
	BETWEEN
	LIKE
	Wildcards
	Using the ESCAPE Character Option
	Examples using LIKE

	STARTING WITH
	CONTAINING
	SIMILAR TO
	Syntax: SQL Regular Expressions
	Building Regular Expressions

	IS [NOT] DISTINCT FROM
	Boolean IS [NOT]
	IS [NOT] NULL

	4.2.3. Existential Predicates
	EXISTS
	IN
	SINGULAR

	4.2.4. Quantified Subquery Predicates
	ALL
	ANY and SOME

	Chapter 5. Data Definition (DDL) Statements
	5.1. DATABASE
	5.1.1. CREATE DATABASE
	Using a Database Alias
	Creating a Database on a Remote Server
	Optional Parameters for CREATE DATABASE
	Specifying the Database Dialect
	Who Can Create a Database
	Examples Using CREATE DATABASE

	5.1.2. ALTER DATABASE
	Who Can Alter the Database
	Parameters for ALTER DATABASE
	Examples of ALTER DATABASE Usage

	5.1.3. DROP DATABASE
	Who Can Drop a Database
	Example of DROP DATABASE

	5.2. SHADOW
	5.2.1. CREATE SHADOW
	AUTO | MANUAL Modes
	Options for CREATE SHADOW
	Who Can Create a Shadow
	Examples Using CREATE SHADOW

	5.2.2. DROP SHADOW
	Who Can Drop a Shadow
	Example of DROP SHADOW

	5.3. DOMAIN
	5.3.1. CREATE DOMAIN
	Type-specific Details
	Who Can Create a Domain
	CREATE DOMAIN Examples

	5.3.2. ALTER DOMAIN
	ALTER DOMAIN clauses
	What ALTER DOMAIN Cannot Alter
	Who Can Alter a Domain
	ALTER DOMAIN Examples

	5.3.3. DROP DOMAIN
	Who Can Drop a Domain
	Example of DROP DOMAIN

	5.4. TABLE
	5.4.1. CREATE TABLE
	Character Columns
	Setting a DEFAULT Value
	Domain-based Columns
	Identity Columns (autoincrement)
	Calculated Fields
	Defining an Array Column
	Constraints
	Names for Constraints and Their Indexes
	Named Constraints
	The USING Clause

	PRIMARY KEY
	The UNIQUE Constraint
	NULL in Unique Keys

	FOREIGN KEY
	Foreign Key Actions

	CHECK Constraint
	NOT NULL constraint

	Who Can Create a Table
	CREATE TABLE Examples
	Global Temporary Tables (GTT)
	Restrictions on GTTs
	Examples of Global Temporary Tables

	External Tables
	External File Format
	Row Delimiters
	External Table Example

	5.4.2. ALTER TABLE
	Version Count Increments
	The ADD Clause
	The DROP Clause
	The DROP CONSTRAINT Clause
	The ALTER [COLUMN] Clause
	Renaming a Column: the TO Clause
	Changing the Data Type of a Column: the TYPE Clause
	Changing the Position of a Column: the POSITION Clause
	The DROP DEFAULT and SET DEFAULT Clauses
	The SET NOT NULL and DROP NOT NULL Clauses
	The COMPUTED [BY] or GENERATED ALWAYS AS Clauses
	Changing Identity Columns
	Attributes that Cannot Be Altered
	Who Can Alter a Table?
	Examples Using ALTER TABLE

	5.4.3. DROP TABLE
	Who Can Drop a Table?
	Example of DROP TABLE

	5.4.4. RECREATE TABLE
	Example of RECREATE TABLE

	5.5. INDEX
	5.5.1. CREATE INDEX
	Who Can Create an Index?
	Unique Indexes
	Index Direction
	Computed (Expression) Indexes
	Limits on Indexes
	Maximum Indexes per Table
	Character Index Limits

	Examples Using CREATE INDEX

	5.5.2. ALTER INDEX
	Who Can Alter an Index?
	Use of ALTER INDEX on a Constraint Index
	ALTER INDEX Examples

	5.5.3. DROP INDEX
	Who Can Drop an Index?
	DROP INDEX Example

	5.5.4. SET STATISTICS
	Who Can Update Index Statistics?
	Index Selectivity
	Example Using SET STATISTICS

	5.6. VIEW
	5.6.1. CREATE VIEW
	Updatable Views
	WITH CHECK OPTION
	Who Can Create a View?
	Examples of Creating Views

	5.6.2. ALTER VIEW
	Who Can Alter a View?
	Example using ALTER VIEW

	5.6.3. CREATE OR ALTER VIEW
	Example of CREATE OR ALTER VIEW

	5.6.4. DROP VIEW
	Who Can Drop a View?
	Example

	5.6.5. RECREATE VIEW
	Example of RECREATE VIEW

	5.7. TRIGGER
	5.7.1. CREATE TRIGGER
	Statement Terminators
	External UDR Triggers
	DML Triggers (on Tables or Views)
	Who Can Create a DML Trigger?
	Forms of Declaration
	Phase
	Row Events
	Firing Order of Triggers
	Variable Declarations
	The Trigger Body
	Examples of CREATE TRIGGER for Tables and Views

	Database Triggers
	Who Can Create a Database Trigger?
	Execution of Database Triggers and Exception Handling
	Traps
	Two-phase Commit
	Some Caveats

	Examples of CREATE TRIGGER for “Database Triggers”

	DDL Triggers
	Who Can Create a DDL Trigger?
	Suppressing DDL Triggers
	Examples of DDL Triggers

	5.7.2. ALTER TRIGGER
	Permitted Changes to Triggers
	Who Can Alter a Trigger?
	Examples using ALTER TRIGGER

	5.7.3. CREATE OR ALTER TRIGGER
	Example of CREATE OR ALTER TRIGGER

	5.7.4. DROP TRIGGER
	Who Can Drop a Trigger?
	Example of DROP TRIGGER

	5.7.5. RECREATE TRIGGER
	Example of RECREATE TRIGGER

	5.8. PROCEDURE
	5.8.1. CREATE PROCEDURE
	Statement Terminators
	Parameters
	Variable, Cursor and Sub-Routine Declarations
	External UDR Procedures
	Who Can Create a Procedure
	Examples

	5.8.2. ALTER PROCEDURE
	Who Can Alter a Procedure
	ALTER PROCEDURE Example

	5.8.3. CREATE OR ALTER PROCEDURE
	CREATE OR ALTER PROCEDURE Example

	5.8.4. DROP PROCEDURE
	Who Can Drop a Procedure
	DROP PROCEDURE Example

	5.8.5. RECREATE PROCEDURE
	RECREATE PROCEDURE Example

	5.9. FUNCTION
	5.9.1. CREATE FUNCTION
	Statement Terminators
	Parameters
	Deterministic functions
	Variable, Cursor and Sub-Routine Declarations
	Function Body
	External UDR Functions
	Who Can Create a Function
	CREATE FUNCTION Examples

	5.9.2. ALTER FUNCTION
	Who Can Alter a Function
	Examples of ALTER FUNCTION

	5.9.3. CREATE OR ALTER FUNCTION
	Examples of CREATE OR ALTER FUNCTION

	5.9.4. DROP FUNCTION
	Who Can Drop a Function
	Examples of DROP FUNCTION

	5.9.5. RECREATE FUNCTION
	Examples of RECREATE FUNCTION

	5.10. EXTERNAL FUNCTION
	5.10.1. DECLARE EXTERNAL FUNCTION
	DECLARE EXTERNAL FUNCTION Input Parameters
	Clauses and Keywords

	Who Can Create an External Function
	Examples using DECLARE EXTERNAL FUNCTION

	5.10.2. ALTER EXTERNAL FUNCTION
	Who Can Alter an External Function
	Examples using ALTER EXTERNAL FUNCTION

	5.10.3. DROP EXTERNAL FUNCTION
	Who Can Drop an External Function
	Example using DROP EXTERNAL FUNCTION

	5.11. PACKAGE
	5.11.1. CREATE PACKAGE
	Statement Terminators
	Procedure and Function Parameters
	Who Can Create a Package
	Examples of CREATE PACKAGE

	5.11.2. ALTER PACKAGE
	Who Can Alter a Package
	Examples of ALTER PACKAGE

	5.11.3. CREATE OR ALTER PACKAGE
	Examples of CREATE OR ALTER PACKAGE

	5.11.4. DROP PACKAGE
	Who Can Drop a Package
	Examples of DROP PACKAGE

	5.11.5. RECREATE PACKAGE
	Examples of RECREATE PACKAGE

	5.12. PACKAGE BODY
	5.12.1. CREATE PACKAGE BODY
	Who Can Create a Package Body
	Examples of CREATE PACKAGE BODY

	5.12.2. DROP PACKAGE BODY
	Who Can Drop a Package Body
	Examples of DROP PACKAGE BODY

	5.12.3. RECREATE PACKAGE BODY
	Examples of RECREATE PACKAGE BODY

	5.13. FILTER
	5.13.1. DECLARE FILTER
	Specifying the Subtypes
	Parameters
	Who Can Create a BLOB Filter?
	Examples of DECLARE FILTER

	5.13.2. DROP FILTER
	Who Can Drop a BLOB Filter?
	DROP FILTER Example

	5.14. SEQUENCE (GENERATOR)
	5.14.1. CREATE SEQUENCE
	Who Can Create a Sequence?
	Examples of CREATE SEQUENCE

	5.14.2. ALTER SEQUENCE
	Who Can Alter a Sequence?
	Examples of ALTER SEQUENCE

	5.14.3. CREATE OR ALTER SEQUENCE
	Example of CREATE OR ALTER SEQUENCE

	5.14.4. DROP SEQUENCE
	Who Can Drop a Sequence?
	Example of DROP SEQUENCE

	5.14.5. RECREATE SEQUENCE
	Example of RECREATE SEQUENCE

	5.14.6. SET GENERATOR
	Who Can Use a SET GENERATOR?
	Example of SET GENERATOR

	5.15. EXCEPTION
	5.15.1. CREATE EXCEPTION
	Who Can Create an Exception
	CREATE EXCEPTION Examples

	5.15.2. ALTER EXCEPTION
	Who Can Alter an Exception
	ALTER EXCEPTION Examples

	5.15.3. CREATE OR ALTER EXCEPTION
	CREATE OR ALTER EXCEPTION Example

	5.15.4. DROP EXCEPTION
	Who Can Drop an Exception
	DROP EXCEPTION Examples

	5.15.5. RECREATE EXCEPTION
	RECREATE EXCEPTION Example

	5.16. COLLATION
	5.16.1. CREATE COLLATION
	How the Engine Detects the Collation
	Specific Attributes
	Who Can Create a Collation
	Examples using CREATE COLLATION

	5.16.2. DROP COLLATION
	Who Can Drop a Collation
	Example using DROP COLLATION

	5.17. CHARACTER SET
	5.17.1. ALTER CHARACTER SET
	Who Can Alter a Character Set
	ALTER CHARACTER SET Example

	5.18. Comments
	5.18.1. COMMENT ON
	Who Can Add a Comment
	Examples using COMMENT ON

	Chapter 6. Data Manipulation (DML) Statements
	6.1. SELECT
	6.1.1. FIRST, SKIP
	Characteristics of FIRST and SKIP

	6.1.2. The SELECT Columns List
	6.1.3. The FROM clause
	Selecting FROM a table or view
	Selecting FROM a stored procedure
	Selecting FROM a derived table
	Selecting FROM a Common Table Expression (CTE)

	6.1.4. Joins
	Inner vs. Outer Joins
	Qualified joins
	Explicit-condition joins
	Named columns joins

	Natural joins
	Cross joins
	Implicit Joins
	Mixing Explicit and Implicit Joins

	A Note on Equality
	Ambiguous field names in joins

	6.1.5. The WHERE clause
	6.1.6. The GROUP BY clause
	HAVING

	6.1.7. The PLAN clause
	Simple plans
	Composite plans

	6.1.8. UNION
	6.1.9. ORDER BY
	Sorting Direction
	Collation Order
	NULLs Position
	Ordering UNION-ed Sets
	Examples of ORDER BY

	6.1.10. ROWS
	Replacing of FIRST/SKIP and OFFSET/FETCH
	Mixing ROWS and FIRST/SKIP or OFFSET/FETCH
	ROWS Syntax in UNION Queries
	Examples of ROWS

	6.1.11. OFFSET, FETCH
	Examples of OFFSET and FETCH

	6.1.12. FOR UPDATE [OF]
	6.1.13. WITH LOCK
	Usage with a FOR UPDATE Clause
	How the engine deals with WITH LOCK
	Caveats using WITH LOCK
	Examples using explicit locking

	6.1.14. INTO
	6.1.15. Common Table Expressions (“WITH … AS … SELECT”)
	Recursive CTEs

	6.2. INSERT
	6.2.1. INSERT … VALUES
	6.2.2. INSERT … SELECT
	6.2.3. INSERT … DEFAULT VALUES
	6.2.4. The RETURNING clause
	6.2.5. Inserting into BLOB columns

	6.3. UPDATE
	6.3.1. Using an alias
	6.3.2. The SET Clause
	6.3.3. The WHERE Clause
	6.3.4. The ORDER BY and ROWS Clauses
	6.3.5. The RETURNING Clause
	The INTO Sub-clause
	RETURNING Example (DSQL)

	6.3.6. Updating BLOB columns

	6.4. UPDATE OR INSERT
	6.4.1. The RETURNING clause
	6.4.2. Example of UPDATE OR INSERT

	6.5. DELETE
	6.5.1. Aliases
	6.5.2. WHERE
	6.5.3. PLAN
	6.5.4. ORDER BY and ROWS
	6.5.5. RETURNING

	6.6. MERGE
	6.6.1. The RETURNING Clause
	6.6.2. Examples of MERGE

	6.7. EXECUTE PROCEDURE
	6.7.1. “Executable” Stored Procedure
	6.7.2. Examples of EXECUTE PROCEDURE

	6.8. EXECUTE BLOCK
	6.8.1. Examples
	6.8.2. Input and output parameters
	6.8.3. Statement Terminators

	Chapter 7. Procedural SQL (PSQL) Statements
	7.1. Elements of PSQL
	7.1.1. DML Statements with Parameters
	7.1.2. Transactions
	7.1.3. Module Structure
	The Module Header
	The Module Body
	The PSQL Module Body
	The External Module Body

	7.2. Stored Procedures
	7.2.1. Benefits of Stored Procedures
	7.2.2. Types of Stored Procedures
	Executable Procedures
	Selectable Procedures

	7.2.3. Creating a Stored Procedure
	7.2.4. Modifying a Stored Procedure
	7.2.5. Deleting a Stored Procedure

	7.3. Stored Functions
	7.3.1. Creating a Stored Function
	7.3.2. Modifying a Stored Function
	7.3.3. Deleting a Stored Function

	7.4. PSQL Blocks
	7.5. Packages
	7.5.1. Benefits of Packages
	7.5.2. Creating a Package
	7.5.3. Modifying a Package
	7.5.4. Deleting a Package

	7.6. Triggers
	7.6.1. Firing Order (Order of Execution)
	7.6.2. DML Triggers
	Trigger Options
	OLD and NEW Context Variables

	7.6.3. Database Triggers
	7.6.4. DDL Triggers
	Semantics
	The DDL_TRIGGER Context Namespace

	7.6.5. Creating Triggers
	7.6.6. Modifying Triggers
	7.6.7. Deleting a Trigger

	7.7. Writing the Body Code
	7.7.1. Assignment Statements
	Example using assignment statements

	7.7.2. DECLARE VARIABLE
	Data Type for Variables
	NOT NULL Constraint
	CHARACTER SET and COLLATE clauses
	Initializing a Variable
	Examples of various ways to declare local variables

	7.7.3. DECLARE .. CURSOR
	Forward-Only and Scrollable Cursors
	Cursor Idiosyncrasies
	Examples Using Named Cursors

	7.7.4. DECLARE FUNCTION
	Examples of Sub-Functions

	7.7.5. DECLARE PROCEDURE
	Examples of Sub-Procedures

	7.7.6. BEGIN … END
	BEGIN … END Examples

	7.7.7. IF … THEN … ELSE
	IF Examples

	7.7.8. WHILE … DO
	WHILE … DO Examples

	7.7.9. BREAK
	7.7.10. LEAVE
	LEAVE Examples

	7.7.11. CONTINUE
	CONTINUE Examples

	7.7.12. EXIT
	EXIT Examples

	7.7.13. SUSPEND
	SUSPEND Examples

	7.7.14. EXECUTE STATEMENT
	Parameterized Statements
	Special Rules for Parameterized Statements
	Examples of EXECUTE STATEMENT with parameters

	WITH {AUTONOMOUS | COMMON} TRANSACTION
	WITH CALLER PRIVILEGES
	ON EXTERNAL [DATA SOURCE]
	Connection Pooling
	Transaction Pooling
	Exception Handling
	Miscellaneous Notes

	AS USER, PASSWORD and ROLE
	Caveats with EXECUTE STATEMENT

	7.7.15. FOR SELECT
	The Undeclared Cursor
	Examples using FOR SELECT

	7.7.16. FOR EXECUTE STATEMENT
	FOR EXECUTE STATEMENT Examples

	7.7.17. OPEN
	OPEN Examples

	7.7.18. FETCH
	FETCH Examples

	7.7.19. CLOSE
	CLOSE Examples

	7.7.20. IN AUTONOMOUS TRANSACTION
	IN AUTONOMOUS TRANSACTION Examples

	7.7.21. POST_EVENT
	POST_EVENT Examples

	7.7.22. RETURN
	RETURN Examples

	7.8. Trapping and Handling Errors
	7.8.1. System Exceptions
	7.8.2. Custom Exceptions
	7.8.3. EXCEPTION
	EXCEPTION Examples

	7.8.4. WHEN … DO
	Scope of a WHEN … DO Statement
	Examples using WHEN…DO

	Chapter 8. Built-in Scalar Functions
	8.1. Context Functions
	8.1.1. RDB$GET_CONTEXT()
	The SYSTEM Namespace
	The DDL_TRIGGER Namespace
	Examples

	8.1.2. RDB$SET_CONTEXT()

	8.2. Mathematical Functions
	8.2.1. ABS()
	8.2.2. ACOS()
	8.2.3. ACOSH()
	8.2.4. ASIN()
	8.2.5. ASINH()
	8.2.6. ATAN()
	8.2.7. ATAN2()
	8.2.8. ATANH()
	8.2.9. CEIL(), CEILING()
	8.2.10. COS()
	8.2.11. COSH()
	8.2.12. COT()
	8.2.13. EXP()
	8.2.14. FLOOR()
	8.2.15. LN()
	8.2.16. LOG()
	8.2.17. LOG10()
	8.2.18. MOD()
	8.2.19. PI()
	8.2.20. POWER()
	8.2.21. RAND()
	8.2.22. ROUND()
	ROUND Examples

	8.2.23. SIGN()
	8.2.24. SIN()
	8.2.25. SINH()
	8.2.26. SQRT()
	8.2.27. TAN()
	8.2.28. TANH()
	8.2.29. TRUNC()

	8.3. String Functions
	8.3.1. ASCII_CHAR()
	8.3.2. ASCII_VAL()
	8.3.3. BIT_LENGTH()
	BIT_LENGTH Examples

	8.3.4. CHAR_LENGTH(), CHARACTER_LENGTH()
	CHAR_LENGTH Examples

	8.3.5. HASH()
	8.3.6. LEFT()
	8.3.7. LOWER()
	LOWER Examples

	8.3.8. LPAD()
	LPAD Examples

	8.3.9. OCTET_LENGTH()
	OCTET_LENGTH Examples

	8.3.10. OVERLAY()
	OVERLAY Examples

	8.3.11. POSITION()
	POSITION Examples

	8.3.12. REPLACE()
	REPLACE Examples

	8.3.13. REVERSE()
	REVERSE Examples

	8.3.14. RIGHT()
	8.3.15. RPAD()
	RPAD Examples

	8.3.16. SUBSTRING()
	Positional SUBSTRING
	Regular Expression SUBSTRING

	8.3.17. TRIM()
	TRIM Examples

	8.3.18. UPPER()
	UPPER Examples

	8.4. Date and Time Functions
	8.4.1. DATEADD()
	Examples of DATEADD

	8.4.2. DATEDIFF()
	DATEDIFF Examples

	8.4.3. EXTRACT()
	Returned Data Types and Ranges
	MILLISECOND
	WEEK

	8.5. Type Casting Functions
	8.5.1. CAST()
	“Shorthand” Syntax
	Allowed Type Conversions
	Casting Parameters
	Casting to a Domain or its Type
	Casting to a Column’s Type
	Cast Examples

	8.6. Bitwise Functions
	8.6.1. BIN_AND()
	8.6.2. BIN_NOT()
	8.6.3. BIN_OR()
	8.6.4. BIN_SHL()
	8.6.5. BIN_SHR()
	8.6.6. BIN_XOR()

	8.7. UUID Functions
	8.7.1. CHAR_TO_UUID()
	CHAR_TO_UUID Examples

	8.7.2. GEN_UUID()
	GEN_UUID Example

	8.7.3. UUID_TO_CHAR()
	UUID_TO_CHAR Examples

	8.8. Functions for Sequences (Generators)
	8.8.1. GEN_ID()
	GEN_ID Example

	8.9. Conditional Functions
	8.9.1. COALESCE()
	COALESCE Examples

	8.9.2. DECODE()
	DECODE Examples

	8.9.3. IIF()
	IIF Examples

	8.9.4. MAXVALUE()
	MAXVALUE Examples

	8.9.5. MINVALUE()
	MINVALUE Examples

	8.9.6. NULLIF()
	NULLIF Example

	Chapter 9. Aggregate Functions
	9.1. General-purpose Aggregate Functions
	9.1.1. AVG()
	AVG Examples

	9.1.2. COUNT()
	COUNT Examples

	9.1.3. LIST()
	LIST Examples

	9.1.4. MAX()
	MAX Examples

	9.1.5. MIN()
	MIN Examples

	9.1.6. SUM()
	SUM Examples

	9.2. Statistical Aggregate Functions
	9.2.1. CORR
	CORR Examples

	9.2.2. COVAR_POP
	COVAR_POP Examples

	9.2.3. COVAR_SAMP
	COVAR_SAMP Examples

	9.2.4. STDDEV_POP
	STDDEV_POP Examples

	9.2.5. STDDEV_SAMP
	STDDEV_SAMP Examples

	9.2.6. VAR_POP
	VAR_POP Examples

	9.2.7. VAR_SAMP
	VAR_SAMP Examples

	9.3. Linear Regression Aggregate Functions
	9.3.1. REGR_AVGX
	9.3.2. REGR_AVGY
	9.3.3. REGR_COUNT
	9.3.4. REGR_INTERCEPT
	REGR_INTERCEPT Examples

	9.3.5. REGR_R2
	9.3.6. REGR_SLOPE
	9.3.7. REGR_SXX
	9.3.8. REGR_SXY
	9.3.9. REGR_SYY

	Chapter 10. Window (Analytical) Functions
	10.1. Aggregate Functions as Window Functions
	10.2. Partitioning
	10.3. Ordering
	10.4. Ranking Functions
	10.4.1. DENSE_RANK
	DENSE_RANK Examples

	10.4.2. RANK
	RANK Examples

	10.4.3. ROW_NUMBER
	ROW_NUMBER Examples

	10.5. Navigational Functions
	10.5.1. FIRST_VALUE
	10.5.2. LAG
	LAG Examples

	10.5.3. LAST_VALUE
	10.5.4. LEAD
	10.5.5. NTH_VALUE

	10.6. Aggregate Functions Inside Window Specification

	Chapter 11. Context Variables
	11.1. CURRENT_CONNECTION
	11.2. CURRENT_DATE
	11.3. CURRENT_ROLE
	11.4. CURRENT_TIME
	11.5. CURRENT_TIMESTAMP
	11.6. CURRENT_TRANSACTION
	11.7. CURRENT_USER
	11.8. DELETING
	11.9. GDSCODE
	11.10. INSERTING
	11.11. LOCALTIME
	11.12. LOCALTIMESTAMP
	11.13. NEW
	11.14. 'NOW'
	11.15. OLD
	11.16. ROW_COUNT
	11.17. SQLCODE
	11.18. SQLSTATE
	11.19. 'TODAY'
	11.20. 'TOMORROW'
	11.21. UPDATING
	11.22. 'YESTERDAY'
	11.23. USER

	Chapter 12. Transaction Control
	12.1. Transaction Statements
	12.1.1. SET TRANSACTION
	Transaction Name
	Transaction Parameters
	Access Mode
	Lock Resolution Mode
	WAIT Mode
	NO WAIT Mode

	Isolation Level
	SNAPSHOT Isolation Level
	SNAPSHOT TABLE STABILITY Isolation Level
	READ COMMITTED Isolation Level

	NO AUTO UNDO
	RESTART REQUESTS
	IGNORE LIMBO
	RESERVING
	Options for RESERVING Clause

	12.1.2. COMMIT
	COMMIT Options

	12.1.3. ROLLBACK
	ROLLBACK Options
	ROLLBACK TO SAVEPOINT

	12.1.4. SAVEPOINT
	12.1.5. RELEASE SAVEPOINT
	12.1.6. Internal Savepoints
	12.1.7. Savepoints and PSQL

	Chapter 13. Security
	13.1. User Authentication
	13.1.1. Specially Privileged Users
	POSIX Hosts
	The SYSDBA User on POSIX
	The root User

	Windows Hosts
	The Database Owner

	13.1.2. RDB$ADMIN Role
	Granting the RDB$ADMIN Role in the Security Database
	Doing the Same Task Using gsec
	Using the RDB$ADMIN Role in the Security Database
	Using gsec with RDB$ADMIN Rights

	Granting the RDB$ADMIN Role in a Regular Database
	Using the RDB$ADMIN Role in a Regular Database

	AUTO ADMIN MAPPING
	Auto Admin Mapping in Regular Databases
	Auto Admin Mapping in the Security Database

	13.1.3. Administrators

	13.2. SQL Statements for User Management
	13.2.1. CREATE USER
	Who Can Create a User
	CREATE USER Examples

	13.2.2. ALTER USER
	Who Can Alter a User?
	ALTER USER Examples

	13.2.3. CREATE OR ALTER USER
	CREATE OR ALTER USER Examples

	13.2.4. DROP USER
	Who Can Drop a User?
	DROP USER Example

	13.3. SQL Privileges
	13.3.1. The Object Owner

	13.4. ROLE
	13.4.1. CREATE ROLE
	Who Can Create a Role
	CREATE ROLE Example

	13.4.2. ALTER ROLE
	Who Can Alter a Role

	13.4.3. DROP ROLE
	Who Can Drop a Role
	DROP ROLE Examples

	13.5. Statements for Granting Privileges
	13.5.1. GRANT
	The TO Clause
	Packaging Privileges in a ROLE Object
	The User PUBLIC

	The WITH GRANT OPTION Clause
	The GRANTED BY Clause
	Alternative Syntax Using AS username

	Privileges on Tables and Views
	Examples of GRANT <privilege> on Tables

	The EXECUTE Privilege
	Examples of Granting the EXECUTE Privilege

	The USAGE Privilege
	Examples of Granting the USAGE Privilege

	DDL Privileges
	Examples of Granting DDL Privileges

	Database DDL Privileges
	Examples of Granting Database DDL Privileges
	Assigning Roles
	The WITH ADMIN OPTION Clause
	Examples of Role Assignment

	13.6. Statements for Revoking Privileges
	13.6.1. REVOKE
	The FROM Clause
	Revoking the GRANT OPTION
	Removing the Privilege to One or More Roles
	Revoking Privileges That Were GRANTED BY
	Revoking ALL ON ALL
	Examples using REVOKE

	13.7. Mapping of Users to Objects
	13.7.1. The Mapping Rule
	13.7.2. CREATE MAPPING
	Who Can Create a Mapping
	CREATE MAPPING examples

	13.7.3. ALTER MAPPING
	Who Can Alter a Mapping
	ALTER MAPPING examples

	13.7.4. CREATE OR ALTER MAPPING
	CREATE OR ALTER MAPPING examples

	13.7.5. DROP MAPPING
	Who Can Drop a Mapping
	DROP MAPPING examples

	13.8. Database Encryption
	13.8.1. Encrypting a Database
	13.8.2. Decrypting a Database

	Chapter 14. Management Statements
	14.1. Changing the Current Role
	14.1.1. SET ROLE
	SET ROLE Examples

	14.1.2. SET TRUSTED ROLE
	SET TRUSTED ROLE Examples

	Appendix A: Supplementary Information
	The RDB$VALID_BLR Field
	How Invalidation Works

	A Note on Equality

	Appendix B: Exception Codes and Messages
	SQLSTATE Error Codes and Descriptions
	SQLCODE and GDSCODE Error Codes and Descriptions

	Appendix C: Reserved Words and Keywords
	Reserved words
	Keywords

	Appendix D: System Tables
	RDB$AUTH_MAPPING
	RDB$BACKUP_HISTORY
	RDB$CHARACTER_SETS
	RDB$CHECK_CONSTRAINTS
	RDB$COLLATIONS
	RDB$DATABASE
	RDB$DB_CREATORS
	RDB$DEPENDENCIES
	RDB$EXCEPTIONS
	RDB$FIELDS
	RDB$FIELD_DIMENSIONS
	RDB$FILES
	RDB$FILTERS
	RDB$FORMATS
	RDB$FUNCTIONS
	RDB$FUNCTION_ARGUMENTS
	RDB$GENERATORS
	RDB$INDICES
	RDB$INDEX_SEGMENTS
	RDB$LOG_FILES
	RDB$PACKAGES
	RDB$PAGES
	RDB$PROCEDURES
	RDB$PROCEDURE_PARAMETERS
	RDB$REF_CONSTRAINTS
	RDB$RELATIONS
	RDB$RELATION_CONSTRAINTS
	RDB$RELATION_FIELDS
	RDB$ROLES
	RDB$SECURITY_CLASSES
	RDB$TRANSACTIONS
	RDB$TRIGGERS
	RDB$TRIGGER_TYPE Value

	RDB$TRIGGER_MESSAGES
	RDB$TYPES
	RDB$USER_PRIVILEGES
	RDB$VIEW_RELATIONS

	Appendix E: Monitoring Tables
	MON$ATTACHMENTS
	Using MON$ATTACHMENTS to Kill a Connection

	MON$CALL_STACK
	MON$CONTEXT_VARIABLES
	MON$DATABASE
	MON$IO_STATS
	MON$MEMORY_USAGE
	MON$RECORD_STATS
	MON$STATEMENTS
	Using MON$STATEMENTS to Cancel a Query

	MON$TABLE_STATS
	MON$TRANSACTIONS

	Appendix F: Security tables
	SEC$DB_CREATORS
	SEC$GLOBAL_AUTH_MAPPING
	SEC$USERS
	SEC$USER_ATTRIBUTES

	Appendix G: Character Sets and Collation Sequences
	Appendix H: License notice
	Appendix I: Document History

